U.S. DEPARTMENT OF THE INTERIOR

BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY

Charles G. Groat, Director

For information on the water program in Virginia write to

District Chief Water Resources Division U.S. Geological Survey 1730 East Parham Road Richmond, Virginia 23228

or

Virginia Department of Environmental Quality Surface Water Investigations 900 Natural Resource Drive Suite 1060 Charlottesville, Virginia 22903

PREFACE

This volume of the annual hydrologic data report of Virginia is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's and cooperating agencies' surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and water quality provide the hydrologic information needed by State, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. Hydrologic data for Virginia are contained in two volumes:

- Volume 1. Surface-Water-Discharge and Surface-Water-Quality Records
- Volume 2. Ground-Water-Level and Ground-Water-Quality Records

This report (Volume 2) is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey and the Virginia Department of Environmental Quality who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. In addition to the authors, who had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines, the following personnel contributed significantly to the collection, computation, processing, and completion of this information:

Dennis W. Adams
Richard J. Ahlin
Donna L. Belval
David P. Brower
Robert W. Buck
William V. Daniels, Jr.
Karl M. Dydak
Michael R. Eckenwiler
Matthew J. Ferrari
Patsy S. Francisco
Thomas L. Gibson
Joel R. Guyer
George E. Harlow

Harold G. Henderlite Daniel W. Henry James R. Jeffries Donna S. Justus Ronnie E. Lawson Roger M. Moberg David L. Nelms Daniel A. Nissen Joseph A. Owens Gary K. Speiran Derek A. Tribble Stephen L. Wheeler Roger K. White

This report was prepared in cooperation with the State of Virginia and with other agencies under the general supervision of Ward W. Staubitz, District Chief.

CONTENTS

P	age		
Preface List of surface-water stations, in downstream order, for which records are published in this volume	iii vi		
List of discontinued surface-water-discharge or stage-only stations. List of discontinued surface-water-quality stations xv Introduction xv	x viii 1		
Records collected by the State of Virginia	1 2		
Summary of hydrologic conditions	2		
Special networks and programs Explanation of the records Station identification numbers	5 5 5		
	5-6 6		
Records of stage and water discharge	6 7		
Data presentation Station manuscript Data table of daily mean values.	7 8 9		
Statistics of monthly mean data	9		
Identifying estimated daily discharge	10		
Other records available Records of surface-water quality Classification of records	10 11 11		
Arrangement of records	11 11		
Water temperature Sediment Laboratory measurements	12 12 12		
Data presentation Remark codes	12		
Water-quality control data	13 15		
Definition of terms Publications on Techniques of Water-Resources Investigations Selected U.S. Geological Survey reports on water resources in Virginia	15 23 26		
Station records, surface-water-discharge and surface-water-quality	36 518		
Special study and miscellaneous sites	518 530 553		
	571		
ILLUSTRATIONS			
Figure 1. Annual mean discharge at selected stream-gaging stations	3		
and annual mean discharge for 1961-90 at four representative stream-gaging stations 3. System for numbering selected miscellaneous sites	4 6		
4. Map of Virginia showing location of surface-water-discharge and surface-water-quality data-collection stations	30 32		

WATER RESOURCES DATA - VIRGINIA, 1998

VOLUME 1. SURFACE-WATER-DISCHARGE AND SURFACE-WATER-QUALITY RECORDS

INTRODUCTION

The Water Resources Division of the U.S. Geological Survey, in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Virginia each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, the data are published annually in this report series entitled "Water Resources Data - Virginia."

This report series includes records of stage, discharge, and water quality of streams and stage, contents, and water quality of lakes and reservoirs. This volume contains records for water discharge at 152 gaging stations; stage only at 2 gaging station; stage and contents at 10 lakes and reservoirs; and water quality at 24 gaging stations. Also included are data for 55 crest-stage partial-record stations. Locations of these sites are shown on figures 4 and 5. Miscellaneous hydrologic data were collected at 199 measuring sites and 17 water-quality sampling sites not involved in the systematic data-collection program. The data in this report represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Virginia.

This series of annual reports for Virginia began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report format was changed to present, in one volume, data on quantities of surface water, quality of surface and ground water, and ground-water levels. Beginning with the 1990 water year, the report format was changed to two volumes. Volume 1 contains surface-water-discharge and surface-water-quality data and Volume 2 contains ground-water-level and ground-water-quality data.

Prior to the introduction of this series and for several water years concurrent with it, water-resources data for Virginia were published in U.S. Geological Survey Water-Supply Papers. Data on stream discharge and stage and on lake or reservoir contents and stage, through September 1960, were published annually under the title "Surface-Water Supply of the United States, Parts 6A and 6B." For the 1961 through 1970 water years, the data were published in two 5-year reports. Data on chemical quality, temperature, and suspended sediment for the 1941 through 1970 water years were published annually under the title "Quality of Surface Waters of the United States." The above mentioned Water-Supply Papers may be consulted in the libraries of the principal cities of the United States and may be purchased from the U.S. Geological Survey, Branch of Information Services, Federal Center, Bldg. 41, Box 25286, Denver, Colorado 80225.

Publications similar to this report are published annually by the Geological Survey for all States. These official Survey reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report VA-98-1." For archiving and general distribution, the reports for 1971-74 water years also are identified as water-data reports. These water-data reports are for sale in paper copy or in microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22161.

Additional information, including current prices, for ordering specific reports may be obtained from the District Office at the address given on the back of the title page or by telephone $(804)\ 278-4750$.

Water resources data, including those provided in water data reports, are available through the World Wide Web on the Internet. The Universal Resource Location (URL) to the Virignia District's home page is:

http://va.usgs.gov

COOPERATION

The U.S. Geological Survey and agencies of the State of Virginia have had joint-funding agreements for the collection of water-resource records since 1930. Organizations that assisted in collecting the data in this report through joint-funding agreements with the Survey are:

VIRGINIA DEPARTMENT OF ENVIRONMENTAL QUALITY, Dennis H. Treacy, executive director.

VIRGINIA DEPARTMENT OF TRANSPORTATION, David P. Gehr, commissioner.

CITY OF ALEXANDRIA, Vola Lawson, city manager.

CITY OF DANVILLE, Herbert Dawson, director, Water and Wastewater.

CITY OF NEWPORT NEWS, Brian Ramaley, director, Department of Public Utilities.

CITY OF ROANOKE, Kit B. Kiser, director, Utilities and Operations.

 ${\tt NORTHERN~VIRGINIA~PLANNING~DISTRICT~COMMISSION,~G.~Mark~Gibb,~executive~director.}$

WEST PIEDMONT PLANNING DISTRICT COMMISSION, Robert W. Dowd, executive director.

SOUTHEASTERN PUBLIC SERVICE AUTHORITY, Durwood S. Curling, executive director.

UNIVERSITY OF VIRGINIA, Dr. James N. Galloway, chairman, Graduate Admissions.

CITY OF NORFOLK, Shurl Montgomery, asistant city manager.

HAMPTON ROADS PLANNING DISTRICT COMMISSION, Arthur L. Collins, executive director.

WASHINGTON COUNTY SERVICE AUTHORITY, Bert C. Mullins, general manager.

Assistance with funds or services was given by the U.S. Army Corps of Engineers in collecting records for gaging stations and water-quality stations throughout the State.

Under a cooperative agreement covering the Tennessee River Basin, the Tennessee Valley Authority provided financial assistance for the operation of gaging stations, the records for which are published herein. Similar financial assistance for water-quality studies was provided by the U.S. Marine Corps Base, Quantico, VA, for the Quantico, Cannon, and Aquia Creek Basins. Other cooperators that provided funds for the collection of records are the American Electric Power, Virginia Power, City of Danville, City of Radford, City of Bedford, Multitrade of Pittsylvania County, LG & E, Synergics Incorporated, and Georgia Pacific Corporation.

Organizations that provided data are acknowledged in station descriptions.

RECORDS COLLECTED BY THE STATE OF VIRGINIA

In addition to data collected by the U.S. Geological Survey, there are included herein records for 66 gaging stations operated by the Virginia Department of Environmental Quality. These records are published as provided and are acknowledged in the "COOPERATION" paragraph of each individual station. The Virginia Department of Environmental Quality is under the direction of Dennis H. Treacy, executive director. Published material for the gaging-station records is supplied through the Division of Water Program Coordination, Larry G. Lawson, P.E., director.

SUMMARY OF HYDROLOGIC CONDITIONS

Surface-Water Discharge

Annual mean discharges for the 1998 water year in the Potomac, Rappahannock, York, James, Chowan, Kanawha, and Big Sandy River Basins were in the above-normal range of flow (greater than the 75th percentile of annual mean flow) based on streamflow data at the most downstream gaged location in each basin. In the Roanoke and Tennessee River Basins, annual mean discharges of contributing basins were either in the normal range of flow (between the 25th and 75th percentile of annual mean flows) or in the above-normal range of flow based on streamflow data at the most downstream gaged locations of the contributing basins. No stream-gaging stations in the State had annual mean discharges in the below-normal range of flow (below the 25th percentile of annual mean flows). A comparison of annual mean discharges with the long-term mean discharge at selected stations throughout the State is shown in figure 1.

Drought conditions from July through September 1997 resulted in monthly mean discharges well below the median monthly mean discharges for October in many basins across the State, especially the smaller basins with unregulated streams. Above normal precipitation, beginning in October 1997 and continuing through the winter of 1998, resulted in monthly mean discharges above the median monthly mean discharges across the State, except for basins in the southwest portion of the State, which remained below the 25th percentile for monthly mean discharges through December 1997. Monthly mean discharges in basins across the State generally were well above the median monthly mean discharges from January through June 1998. Drought conditions from July through December 1998, resulting from the third lowest statewide precipitation totals on record for the July-December time frame, reduced monthly mean discharges in most basins to levels below the median monthly mean discharges from July through September 1998. By mid to late September, daily mean discharges in many smaller basins were below the 25th percentile of monthly mean flows; however, daily mean discharges in many larger basins remained equal to, or just below, the median monthly mean discharges. The distribution of monthly and annual mean discharges for selected stations is shown in figure 2.

One new annual maximum instantaneous discharge was recorded in the Piankatank River Basin at Dragon Swamp at Mascot, Va. (station 01669520; 16 years of record). A new annual minimum instantaneous discharge also was recorded in the Piankatank River Basin at Dragon Swamp at Mascot, Va., and a new annual minimum instantaneous discharge was recorded in the Potomac River Basin at Cedar Run near Aden, Va. (station 01656100; 17 years of record).

Figure 1. Annualm ean discharge at four selected stream -gaging stations.

Figure 2. M onthly and annualm ean discharges during 1998 wateryear and m edian of m onthly and annualm ean discharges for 1961-90 wateryears at four representative stream -gaging stations.

SPECIAL NETWORKS AND PROGRAMS

Hydrologic Benchmark Network is a network of 50 sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by human activities.

National Stream-Quality Accounting Network (NASQAN) monitors the water quality of large rivers within four of the Nation's largest river basins—the Mississippi, Columbia, Colorado, and Rio Grande. The network consists of 39 stations. Samples are collected with sufficient frequency that the flux of a wide range of constituents can be estimated. The objective of NASQAN is to characterize the water quality of these large rivers by measuring concentration and mass transport of a wide range of dissolved and suspended constituents, including nutrients, major ions, dissolved and sediment—bound heavy metals, common pesticides, and inorganic and organic forms of carbon. This information will be used (1) to describe the long-term trends and changes in concentration and transport of these constituents; (2) to test findings of the National Water-Quality Assessment Program (NAWQA); (3) to characterize processes unique to large-river systems such as storage and re-mobilization of sediments and associated contaminants; and (4) to refine existing estimates of off-continent transport of water, sediment, and chemicals for assessing human effects on the world's oceans and for determining global cycles of carbon, nutrients, and other chemicals.

The National Atmospheric Deposition Program/National Trends Network (NADP/NTN) provides continuous measurement and assessment of the chemical climate of precipitation throughout the United States. As the lead federal agency, the USGS works together with over 100 organizations to accomplish the following objectives; (1) Provide a long-term, spatial and temporal record of atmospheric deposition generated from a network of 191 precipitation chemistry monitoring sites. (2) Provide the mechanism to evaluate the effectiveness of the significant reduction in SO2 emissions that began in 1995 as implementation of the Clean Air Act Amendments (CAAA) occurred. (3) Provide the scientific basis and nationwide evaluation mechanism for implementation of the Phase II CAAA emission reductions for SO2 and NOx scheduled to begin in 2000.

Data from the network, as well as information about individual sites, are available through the world wide web at:

http://nadp.nrel.colostate.edu/NADP

The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey is a long-term program with goals to describe the status and trends of water-quality conditions for a large, representative part of the Nation's ground- and surface-water resources; provide an improved understanding of the primary natural and human factors affecting these observed conditions and trends; and provide information that supports development and evaluation of management, regulatory, and monitoring decisions by other agencies.

Assessment activities are being conducted in 53 study units (major watersheds and aquifer systems) that represent a wide range of environmental settings nationwide and that account for a large percentage of the Nation's water use. A wide array of chemical constituents will be measured in ground water, surface water, streambed sediments, and fish tissues. The coordinated application of comparative hydrologic studies at a wide range of spatial and temporal scales will provide information for decision making by water-resources managers and a foundation for aggregation and comparison of findings to address water-quality issues of regional and national interest.

Communication and coordination between USGS personnel and other local, State, and federal interests are critical components of the NAWQA Program. Each study unit has a local liaison committee consisting of representatives from key federal, State, and local water resources agencies, Indian nations, and universities in the study unit. Liaison committees typically meet semiannually to discuss their information needs, monitoring plans and progress, desired information products, and opportunities to collaborate efforts among the agencies.

Additional information about the NAWOA Program is available through the world wide web at:

http://wwwrvares.er.usgs.gov/nawqa/nawqa_home.html

EXPLANATION OF THE RECORDS

The surface-water-discharge and surface-water-quality records published in this report are for the 1998 water year that began October 1, 1997, and ended September 30, 1998. A calendar of the water year is provided on the inside of the front cover. The records contain streamflow data, stage and content data for lakes and reservoirs, and water-quality data for surface water. The locations of the stations where the data were collected are shown in figures 4 and 5. The following sections of the introductory text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation.

Station Identification Numbers

Each data station in this report is assigned a unique identification number. This number is unique in that it applies specifically to a given station and to no other. The number usually is assigned when a station is first established and is retained for that station indefinitely. The system used by the U.S. Geological Survey to assign identification numbers for surface-water stations is based on geographic location. The "downstream order" system is used for regular surface-water stations and the "latitude-longitude" system is occasionally used for surface-water stations where only miscellaneous measurements are made.

Downstream Order System

Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a mainstream station are listed before that station. A station on a tributary that enters between two mainstream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary with respect to the stream to which it is immediately tributary is indicated by an indention in the "List of Stations" in the front of this report. Each indention represents one rank. This downstream order and system of indention shows which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated.

The station-identification number is assigned according to downstream order. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete eight-digit number for each station, such as 02027500, which appears just to the left of the station name, includes the two-digit Part number "02" plus the six-digit downstream-order number "027500." The Part number designates the major river basin; for example, Part "02" is the James River Basin.

Latitude-Longitude System

The identification numbers for some miscellaneous surface-water and water-quality sites are assigned according to the grid system of latitude and longitude. The number consists of 15 digits. The first six digits denote the degrees, minutes, and seconds of latitude, the next seven digits denote degrees, minutes, and seconds of longitude, and the last two digits (assigned sequentially) identify the sites within a 1-second grid. This site-identification number, once assigned, is a pure number and has no locational significance. In the rare instance where the initial determination of latitude and longitude are found to be in error, the station will retain its initial identification number; however, its true latitude and longitude will be listed in the LOCATION paragraph of the station description.

Figure 3. System for numbering selected ${\tt m}$ is cellaneous sites.

Records of Stage and Water Discharge

Records of stage and water discharge may be complete or partial. Complete records of discharge are those obtained using a continuous stage-recording device through which either instantaneous or mean daily discharges may be computed for any time, or any period of time, during the period of record. Complete records of lake or reservoir content, similarly, are those for which stage or content may be computed or estimated with reasonable accuracy for any time, or period of time. They may be obtained using a continuous stage-recording device, but need not be. Because daily mean discharges and end-of-day contents commonly are published for such stations, they are referred to as "daily stations."

By contrast, partial records are obtained through discrete measurements without using a continuous stage-recording device, and pertain only to a few flow characteristics, or perhaps only one. The nature of the partial record is indicated by table titles such as "Crest-stage partial records," or "Low-flow partial records." Records of miscellaneous discharge measurements or of measurements from special studies, such as low-flow seepage studies, may be considered as partial records, but they are presented separately in this report. Location of all complete-record and crest-stage partial-record stations for which data are given in this report are shown in figures 4

and 5. 7

Data Collection and Computation

The data obtained at a complete-record gaging station on a stream or canal consist of a continuous record of stage, individual measurements of discharge throughout a range of stages, and notations regarding factors that may affect the relationships between stage and discharge. These data, together with supplemental information, such as weather records, are used to compute daily discharges. The data obtained at a complete-record gaging station on a lake or reservoir consist of a record of stage and of notations regarding factors that may affect the relationship between stage and lake content. These data are used with stage-area and stage-capacity curves or tables to compute water-surface areas and lake storage.

Continuous records of stage are obtained with analog recorders that trace continuous graphs of stage or with digital recorders that punch stage values on paper tapes at selected time intervals. Measurements of discharge are made with current meters using methods adopted by the Geological Survey as a result of experience accumulated since 1880. These methods are described in standard textbooks, in Water-Supply Paper 2175, and in U.S. Geological Survey Techniques of Water-Resources Investigations (TWRI's), Book 3, Chapter Al through Al9 and Book 8, Chapters A2 to B2. The methods are consistent with the American Society for Testing and Materials (ASTM) standards and generally follow the standards of the International Organization for Standards (ISO).

In computing discharge records, results of individual measurements are plotted against the corresponding stages, and stage-discharge relation curves are then constructed. From these curves, rating tables indicating the approximate discharge for any stage within the range of the measurements are prepared. If it is necessary to define extremes of discharge outside the range of the current-meter measurements, the curves are extended using: (1) logarithmic plotting; (2) velocity-area studies; (3) results of indirect measurements of peak discharge, such as slope-area or contracted-opening measurements, and computations of flow over dams or weirs; or (4) step-backwater techniques.

Daily mean discharges are computed by applying the daily mean stages (gage heights) to the stage-discharge curves or tables. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is determined by the shifting-control method, in which correction factors based on the individual discharge measurements and notes of the personnel making the measurements are applied to the gage heights before the discharges are determined from the curves or tables. This shifting-control method also is used if the stage-discharge relation is changed temporarily because of aquatic growth or debris on the control. For some stations, formation of ice in the winter may so obscure the stage-discharge relations that daily mean discharges must be estimated from other information such as temperature and precipitation records, notes of observations, and records for other stations in the same or nearby basins for comparable periods.

At some stream-gaging stations, the stage-discharge relation is affected by the backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge.

In computing records of lake or reservoir contents, it is necessary to have available from surveys, curves or tables defining the relationship of stage and content. The application of stage to the stage-content curves or tables gives the contents from which daily, monthly, or yearly changes then are determined. If the stage-content relationship changes because of deposition of sediment in a lake or reservoir, periodic resurveys may be necessary to redefine the relationship. Even when this is done, the contents computed may become increasingly in error as the lapsed time since the last survey increases. Discharges over lake or reservoir spillways are computed from stage-discharge relationships much as other stream discharges are computed.

For some gaging stations, there are periods when no gage-height record is obtained, or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods, the daily discharges are estimated from the recorded range in stage, previous or following record, discharge measurements, weather records, and comparison with other station records from the same or nearby basins. Likewise, daily contents may be estimated from operator's logs, previous or following record, inflow-outflow studies, and other information. Information explaining how estimated daily-discharge values are identified in station records is included in the next two sections, "Data Presentation" (REMARKS paragraph) and "Identifying Estimated Daily Discharge."

Data Presentation

Streamflow data in this report are presented in a new format that is considerably different from the format in data reports prior to the 1991 water year. The major changes are that statistical characteristics of discharge now appear in tabular summaries following the water-year data table and less information is provided in the text or station manuscript above the table. These changes represent the results of a pilot program to reformat the annual water-data report to meet current user needs and data preferences.

The records published for each continuous-record surface-water-discharge station (gaging station) now consist of four parts: the manuscript or station description; the data table of daily mean values of discharge for the current water year with summary data; a tabular statistical summary of monthly mean flow data for a designated period, by water year; and a summary statistics table that includes statistical data of annual, daily, and instantaneous flows as well as data pertaining to annual runoff, 7-day low-flow minimums, and flow duration.

Station manuscript

The manuscript provides, under various headings, descriptive information, such as station location; period of record; historical extremes outside the period of record; extremes for the current year; record accuracy; and other remarks pertinent to station operation and regulation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments to follow clarify information presented under the various headings of the station description.

LOCATION.---Information on locations is obtained from the most accurate maps available. The location of the gaging station with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages, given for only a few stations, were determined by methods given in "River Mileage Measurement," Bulletin 14, Revision of October 1968, prepared by the Water Resources Council or were provided by the U.S. Army Corps of Engineers.

<u>DRAINAGE AREA</u>.--Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available.

<u>PERIOD OF RECORD</u>.--This indicates the period for which records have been published for the station or for an equivalent station. An equivalent station is one that was in operation at a time that the present station was not and whose location was such that flow at it can reasonably be considered equivalent to flow at the present station

REVISED RECORDS. --Because of new information, published records occasionally are found to be incorrect, and revisions are printed in later reports. Listed under this heading are all the reports in which revisions have been published for the station and the water years to which the revisions apply. If a revision did not include daily, monthly, or annual figures of discharge, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given.

 \underline{GAGE} .--The type of gage in current use, the datum of the current gage referred to sea level (see glossary), and a condensed history of the types, locations, and datums of previous gages are given under this heading.

<u>REMARKS</u>.--All periods of estimated daily discharge will either be identified by date in this paragraph of the station description for water-discharge stations or flagged in the daily discharge table. (See next section, "Identifying Estimated Daily Discharge.") If a REMARKS paragraph is used to identify estimated record, the paragraph will begin with this information presented as the first entry. The paragraph is also used to present information relative to the accuracy of the records, to special methods of computation, and to conditions that affect natural flow at the station. In addition, information may be presented pertaining to average discharge data for the period of record; to extremes data for the period of record and the current year; and, possibly, to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir.

<u>COOPERATION</u>.--Records provided by a cooperating organization or obtained for the U.S. Geological Survey by a cooperating organization are identified here.

EXTREMES OUTSIDE PERIOD OF RECORD.--Included here is information concerning major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the U.S. Geological Survey.

EXTREMES FOR CURRENT YEAR.--Extremes given here are similar to those for the period of record, except the peak discharge listing may include secondary peaks. For stations meeting certain criteria, all peak discharges and stages occurring during the water year and equal to or greater than a selected base discharge are presented under this heading. The peaks equal to or greater than the base discharge, excluding the highest one, are referred to as secondary peaks. Peak discharges are not published for canals, ditches, drains, or streams for which the peaks are subject to substantial control by man. The time of occurrence for peaks is expressed in 24-hour local standard time. For example, 12:30 a.m. is 0030, and 1:30 p.m. is 1330. The minimum for the current water year appears below the table of peak data.

 $\underline{REVISIONS}$.--If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error.

Although rare, occasionally the records of a discontinued gaging station may need revision. Because, for these stations, there would be no current or, possibly, future station manuscript published to document the revision in a "Revised Records" entry, users of data for these stations who obtained the record from previously published data reports may wish to contact the District Office (address given on the back of the title page of this report) to determine if the published records were ever revised after the station was discontinued. Of course, if the data for a discontinued station were obtained by computer retrieval, the data would be current and there would be no need to check because any published revision of data is always accompanied by revision of the corresponding data in computer storage.

Manuscript information for lake or reservoir stations differs from that for stream stations in the nature of the "Remarks" and in the inclusion of a skeleton stage-capacity table when daily contents are given.

Headings for AVERAGE DISCHARGE and EXTREMES FOR PERIOD OF RECORD have been deleted and the information contained in these paragraphs is now presented in the tabular summaries following the discharge table or in the REMARKS paragraph, as appropriate. No changes have been made to the data presentation of lake contents.

Data table of daily mean values

The daily table of discharge records for stream-gaging stations gives mean discharge for each day of the water year. In the monthly summary for the table, the line headed "TOTAL" gives the sum of the daily figures for each month; the line headed "MEAN" gives the average flow in cubic feet per second for the month; and the lines headed "MAX" and "MIN" give the maximum and minimum daily mean discharges, respectively, for each month. Discharge for the month also is usually expressed in cubic feet per second per square mile (line headed "CFSM"); or in inches (line headed "IN."); or in acre-feet (line headed "AC-FT"). Figures for cubic feet per second per square mile and runoff in inches or in acre-feet may be omitted if there is extensive regulation or diversion or if the drainage area includes large noncontributing areas. At some stations, monthly and (or) yearly observed discharges are adjusted for reservoir storage or diversion, or diversion data or reservoir contents are given. These figures are identified by a symbol and corresponding footnote.

Statistics of monthly mean data

A tabular summary of the mean (line headed "MEAN"), maximum (line headed "MAX"), and minimum (line headed "MIN") of monthly mean flows for each month for a designated period is provided below the mean values table. The water years of the first occurrence of the maximum and minimum monthly flows are provided immediately below those figures. The designated period will be expressed as "FOR WATER YEARS ______, BY WATER YEAR (WY)," and will list the first and last water years of the range of years selected from the PERIOD OF RECORD paragraph in the station manuscript. It will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript.

Summary statistics

A table titled "SUMMARY STATISTICS" follows the statistics of monthly mean data tabulation. This table consists of four columns, with the first column containing the line headings of the statistics being reported. The table provides a statistical summary of yearly, daily, and instantaneous flows, not only for the current water year but also for the previous calendar year and for a designated period, as appropriate. The designated period selected, "WATER YEARS _____," will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript. All of the calculations for the statistical characteristics designated ANNUAL (See line headings below.), except for the "ANNUAL 7-DAY MINIMUM" statistic, are calculated for the designated period using complete water years. The other statistical characteristics may be calculated using partial water years.

The date or water year, as appropriate, of the first occurrence of each statistic reporting extreme values of discharge is provided adjacent to the statistic. Repeated occurrences may be noted in the REMARKS paragraph of the manuscript or in footnotes. Because the designated period may not be the same as the station period of record published in the manuscript, occasionally the dates of occurrence listed for the daily and instantaneous extremes in the designated-period column may not be within the selected water years listed in the heading. When this occurs, it will be noted in the REMARKS paragraph or in footnotes. Selected streamflow duration curve statistics and runoff data are also given. Runoff data may be omitted if there is extensive regulation or diversion of flow in the drainage basin.

The following summary statistics data, as appropriate, are provided with each continuous record of discharge. Comments to follow clarify information presented under the various line headings of the summary statistics table.

ANNUAL TOTAL.--The sum of the daily mean values of discharge for the year. At some stations, the annual total discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes.

ANNUAL MEAN.--The arithmetic mean of the individual daily mean discharges for the year noted or for designated period. At some stations the yearly mean discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes.

HIGHEST ANNUAL MEAN .-- The maximum annual mean discharge occurring for the designated period.

LOWEST ANNUAL MEAN. -- The minimum annual mean discharge occurring for the designated period.

HIGHEST DAILY MEAN.--The maximum daily mean discharge for the year or for the designated period.

LOWEST DAILY MEAN.--The minimum daily mean discharge for the year or for the designated period.

ANNUAL 7-DAY MINIMUM.--The lowest mean discharge for 7 consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1-March 31). The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day 10-year low-flow statistic.)

<u>INSTANTANEOUS PEAK FLOW</u>.--The maximum instantaneous discharge occurring for the water year or for the designated period. Note that secondary instantaneous peak discharges above a selected base discharge are stored in District computer files for stations meeting certain criteria. Those discharge values may be obtained by writing to the District Office. (See address on back of title page of this report.)

<u>INSTANTANEOUS PEAK STAGE</u>.--The maximum instantaneous stage occurring for the water year or for the designated period. If the dates of occurrence for the instantaneous peak flow and instantaneous peak stage differ, the REMARKS paragraph in the manuscript or a footnote may be used to provide further information

 $\underline{INSTANTANEOUS\ LOW\ FLOW}. - \text{-The minimum instantaneous discharge occurring for the water year or for the designated period.}$

- ANNUAL RUNOFF. -- Indicates the total quantity of water in runoff for a drainage area for the year. Data reports may use any of the following units of measurement in presenting annual runoff data:
 - Acre-foot (AC-FT) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equal to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.
 - Cubic feet per second per square mile (CFSM) is the average number of cubic feet of water flowing per second from each square mile area drained, assuming the runoff is distributed uniformly in time and area.
 - Inches (INCHES) indicates the depth to which the drainage area would be covered if all of the runoff
 for a given time period were uniformly distributed on it.
- $\underline{10}$ PERCENT EXCEEDS.--The discharge that has been exceeded 10 percent of the time for the designated period.
- 50 PERCENT EXCEEDS.--The discharge that has been exceeded 50 percent of the time for the designated period.
- 90 PERCENT EXCEEDS.--The discharge that has been exceeded 90 percent of the time for the designated period.

Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of annual maximum stage and discharge at crest-stage stations, and the second is a table of discharge measurements at low-flow partial-record stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Identifying Estimated Daily Discharge

Estimated daily-discharge values published in the water-discharge tables of annual State data reports are identified either by flagging individual daily values with the letter symbol "e" and printing a table footnote, "e Estimated," or by listing the dates of the estimated record in the REMARKS paragraph of the station description.

Accuracy of the Records

The accuracy of streamflow records depends primarily on: (1) The stability of the stage- discharge relation or, if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of measurements of stage, measurements of discharge, and interpretation of records.

The accuracy attributed to the records is indicated under "REMARKS." "Excellent" means that about 95 percent of the daily discharges are within 5 percent of their true values; "good," within 10 percent; and "fair," within 15 percent. Records that do not meet the criteria mentioned are rated "poor." Different accuracies may be attributed to different parts of a given record.

Daily mean discharges in this report are given to the nearest hundredth of a cubic foot per second for values less than 1 $\rm ft^3/s$ to the nearest tenth between 1.0 and 10 $\rm ft^3/s$; to whole numbers between 10 and 1,000 $\rm ft^3/s$; and to 3 significant figures for more than 1,000 $\rm ft^3/s$. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharges listed for partial-record stations and miscellaneous sites.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff, in inches, are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

Other Records Available

Information used in the preparation of the records in this publication, such as discharge-measurement notes, gage-height records, temperature measurements, and rating tables is on file in the Virginia District Office. Also, most of the daily mean discharges are in computer-readable form and have been analyzed statistically. Information on the availability of the unpublished information or on the results of statistical analyses of the published records may be obtained from the Virginia District Office. (See address on back of title page of this report.)

Records of Surface-Water Ouality

Records of surface-water quality ordinarily are obtained at or near stream-gaging stations because interpretation of records of surface-water quality nearly always requires corresponding discharge data. Records of surface-water quality in this report may involve a variety of types of data and measurement frequencies.

Classification of records

Water-quality data for surface-water sites are grouped into one of three classifications. A continuing-record station is a site where data are collected on a regularly scheduled basis. Frequency may be once or more times daily, weekly, monthly, or quarterly. A partial-record station is a site where limited water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A miscellaneous sampling site is a location other than a continuing or partial-record station where random samples are collected to give better areal coverage to define water-quality conditions in the river basin.

A careful distinction needs to be made between "continuing records", as used in this report, and "continuous recordings," which refers to a continuous graph or a series of discrete values punched at short intervals on a paper tape. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recordings; however, because of costs, most data are obtained only monthly or less frequently. Locations of stations for which records on the quality of surface water appear in this report are shown in figure 6.

Arrangement of Records

Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own station number and name in the regular downstream-order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurements at miscellaneous sites.

On-site Measurements and Sample Collection

In obtaining water-quality data, a major concern needs to be assuring that the data obtained represent the in situ quality of the water. To assure this, certain measurements, such as water temperature, pH, and dissolved oxygen, need to be made onsite when the samples are taken. To assure that measurements made in the laboratory also represent the in situ water, carefully prescribed procedures need to be followed in collecting the samples, in treating the samples to prevent changes in quality pending analysis, and in shipping the samples to the laboratory. Procedures for onsite measurements and for collecting, treating, and shipping samples are detailed in the "Techniques of Water-Resources Investigations," Book 1, Chapter D2; Book 3, Chapter C2; Book 5, Chapters A1, A3, and A4. These references are listed in the "PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS" section of this report which appears at the end of the introductory text. These methods are consistent with American Society for Testing and Materials (ASTM) standards and generally follow the standards of the International Organization for Standards (ISO). Detailed information on collecting, treating, and shipping samples may be obtained from the Virginia District Office. (Address on back of title page.)

One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load. All samples obtained for the National Stream Quality Accounting Network (see definitions) are obtained from at least several verticals. Whether samples are obtained from the centroid of flow or from several verticals depends on flow conditions and other factors which must be evaluated by the collector.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. In the rare case where an apparent inconsistency exists between a reported pH value and the relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and bicarbonate in the laboratory.

For chemical-quality stations equipped with digital monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon hourly punches beginning at 0100 hours and ending at 2400 hours for the day of record. More detailed records (hourly values) may be obtained from the Virginia District Office whose address is given on the back of the title page of this report.

Water Temperature

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at the time of discharge measurements for water-discharge stations. For stations where water temperatures are taken manually once or twice daily, the water temperatures are taken at about the same time each day. Large streams have a small diurnal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges.

At stations where recording instruments are used, either mean temperatures or maximum and minimum temperatures for each day are published. Water temperatures measured at the time of water-discharge measurements are on file in the Virginia District Office. (Address on back of title page.)

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily discharges of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge. Methods used in the computation of sediment records are described in the TWRI Book 3, Chapters C1 and C3. These methods are consistent with American Society for Testing and Materials (ASTM) standards and generally follow the standards of the International Organization for Standards (ISO).

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of suspended-sediment discharge, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included for some stations.

Laboratory Measurements

Sediment samples, samples for biochemical-oxygen demand (BOD), samples for indicator bacteria, and daily samples for specific conductance are analyzed locally. All other samples are analyzed in the Geological Survey laboratory in Arvada, Colorado. Methods used to analyze sediment samples and to compute sediment records are given in TWRI Book 5, Chapter Cl. Methods used by the Geological Survey laboratories are given in TWRI Book 1, Chapter D2; Book 3, Chapter C2; Book 5, Chapters A1, A3, A4, and A5. These methods are consistent with American Society for Testing and Materials (ASTM) standards and generally follow the standards of the International Organization for Standards (ISO).

Data Presentation

For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily. Tables of chemical, physical, biological, radiochemical data, and so forth, obtained at a frequency less than daily, are presented first. Tables of "daily values" of specific conductance, pH, water temperature, dissolved oxygen, and suspended sediment then follow in sequence.

In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information, as appropriate, is provided with each continuous-record station. Comments that follow clarify information presented under the various headings of the station description.

LOCATION .-- See Data Presentation under "Records of Stage and Water Discharge;" same comments apply.

DRAINAGE AREA. -- See Data Presentation under "Records of Stage and Water Discharge;" same comments apply.

<u>PERIOD OF RECORD</u>.--This indicates the periods for which there are published water-quality records for the station. The periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually.

<u>INSTRUMENTATION</u>.--Information on instrumentation is given only if a water-quality monitor temperature record, sediment pumping sampler, or other sampling device is in operation at a station.

 $\underline{REMARKS}$.--Remarks provide added information pertinent to the collection, analysis, or computation of the records.

<u>COOPERATION</u>. -- Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here.

EXTREMES.--Maximums and minimums are given only for parameters measured daily or more frequently. None are given for parameters measured weekly or less frequently, because the true maximums or minimums may not have been sampled. Extremes, when given, are provided for both the period of record and for the current water year.

<u>REVISIONS</u>.--If errors in published water-quality records are discovered after publication, appropriate updates are made to the Water-Quality File in the U.S. Geological Survey's computerized data system, WATSTORE, and subsequently by monthly transfer of update transactions to the U.S. Environmental Protection Agency's STORET system. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of U.S. Geological Survey water-quality data are encouraged to obtain all required data from the appropriate computer file to insure the most recent updates.

The surface-water-quality records for partial-record stations and miscellaneous sampling sites are published in separate tables following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for these records. Each station is published with its own station number and name in the regular downstream-order sequence.

REMARK CODES

The following remark codes may appear with the water-quality data in this report:

PRINTED OUTPUT	REMARK
E	Estimated value.
>	Actual value is known to be greater than the value shown.
<	Actual value is known to be less than the value shown.
К	Results based on colony count outside the acceptance range (non-ideal colony count).
L	Biological organism count less than 0.5 percent (organism may be observed rather than counted).
D	Biological organism count equal to or greater than 15 percent (dominant).
&	Biological organism estimated as dominant.
V	Analyte was detected in both the environmental sample and the associated blanks.

WATER QUALITY-CONTROL DATA

Data generated from quality-control (QC) samples are a requisite for evaluating the quality of the sampling and processing techniques as well as data from the actual samples themselves. Without QC data, environmental sample data cannot be adequately interpreted because the errors associated with the sample data are unknown. The various types of QC samples collected by this district are described in the following section. Procedures have been established for the storage of water-quality-control data within the USGS. These procedures allow for storage of all derived QC data and are identified so that they can be related to corresponding environmental samples.

Blank Samples

Blank samples are collected and analyzed to ensure that environmental samples have not been contaminated by the overall data-collection process. The blank solution used to develop specific types of blank samples is a solution that is free of the analytes of interest. Any measured value signal in a blank sample for an analyte (a specific component measured in a chemical analysis) that was absent in the blank solution is believed to be due to contamination. There are many types of blank samples possible, each designed to segregate a different part of the overall data-collection process. The types of blank samples collect in this district are:

Field blank - a blank solution that is subjected to all aspects of sample collection, field processing preservation, transportation, and laboratory handling as an environmental sample.

Trip blank - a blank solution that is put in the same type of bottle used for an environmental sample and kept with the set of sample bottles before and after sample collection.

Equipment blank - a blank solution that is processed through all equipment used for collecting and processing an environmental sample (similar to a field blank but normally done in the more controlled conditions of the office).

Sampler blank - a blank solution that is poured or pumped through the same field sampler used for collecting an environmental sample.

Filter blank - a blank solution that is filtered in the same manner and through the same filter apparatus used for an environmental sample.

Splitter blank - a blank solution that is mixed and separated using a field splitter in the same manner and through the same apparatus used for an environmental sample.

Preservation blank - a blank solution that is treated with the sampler preservatives used for an environmental sample.

Reference Samples

Reference material is a solution or material prepared by a laboratory whose composition is certified for one or more properties so that it can be used to assess a measurement method. Samples of reference material are submitted for analysis to ensure that an analytical method is accurate for the known properties of the reference material. Generally, the selected reference material properties are similar to the environmental sample properties.

Replicate Samples

Replicate samples are a set of environmental samples collected in a manner such that the samples are thought to be essentially identical in composition. Replicate is the general case for which a duplicate is the special case consisting of two samples. Replicate samples are collected and analyzed to establish the amount of variability in the data contributed by some part of the collection and analytical process. There are many types of replicate samples possible, each of which may yield slightly different results in a dynamic hydrologic setting, such as a flowing stream. The types of replicate samples collected in this district are:

Sequential samples - a type of replicate sample in which the samples are collected one after the other, typically over a short time.

Split sample - a type of replicate sample in which a sample is split into subsamples contemporaneous in time and space.

Spike Samples

Spike samples are samples to which known quantities of a solution with one or more well-established analyte concentrations have been added. These samples are analyzed to determine the extent of matrix interference or degradation on the analyte concentration during sample processing and analysis.

ACCESS TO USGS WATER DATA

The USGS provides near real-time stage and discharge datas for many of the gaging stations equipped with the necessary telemetry and historic daily-mean and peak-flow discharge data for most current or discontinued gaging stations through the world wide web (WWW). These data may be accessed at:

http://va.water.usgs.gov

Some water-quality and ground-water data also are available through the WWW. In addition, data can be proveded in various machine-readable formats on magnetic tape or 3-1/2 inch floppy disk. Information about the availability of specific types of data or products, and user charges, can be obtained locally from each of the Water Resources Division District Offices (See address on the back of the title page.).

DEFINITION OF TERMS

Terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. See also table for converting English units to International System (SI) Units on the inside of the back cover.

Acre-foot (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.

Adenosine triphosphate (ATP) is an organic, phosphate-rich, compound important in the transfer of energy in organisms. Its central role in living cells makes it an excellent indicator of the presence of living material in water. A measure of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter of the original water sample.

 $\underline{\text{Algae}}$ are mostly aquatic single-celled, colonial, or multi-celled plants, containing chlorophyll and lacking roots, stems, and leaves.

Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample.

<u>Bacteria</u> are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, while others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

- Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. They are characterized as aerobic or facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria which ferment lactose with gas formation within 48 hours at 35°C. In the laboratory, these bacteria are defined as all the organisms that produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35°C + or 1.0°C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.
- <u>Fecal coliform bacteria</u> are bacteria that are present in the intestine or feces of warm-blooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms that produce blue colonies within 24 hours when incubated at 44.5°C + or 0.2°C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

<u>Fecal streptococcal bacteria</u> are bacteria found also in the intestine of warm-blooded animals.

Their presence in water is considered to verify fecal pollution. They are characterized as grampositive, cocci bacteria which are capable of growth in brain-heart infusion broth. In the laboratory, they are defined as all the organisms which produce red or pink colonies within 48 hours at 35°C + or - 1.0°C on KF-streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

<u>Bed material</u> is the sediment mixture of which a streambed, lake, pond, reservoir, or estuary bottom is composed.

<u>Biochemical oxygen demand</u> (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by micro-organisms, such as bacteria.

<u>Biomass</u> is the amount of living matter present at any given time, expressed as the mass per unit area or volume of habitat.

- <u>Dry mass</u> refers to the mass of residue present after drying in an oven at 105°C for zooplankton and periphyton, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry-mass values are expressed in the same units as ash mass.
- <u>Organic mass</u> or volatile mass of the living substance is the difference between the dry mass and ash mass and represents the actual mass of the living matter. The organic mass is expressed in the same units as for ash mass and dry mass.

Wet mass is the mass of living matter plus contained water.

Bottom material: See Bed material.

 $\underline{\text{Cells/volume}}$ refers to the number of cells of any organism which is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample, usually milliliters (mL) or liters (L).

<u>Chemical oxygen demand</u> (COD) is a measure of the chemically oxidizable material in the water and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with natural water color or with carbonaceous organic pollution from sewage or industrial wastes.

 $\underline{Chlorophyll} \text{ refers to the green pigments of plants. } \text{ Chlorophyll "a" and "b" are the two most common green pigments in plants.}$

 $\underline{\text{Color unit}}$ is produced by one milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

 $\underline{\text{Contents}}$ is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

 $\underline{\texttt{Control}}$ designates a feature downstream from the gage that determines the stage-discharge relation at the gage. This feature may be a natural constriction of the channel, an artificial structure, or a uniform cross section over a long reach of the channel.

<u>Control structure</u> as used in this report is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of salt water.

<u>Cubic feet per second per square mile</u> $[(ft^3/s)/mi^2]$ is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming that the runoff is distributed uniformly in time and area.

<u>Cubic foot per second</u> (ft^3/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to 7.48 gallons per second or 448.8 gallons per minute or 0.02832 cubic meters per second.

 $\underline{\text{Discharge}}$ is the volume of water (or more broadly, volume of fluid plus suspended sediment) that passes a given point within a given period of time.

<u>Mean discharge</u> (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period.

Instantaneous discharge is the discharge at a particular instant of time.

Annual 7-day minimum is the lowest mean discharge for 7 consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1-March 31). The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day 10-yearlow-flow statistic.)

 $\underline{\text{Dissolved}}_{\text{refers}} \text{ refers to that material in a representative water sample which passes through a 0.45 um membrane filter. This is a convenient operational definition used by Federal agencies that collect water data. Determinations of "dissolved" constituents are made on subsamples of the filtrate.$

<u>Dissolved-solids concentration</u> of water is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination of dissolved solids, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. Therefore, in the mathematical calculation of dissolved-solids concentration, the bicarbonate value, in milligrams per liter, is multiplied by 0.492 to reflect the change.

<u>Drainage area</u> of a stream at a specified location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the stream above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise specified.

 $\underline{\text{Drainage basin}}$ is a part of the surface of the earth that is occupied by a drainage system, which consists of a surface stream or a body of impounded surface water together with all tributary surface streams and bodies of impounded surface water.

 $\underline{\text{Gage height}} \hspace{0.1cm} \text{(G.H.)} \hspace{0.1cm} \text{is the water-surface elevation referred to some arbitrary gage datum.} \hspace{0.1cm} \text{Gage height} \\ \text{is often used interchangeably with the more general term "stage," although gage height is more appropriate when used with a reading on a gage.} \\$

<u>Gaging station</u> is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained.

 $\underline{\text{Hardness of water}}$ is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is computed as the sum of equivalents of polyvalent cations and is expressed as the equivalent concentration of calcium carbonate (CaCO $_3$).

<u>Hydrologic Bench-Mark Network</u> is a network of 53 sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by the activities of man.

<u>Hydrologic unit</u> is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an eight-digit number.

<u>Metamorphic stage</u> refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymph-adult.

Methylene blue active substances (MBAS) are apparent detergents. The determination depends on the formation of a blue color when methylene blue dye reacts with synthetic anionic detergent compounds.

 $\underline{\text{Micrograms per gram}} \ (\mu g/g) \ \text{is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the element per unit mass (gram) of material analyzed.}$

 $\underline{\text{Micrograms per liter}} \ (\mu\text{G/L}, \ \mu\text{g/L}) \ \text{is a unit expressing the concentration of chemical constituents} \\ \text{in solution as mass (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter} \\ \text{is equivalent to one milligram per liter.}$

<u>Milligrams per liter</u> (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in solution. Milligrams per liter represents the mass of solute per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L and is based on the mass of dry sediment per liter of watersediment mixture.

<u>National Geodetic Vertical Datum of 1929</u> (NGVD of 1929) is a geodetic datum derived from a general adjustment of the first order level nets of both the United States and Canada. It was formerly called "Sea Level Datum of 1929" or "mean sea level" in this series of reports. Although the datum was derived from the average sea level over a period of many years at 26 tide stations along the Atlantic, Gulf of Mexico, and Pacific Coasts, it does not necessarily represent local mean sea level at any particular place.

National Stream Quality Accounting Network (NASQAN) is a nationwide data-collection network designed by the U.S. Geological Survey to meet many of the information needs of government agencies and other groups involved in natural or regional water-quality planning and management. The 284 sites in NASQAN are generally located at the downstream ends of hydrologic accounting units designated by the U.S. Geological Survey Office of Water Data Coordination in consultation with the Water Resources Council. The objectives of NASQAN are (1) to obtain information on the quality and quantity of water moving within and from the United States through a systematic and uniform process of data collection, summarization, analysis, and reporting such that the data may be used for, (2) description of the areal variability of water quality in the Nation's rivers through analysis of data from this and other programs, (3) detection of changes or trends with time in the pattern of occurrence of water-quality characteristics, and (4) providing a nationally consistent data base useful for water-quality assessment and hydrologic research.

The National Trends Network (NTN) is a 150-station network for sampling atmospheric deposition in the United States. The purpose of the network is to determine the variability, both in location and in time, of the composition of atmospheric deposition, which includes snow, rain, dust particles, aerosols, and gases. The core from which the NTN was built was the already-existing deposition-monitoring network of the National Atmospheric Deposition Program (NADP).

The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey is a long-term program with goals to describe the status and trends of water-quality conditions for a large, diverse, and geographically distributed part of the Nation's ground- and surface-water resources, and to identify, describe, and explain the major natural and human factors that affect these observed conditions and trends.

Assessment activities have begun in more than one-third of the study units and ultimately will be conducted in 60 study units (major watersheds and aquifer systems) that represent a wide range of environmental settings nationwide and that account for a large percentage of the Nation's water use. A wide array of chemical constituents will be measured in ground water, surface water, streambed sediments and fish tissues. The coordinated application of comparative hydrologic studies at a wide range of spatial and temporal scales will provide a basis for decision making on the use of water resources within the study units and a foundation for aggregation and comparison of findings to address water-quality issues of regional and national interest.

Organism is any living entity.

Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meter (m^2) , acre, or hectare. Periphyton, benthic organisms, and macrophytes are expressed in these terms.

 $\underline{\texttt{Organism count/volume}} \text{ refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliter (mL) or liter (L). Numbers of planktonic organisms can be expressed in these terms.}$

<u>Total organism count</u> is the total number of organisms collected and enumerated in any particular sample.

<u>Parameter Code</u> is a 5-digit number used in the U.S. Geological Survey computerized data system, WATSTORE, to uniquely identify a specific constituent. The codes used in WATSTORE are the same as those used in the U.S. Environmental Protection Agency data system, STORET. The Environmental Protection Agency assigns and approves all requests for new codes.

 $\underline{Partial\text{--record station}} \text{ is a particular site where limited streamflow and/or water-quality data are collected systematically over a period of years for use in hydrologic analyses.}$

 $\underline{Particle\ size}\ is\ the\ diameter,\ in\ millimeters\ (mm),\ of\ a\ particle\ determined\ by\ either\ sieve\ or\ sedimentation\ methods.\ Sedimentation\ methods\ (pipet,\ bottom-withdrawal\ tube,\ visual-accumulation\ tube)\ determine\ fall\ diameter\ of\ particles\ in\ either\ distilled\ water\ (chemically\ dispersed)\ or\ in\ native\ water\ (the\ river\ water\ at\ the\ time\ and\ point\ of\ sampling.$

<u>Particle-size classification</u> used in this report agrees with the recommendation made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows:

Classification	<u>Size (mm)</u>	Method of analysis
Clay	0.00024 - 0.004	Sedimentation
Silt	.004062	Sedimentation
Sand	.062 - 2.0	Sedimentation or sieve
Gravel	2.0 - 64.0	Sieve

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic matter is removed, and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native-water analysis.

<u>Percent composition</u> is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, mass, or volume.

 $\underline{\texttt{Periphyton}} \text{ is the assemblage of microorganisms attached to and living upon submerged solid surfaces.} \\ \text{While primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms.} \\$

 $\underline{Pesticides} \text{ are chemical compounds used to control undesirable organisms.} \quad \texttt{Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides.}$

<u>Picocurie</u> (PC, pCi) is one trillionth (1×10^{-12}) of the amount of radioactivity represented by a curie (Ci). A curie is the amount of radioactivity that yields 3.7 x 10^{10} radioactive disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute).

<u>Plankton</u> is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers.

- <u>Phytoplankton</u> is the plant part of the plankton. They are usually microscopic and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment and are commonly known as algae.
 - <u>Blue-green algae</u> are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water.
 - $\frac{\hbox{Diatoms}}{\hbox{are the unicellular or colonial algae having a siliceous shell. Their concentrations}$ are expressed as number of cells per milliliter (cells/mL) of sample.
 - <u>Green algae</u> have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algae mats or floating "moss" in lakes. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample.
- Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers.

<u>Primary productivity</u> is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly, green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated by the plants (carbon method).

Milligrams of oxygen per area or volume per unit time $[mg\ O_2\ /(m^2.time)]$ for periphyton and macrophytes and $[mg\ O_2\ /(m^3.time)]$ for phytoplankton are the units for expressing primary productivity. They define production and respiration rates as estimated from changes in the measured dissolved-oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period.

<u>Radiochemical program</u> is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States.

Recoverable from bottom material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

 $\underline{\text{Return period}}$ is the average time interval between occurrences of a hydrological event of a given or greater magnitude, usually expressed in years. May also be called recurrence interval.

<u>Runoff in inches</u> (IN., in.) shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it.

 $\underline{\text{Sea level}}$: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929)—a geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called Sea Level Datum of 1929.

<u>Sediment</u> is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and quantity and intensity of precipitation.

- $\underline{\operatorname{Bed}\ load}$ is the sediment that is transported in a stream by rolling, sliding, or skipping along the bed and very close to it. In this report, bed load is considered to consist of particles in transit within 0.25 ft of the streambed.
- $\frac{Bed\ load\ discharge}{moves\ past\ a\ section\ as\ bed\ load\ in\ a\ given\ time.}$
- $\underline{\text{Suspended sediment}}$ is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid.
- <u>Suspended-sediment concentration</u> is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L).
 - $\underline{\text{Mean concentration}}$ is the time-weighted concentration of suspended sediment passing a stream section during a 24-hour day.
- <u>Suspended-sediment discharge</u> (tons/day) is the rate at which dry mass of sediment passes a section of a stream or is the quantity of sediment, as measured by dry mass or volume, that passes a section in a given time. It is calculated in units of tons per day as follows: concentration (mg/L) x discharge (ft^3/s) x 0.0027.
- <u>Suspended-sediment load</u> is a general term that refers to material in suspension. It is not synonymous with either discharge or concentration.
- <u>Total sediment discharge</u> (tons/day) is the sum of the suspended-sediment discharge and the bed-load discharge. It is the total quantity of sediment, as measured by dry mass or volume, that passes a section during a given time.
- <u>Total-sediment load or total load</u> is a term which refers to the total sediment (bed load plus suspended-sediment load) that is in transport. It is not synonymous with total-sediment discharge.
- $\frac{7-\text{day }10-\text{year low flow}}{\text{frequency curve of annual values of the lowest mean discharge for 7 consecutive days (the 7-day low flow)}$

<u>Sodium-adsorption-ratio</u> (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Waters range in respect to sodium hazard from those which can be used for irrigation on almost all soils to those which are generally unsatisfactory for irrigation.

Solute is any substance that is dissolved in water.

<u>Specific conductance</u> is a measure of the ability of a water to conduct an electrical current. It is expressed in microsiemens per centimeter at 25° C. Specific conductance is related to the type and concentration of ions in solution and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is about 65 percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

<u>Stage-discharge relation</u> is the relation between gage height (stage) and volume of water, per unit of time, flowing in a channel.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

 $\underline{Substrate}$ is the physical surface upon which an organism lives.

<u>Natural substrate</u> refers to any naturally occurring emersed or submersed solid surface, such as a rock or tree, upon which an organism lives.

Artificial substrate is a device which is purposely placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multiplate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection.

<u>Surface area</u> of a lake is that area outlined on the latest U.S.G.S. topographic map as the boundary of the lake and measured by a planimeter in acres. In localities not covered by topographic maps, the areas are computed from the best maps available at the time planimetered. All areas shown are those for the stage when the planimetered map was made.

 $\underline{Surficial\ bed\ material}$ is the part (0.1 to 0.2 ft) of the bed material that is sampled using U.S. Series Bed-Material Samplers.

<u>Suspended</u> (as used in tables of chemical analyses) refers to the amount (concentration) of undissolved material in a water-sediment mixture. It is associated with the material retained on a 0.45-micrometer filter.

Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative water-suspended sediment sample that is retained on a 0.45 μm membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total recoverable concentrations of the constituent.

 $\underline{Suspended}$, \underline{total} is the total amount of a given constituent in the part of a representative watersuspended sediment sample that is retained on a 0.45 μm membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total."

determine when the results should be reported as "suspended, total."

Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total concentrations of the constituent.

<u>Taxonomy</u> is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchial scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, <u>Hexagenia limbata</u>, is the following:

Kingdom. Animal
Phylum. Arthropoda
Class. Insecta
Order. Ephemeroptera
Family Ephemeridae
Genus. Hexagenia
Species Hexagenia limbata

 $\frac{Thermograph}{temperature} \ is \ an \ instrument \ that \ continuously \ records \ variations \ of \ temperature \ on \ a \ chart. \ The \ more general \ term "temperature \ recorder" \ is used in the table headings and refers to any instrument that records temperature \ whether \ on \ a \ chart, \ a \ tape, \ or \ any \ other \ medium.$

<u>Time-weighted average</u> is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year.

 $\underline{\text{Tons per acre-foot}}$ indicates the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter, by 0.00136.

 $\underline{\text{Tons per day}}$ (T/DAY) is the quantity of a substance in solution or suspension that passes a stream section during a 24-hour period.

<u>Total</u> is the total amount of a given constituent in a representative water-suspended sediment sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determined all of the constituent in the sample.)

<u>Total discharge</u> is the total quantity of any individual constituent, as measured by dry mass or volume, that passes through a stream cross-section per unit of time. This term needs to be qualified, such as "total sediment discharge," "total chloride discharge," and so on.

Total, recoverable is the amount of a given constituent that is in solution after a representative water-suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

<u>Tritium Network</u> is a network of stations which has been established to provide baseline information on the occurrence of tritium in the Nation's surface waters. In addition to the surface-water stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States.

<u>Water year</u> in Geological Survey reports dealing with surface-water supply is the 12-month period October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 1998, is called the "1998 water year."

 \underline{WDR} is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual hydrologic-data reports (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976).

<u>Weighted average</u> is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

WSP is used as an abbreviaton for "Water-Supply Paper" in reference to previously published reports.

PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS

The U.S. Geological Survey publishes a series of manuals describing procedures for planning and conducting specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises.

The reports listed below are for sale by the U.S. Geological Survey, Branch of Information Services, Box 25286, Federal Center, Denver, Colorado 80225 (authorized agent of the Superintendent of Documents, Government Printing Office). Prepayment is required. Remittance should be sent by check or money order payable to the U.S. Geological Survey. Prices are not included because they are subject to change. Current prices can be obtained by writing to the above address. When ordering or inquiring about prices for any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations."

Book 1. Collection of Water Data by Direct Measurement

Section D. Water Quality

- 1-D1. Water temperature—influential factors, field measurement, and data presentation, by H. H. Stevens, Jr., J.F. Ficke, and G. F. Smoot: USGS-TWRI Book 1, Chapter D1. 1975. 65 pages.
- 1-D2. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W.W. Wood: USGS-TWRI Book 1, Chapter D2. 1976. 24 pages.

Book 2. Collection of Environmental Data

Section D. Surface Geophysical Methods

- 2-D1. Application of surface geophysics to ground-water investigations, by A.A. R. Zohdy, G.P. Eaton, and D.R. Mabey: USGS-TWRI Book 2, Chapter D1. 1974. 116 pages.
- 2-D2. Application of seismic-refraction techniques to hydrologic studies, by F.P. Haeni: USGS-TWRI Book 2, Chapter D2. 1988. 86 pages.

Section E. Subsurface Geophysical Methods

- 2-E1. Application of borehole geophysics to water-resources investigations, by W.S. Keys and L.M. MacCary: USGS-TWRI Book 2, Chapter E1. 1971. 126 pages.
- 2-E2. Borehole geophysics applied to ground-water investigations, by W.S. Keys: USGS-TWRI Book 2, Chapter E2. 1990. 150 pages.

Section F. Drilling and Sampling Methods

2-F1. Application of drilling, coring, and sampling techniques to test holes and wells, by Eugene Shuter and W.E. Teasdale: USGS-TWRI Book 2, Chapter F1. 1989. 97 pages.

Book 3. Applications of Hydraulics

Section A. Surface-Water Techniques

- 3-A1. General field and office procedures for indirect discharge measurements, by M.A. Benson and Tate Dalrymple: USGS-TWRI Book 3, Chapter A1. 1967. 30 pages.
- 3-A2. Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M.A. Benson: USGS-TWRI Book 3, Chapter A2. 1967. 12 pages.
- 3-A3. Measurement of peak discharge at culverts by indirect methods, by G.L. Bodhaine: USGS-TWRI Book 3, Chapter A3. 1968. 60 pages.
- 3-A4. Measurement of peak discharge at width contractions by indirect methods, by H.F. Matthai: USGS-TWRI Book 3, Chapter A4. 1967. 44 pages.
- 3-A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS-TWRI Book 3. Chapter A5. 1967. 29 pages.
- 3-A6. General procedure for gaging streams, by R.W. Carter and Jacob Davidian: USGS-TWRI Book 3, Chapter A6. 1968. 13 pages.
- 3-A7. Stage measurement at gaging stations, by T.J. Buchanan and W.P. Somers: USGS-TWRI Book 3, Chapter A7. 1968. 28 pages.
- 3-A8. Discharge measurements at gaging stations, by T.J. Buchanan and W.P. Somers: USGS-TWRI Book 3, Chapter A8. 1969. 65 pages.
- 3-A9. Measurement of time of travel in streams by dye tracing, by F.A. Kilpatrick and J.F. Wilson, Jr.: USGS-TWRI Book 3, Chapter A9. 1989. 27 pages.
- 3-AlO. Discharge ratings at gaging stations, by E.J. Kennedy: USGS-TWRI Book 3, Chapter AlO. 1984. 59 pages.
- 3-All. Measurement of discharge by the moving-boat method, by G.F. Smoot and C.E. Novak: USGS-TWRI Book 3, Chapter All. 1969. 22 pages.
- 3-A12. Fluorometric procedures for dye tracing, Revised, by J.F. Wilson, Jr., E.D. Cobb, and F.A. Kilpatrick: USGS-TWRI Book 3, Chapter A12. 1986. 41 pages.
- 3-A13. Computation of continuous records of streamflow, by E.J. Kennedy: USGS-TWRI Book 3, Chapter A13. 1983. 53 pages.
- 3-A14. Use of flumes in measuring discharge, by F.A. Kilpatrick and V.R. Schneider: USGS-TWRI Book 3, Chapter A14. 1983. 46 pages.

WATER RESOURCES DATA - VIRGINIA, 1998

PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS -- Continued

- 3-A15. Computation of water-surface profiles in open channels, by Jacob Davidian: USGS-TWRI Book 3, Chapter A15. 1984. 48 pages.
- 3-A16. Measurement of discharge using tracers, by F.A. Kilpatrick and E.D. Cobb: USGS-TWRI Book 3, Chapter A16. 1985. 52 pages.
- 3-A17. Acoustic velocity meter systems, by Antonius Laenen: USGS-TWRI Book 3, Chapter A17. 1985. 38 pages.
- 3-A18. Determination of stream reaeration coefficients by use of tracers, by F.A. Kilpatrick, R.E. Rathbun, Nobuhiro Yotsukura, G.W. Parker, and L.L. DeLong: USGS-TWRI Book 3, Chapter A18. 1989. 52 pages.
- 3-A19. Levels at streamflow gaging stations, by E.J. Kennedy: USGS-TWRI Book 3, Chapter A19. 1990. 31 pages.
- 3-A20. Simulation of soluable waste transport and buildup in surface waters using tracers, by F.A. Kilpatrick: USGS-TWRI Book 3, Chapter A20. 1993. 38 pages.
- 3-A21 Stream-gaging cableways, by C. Russell Wagner: USGS-TWRI Book 3, Chapter A21. 1995. 56 pages.

Section B. Ground-Water Techniques

- 3-B1. Aquifer-test design, observation, and data analysis, by R.W. Stallman: USGS-TWRI Book 3, Chapter B1. 1971. 26 pages.
- 3-B2. Introduction to ground-water hydraulics, a programed text for self-instruction, by G.D. Bennett: USGS-TWRI Book 3, Chapter B2. 1976. 172 pages.
- 3-B3. Type curves for selected problems of flow to wells in confined aquifers, by J.E. Reed: USGS-TWRI Book 3, Chapter B3. 1980. 106 pages.
- 3-B4. Regression modeling of ground-water flow, by R.L. Cooley and R.L. Naff: USGS-TWRI Book 3, Chapter B4. 1990. 232 pages.
- 3-B4. Supplement 1. Regression modeling of ground-water flow --Modifications to the computer code for nonlinear regression solution of steady-state ground-water flow problems, by R.L. Cooley: USGS-TWRI Book 3, Chapter B4. 1993. 8 pages.
- 3-B5. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems—An introduction, by O.L. Franke, T.E. Reilly, and G.D. Bennett: USGS-TWRI Book 3, Chapter B5. 1987. 15 pages.
- 3-B6. The principle of superposition and its application in ground-water hydraulics, by T.E. Reilly, O.L. Franke, and G.D. Bennett: USGS-TWRI Book 3, Chapter B6. 1987. 28 pages.
- 3-B7. Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow, by E.J. Wexler: USGS-TWRI Book 3, Chapter B7. 1992. 190 pages.

Section C. Sedimentation and Erosion Techniques

- 3-C1. Fluvial sediment concepts, by H.P. Guy: USGS-TWRI Book 3, Chapter C1. 1970. 55 pages.
- 3-C2. Field methods for measurement of fluvial sediment, by Thomas K. Edwards and G. Douglas Glysson: USGS-TWRI Book 3, Chapter C2. 1988. 80 pages.
- 3-C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS-TWRI Book 3, Chapter C3. 1972. 66 pages.

Book 4. Hydrologic Analysis and Interpretation

Section A. Statistical Analysis

- 4-A1. Some statistical tools in hydrology, by H.C. Riggs: USGS-TWRI Book 4, Chapter A1. 1968. 39 pages.
- 4-A2. Frequency curves, by H.C. Riggs: USGS-TWRI Book 4, Chapter A2. 1968. 15 pages.

Section B. Surface Water

- 4-B1. Low-flow investigations, by H.C. Riggs: USGS-TWRI Book 4, Chapter B1. 1972. 18 pages.
- 4-B2. Storage analyses for water supply, by H.C. Riggs and C.H. Hardison: USGS-TWRI Book 4, Chapter B2. 1973. 20 pages.
- 4-B3. Regional analyses of streamflow characteristics, by H.C. Riggs: USGS-TWRI Book 4, Chapter B3. 1973. 15 pages.
- Section D. Interrelated Phases of the Hydrologic Cycle
- 4-D1. Computation of rate and volume of stream depletion by wells, by C.T. Jenkins: USGS-TWRI Book 4, Chapter D1. 1970. 17 pages.

Book 5. Laboratory Analysis

Section A. Water Analysis

- 5-Al. Methods for determination of inorganic substances in water and fluvial sediments, by M.J. Fishman and L.C. Friedman, editors: USGS-TWRI Book 5, Chapter Al. 1989. 545 pages.
- 5-A2. Determination of minor elements in water by emission spectroscopy, by P.R. Barnett and E.C. Mallory, Jr.: USGS-TWRI Book 5, Chapter A2. 1971. 31 pages.
- 5-A3. Methods for the determination of organic substances in water and fluvial sediments, edited by R.L. Wershaw, M.J. Fishman, R.R. Grabbe, and L.E. Lowe: USGS-TWRI Book 5, Chapter A3. 1987. 80 pages.
- 5-A4. Methods for collection and analysis of aquatic biological and microbiological samples, by L.J. Britton and P.E. Greeson, editors: USGS-TWRI Book 5, Chapter A4. 1989. 363 pages.

PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS -- Continued

- 5-A5. Methods for determination of radioactive substances in water and fluvial sediments, by L.L. Thatcher, V.J. Janzer, and K.W. Edwards: USGS-TWRI Book 5, Chapter A5. 1977. 95 pages.
- 5-A6. Quality assurance practices for the chemical and biological analyses of water and fluvial sediments, by L.C. Friedman and D.E. Erdmann: USGS-TWRI Book 5, Chapter A6. 1982. 181 pages.

Section C. Sediment Analysis

5-Cl. Laboratory theory and methods for sediment analysis, by H.P. Guy: USGS-TWRI Book 5, Chapter Cl. 1969. 58 pages.

Book 6. Modeling Techniques

Section A. Ground Water

- 6-A1. A modular three-dimensional finite-difference ground-water flow model, by M.G. McDonald and A.W. Harbaugh: USGS-TWRI Book 6, Chapter A1. 1988. 586 pages.
- 6-A2. Documentation of a computer program to simulate aquifer-system compaction using the modular finitedifference ground-water flow model, by S.A. Leake and D.E. Prudic: USGS-TWRI Book 6, Chapter A2. 1991. 68 pages.
- 6-A3. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 1:
 Model Description and User's Manual, by L.J. Torak: USGS-TWRI Book 6, Chapter A3. 1993. 136 pages.
- 6-A4. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 2:
 Derivation of finite-element equations and comparisons with analytical solutions, by R.L. Cooley: USGS-TWRI Book 6, Chapter A4. 1992. 108 pages.
- 6-A5. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 3:
 Design philosophy and programming details, by L.J. Torak: USGS-TWRI Book 6, Chapter A5, 1993. 243
 pages.
- 6-A6. A coupled surface-water and ground-water flow model (MODBRANCH) for simulation of stream-aquifer interaction, by Eric D. Swain and Eliezer J. Wexler. 1996. 125 pages.

Book 7. Automated Data Processing and Computations

Section C. Computer Programs

- 7-C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P.C. Trescott, G.F. Pinder, and S.P. Larson: USGS-TWRI Book 7, Chapter C1. 1976. 116 pages.
- 7-C2. Computer model of two-dimensional solute transport and dispersion in ground water, by L.F. Konikow and J.D. Bredehoeft: USGS-TWRI Book 7, Chapter C2. 1978. 90 pages.
- 7-C3. A model for simulation of flow in singular and interconnected channels, by R.W. Schaffranek, R.A. Baltzer, and D.E. Goldberg: USGS-TWRI Book 7, Chapter C3. 1981. 110 pages.

Book 8. Instrumentation

Section A. Instruments for Measurement of Water Level

- 8-A1. Methods of measuring water levels in deep wells, by M.S. Garber and F.C. Koopman: USGS-TWRI Book 8, Chapter A1. 1968. 23 pages.
- 8-A2. Installation and service manual for U.S. Geological Survey manometers, by J.D. Craig: USGS-TWRI Book 8, Chapter A2. 1983. 57 pages.

Section B. Instruments for Measurement of Discharge

8-B2. Calibration and maintenance of vertical-axis type current meters, by G.F. Smoot and C.E. Novak: USGS-TWRI Book 8, Chapter B2. 1968. 15 pages.

Book 9. Handbooks for Water-Resources Investigations

Section A. National Field Manual for the Collection of Water-Quality Data

- 9-A6. National Field Manual for the Collection of Water-Quality Data: Field Measurements, edited by F.D. Wilde and D.B. Radtke: USGS-TWRI Book 9, Chapter A6. 1998. Variously paginated.
- 9-A7. National Field Manual for the Collection of Water-Quality Data: Biological Indicators, by D.N. Myers and F.D. Wilde: USGS-TWRI Book 9, Chapter A7. 1997. 49 pages.
- 9-A8. National Field Manual for the Collection of Water-Quality Data: Bottom-material samples, by D.B. Radtke: USGS-TWRI Book 9, Chapter A8. 1998. 48 pages.
- 9-A9. National Field Manual for the Collection of Water-Quality Data: Safety in Field Activities, by S.L. Lane and R.G. Fay: USGS-TWRI Book 9, Chapter A9. 1998. 60 pages.

SELECTED U.S. GEOLOGICAL SURVEY REPORTS ON WATER RESOURCES IN VIRGINIA

Listed below is a selection of reports on water resources in Virginia which are available through the Virginia District at the U.S. Geological Survey, WRD, 3600 West Broad Street, Room 606, Richmond, Virginia 23230.

An index of geophysical logging in Virginia by the U.S. Geological Survey, by M. P. Mulheren, J. D. Larson, and H. T. Hopkins: U.S. Geological Survey Open-File Report 82-432. 1982. 34 pages.

Annual maximum stages and discharges of selected streams in Virginia through 1990, by B. J. Prugh, Jr., E. H. Nuckels, and C. G. Humphrey: U.S. Geological Survey Open-File Report 90-587. 1991. 442 pages.

Assessment of ground-water contamination from a leaking underground storage tank at a Defense Supply Center near Richmond, Virginia, by W. G. Wright and J. D. Powell: U.S. Geological Survey Water-Resources Investigations Report 90-4091. 1990. 38 pages.

Availability and quality of ground water in the Piedmont province of Virginia, by J. D. Powell and J. M. Abe: U.S. Geological Survey Water-Resources Investigations Report 85-4235. 1985. 33 pages. Base-flow characteristics of streams in the Valley and Ridge, the Blue Ridge, and the Piedmont Physiographic Provinces of Virginia, by D.L. Nelms, G.E. Harlow, Jr., and D.C. Hayes: U.S. Geological Survey Water Supply Paper 2457. 1997. 48 pages.

Compilation of surface-water and water-quality data-collection sites on selected streams in Virginia, by B. J. Prugh, Jr. and C. G. Humphrey: U.S. Geological Survey Open-File Report 93-462. 1994. 645 pages.

Conceptualization and analysis of ground-water flow system in the Coastal Plain of Virginia and adjacent parts of Maryland and North Carolina, by J. F. Harsh and R. J. Laczniak: U.S. Geological Survey Professional Paper 1404-F. 1990. 100 pages.

<u>Design, revisions, and considerations for continued use of a ground-water-flow model of the Coastal Plain aquifer system in Virginia</u>, by R. McFarland: U. S. Geological Survey Water-resources Investigations Report 98-4085. 1998. 49 pages.

Documentation of a multiple-technique computer program for plotting major-ion composition of natural waters, by L. I. Briel: U.S. Geological Survey Open-File Report 93-74. 1994.

Documentation of geographic-information-system coverages and data-input files used for analysis of the geohydrology of the Virginia Coastal Plain, by M. J. Focazio and T. B. Samsel, III: U.S. Geological Survey Water-Resources Investigations Report 93-4015. 1994. 53 pages.

Effects of fracturing on well yields in the coalfield areas of Wise and Dickenson Counties, southwestern Virginia, by W. G. Wright: U.S. Geological Survey Water-Resources Investigations Report 85-4061. 1985. 21 pages.

Estimating net drawdown resulting from episodic withdrawals at six well fields in the Coastal Plain physiographic province of Virginia, by M. J. Focazio and G. K. Speiran: U.S. Geological Survey Water-Resources Investigations Report 93-4159. 1994. 21 pages.

Evaluation of municipal withdrawals from the confined aquifers of southeastern Virginia, by D. L. Richardson, R. J. Laczniak, and P. A. Hamilton: U.S. Geological Survey Open-File Report 88-723. 1988. 50 pages

Flood of November 1985 in West Virginia, Pennsylvania, Maryland, and Virginia, by J. B. Lescinsky: U.S. Geological Survey Open-File Report 86-486. 1987. 33 pages.

Floods in West Virginia, Virginia, Pennsylvania, and Maryland, November 1985, by D. H. Carpenter: U.S. Geological Survey Water-Resources Investigations Report 88-4213. 1990. 86 pages.

Geohydrology and Geochemistry near coastal ground-water-discharge areas of the Eastern Shore, Virginia, by G.K. Speiran: U.S. Geological Survey Water Supply Paper. 1996. 73 pages.

Geohydrology and the occurrence of volatile organic compounds in ground water, Culpeper basin of Prince William County, Virginia, by D. L. Nelms and D. L. Richardson: U.S. Geological Survey Water-Resources Investigations Report 90-4032. 1991. 94 pages.

Geohydrology of the shallow aquifer system, Naval Weapons Station Yorktown, Yorktown, Virginia, by A.R. Brockman, D.L. Nelms, G.E. Harlow, Jr., and J.J. Gildea: U.S. Geological Survey Water-Resources Investigations Report 97-4188. 61 pages.

<u>Ground-water availability along the Blue Ridge Parkway, Virginia</u>, by H. T. Hopkins: U.S. Geological Survey Water-Resources Investigations Report 84-4168. 1985. 154 pages.

Ground-water contamination and movement at the Defense General Supply Center, Richmond, Virginia, by J. D. Powell, W. G. Wright, D. L. Nelms, and R. J. Ahlin: U.S. Geological Survey Water-Resources Investigations Report 90-4113. 1991. 36 pages.

<u>Ground-water concerns for the Eastern Shore, Virginia</u>, by D. L. Richardson: U.S. Geological Survey Open-File Report 93-93. 1994. 4 pages (Water-Resources Notes).

<u>Ground-water discharge from the Coastal Plain of Virginia</u>, by D. L. Richardson: U.S. Geological Survey Water-Resources Investigations Report 93-4191. 1995.

Ground-water hydrology and quality in the Valley and Ridge and Blue Ridge physiographic provinces of Clarke County, Virginia, by W. G. Wright: U.S. Geological Survey Water-Resources Investigations Report 90-4134. 1991. 61 pages.

<u>Ground-water in Virginia: Use during 1990, availability, and resource information needs</u>, by McFarland, E. R. and Focazio, M. J.: U.S. Geological Survey Open-File Report 94-114. 1 page.

Ground-water use and levels in the southern Coastal Plain of Virginia, by J. D. Larson and R. J. Laczniak: U.S. Geological Survey Open-File Report 91-187. 1991. 165 pages.

WATER RESOURCES DATA - VIRGINIA, 1998

SELECTED U.S. GEOLOGICAL SURVEY REPORTS ON WATER RESOURCES IN VIRGINIA -- Continued

Ground-water withdrawals from the confined aquifers in the Coastal Plain of Virginia, 1891-1983, by T. K. Kull and R. J. Laczniak: U.S. Geological Survey Water-Resources Investigations Report 87-4049. 1987. 37 pages.

<u>Guide to obtaining U.S. Geological Survey information</u>, by K. Dodd, H. K. Fuller, and P. F. Clarke: U.S. Geological Survey Circular 900. 1985. 35 pages.

<u>Hydraulic characteristics of, and ground-water flow in, coal-bearing rocks of southwestern Virginia,</u> by G. E. Harlow, Jr. and G. D. LeCain: U.S. Geological Survey Water Supply Paper 2388. 1994. 36 pages.

Hydrogeologic and water-quality data for the Explosive Experimental Area, Naval Surface Warfare Center, <u>Dahlgren Site, Dahlgren, Virginia</u>, by E. C. Hammond and C. F. Bell: U.S. Geological Survey Open-File Report 95-386. 1995. 67 pages.

Hydrogeologic and water-quality data for the Main Site, Naval Surface Warfare Center, Dahlgren Laboratory, Dahlgren, Virginia, by C. F. Bell, T. P. Bolles, and G. E. Harlow, Jr.: U.S. Geological Survey Open-File Report 94-301. 1995. 81 pages.

Hydrogeologic framework, analysis of ground-water flow, and relations to regional flow in the Fall Zone near Richmond, Virginia, by E.R. McFarland: U.S. Geological Survey Water-Resources Investigations Report 97-4021.

1997. 56 pages.

<u>Hydrogeologic framework of the shallow aquifer system of York County, Virginia</u>, by A. R. Brockman and D. L. Richardson: U.S. Geological Survey Water-Resources Investigations Report 92-4111. 1992. 36 pages.

<u>Hydrogeology and analysis of the ground-water-flow system in the Coastal Plain of southeastern Virginia</u>, by P. A. Hamilton and J. D. Larson: U.S. Geological Survey Water-Resources Investigations Report 87-4240. 1988. 175 pages.

<u>Hydrogeology and analysis of the ground-water-flow system of the Eastern Shore, Virginia</u>, by D. L. Richardson: U.S. Geological Survey Water-Supply Paper 2401. 1994. 108 pages.

Hydrogeology and water quality of the shallow aquifer system at the Explosive Experimental Area, Naval Surface Warfare Center, Dahlgren Site, Dahlgren, Virginia, by C.F. Bell: U.S. Geological Survey Water Resources Investigations Report 96-4209. 1996. 37 pages.

Hydrogeology and water quality of the shallow ground-water system in Eastern York County, Virginia, by D. L. Richardson and A. R. Brockman: U.S. Geological Survey Water-Resources Investigations Report 92-4090. 1992. 41 pages.

Hydrogeology of, and quality and recharge ages of ground water in, Prince William County, Virginia 1990-91, by D.L. Nelms and A. R. Brockman: U.S. Geological Survey Water-Resources Investigations Report 97-4009.
1997. 58 pages.

<u>Hydrologic characteristics and water budget for Swift Creek Reservoir</u>, by S.C. Skrobialowski and M.J. Focazio: U.S. Geological Survey Water-Resources Investigations Report 97-229. 41 pages.

<u>Hydrologic conditions and trends in Shenandoah National Park, Virginia, 1983-84</u>, by D. D. Lynch: U.S. Geological Survey Water-Resources Investigations Report 87-4131. 1987. 115 pages.

Hydrology and effects of mining in the upper Russell Fork basin, Buchanan and Dickenson Counties, Virginia, by J. D. Larson and J. D. Powell: U.S. Geological Survey Water-Resources Investigations Report 85-4238. 1986. 63 pages.

<u>Hydrology of Area 16, Eastern Coal Province, Virginia and Tennessee</u>, by P. W. Hufschmidt and others: U.S. Geological Survey Water-Resources Investigations Report 81-204. 1981. 67 pages.

Land use in, and water quality of, the Pea Hill Arm of Lake Gaston, Virginia and North Carolina, 1988-90, by M. D. Woodside: U.S. Geological Survey Water-Resources Investigations Report 94-4140. 54 pages.

<u>Low-flow characteristics of streams in Virginia</u>, by D. C. Hayes: U.S. Geological Survey Water-Supply Paper 2374. 1990. 69 pages.

<u>Low flow of streams in Fairfax County, Virginia</u>, by E. H. Mohler, Jr., and G. F. Hagan: U.S. Geological Survey Open-File Report 81-63. 1981. 30 pages.

Measuring streams in Virginia, by R. M. Moberg, E. D. Powell, and K. C. Rice: U.S. Geological Survey Open-File Report 95-713. 1995. Pamphlet.

Methods for estimating the magnitude and frequency of peak discharges of rural, unregulated streams in <u>Virginia</u>, by J. A. Bisese: U.S. Geological Survey Water-Resources Investigations Report 94-4148. 70 pages.

National water summary, 1988-89, floods and droughts in Virginia, by E. H. Nuckels and B. J. Prugh, Jr.: U.S. Geological Survey Water-Supply Paper 2375. 1991. p. 543-550.

Natural processes for managing nitrate in ground water discharge to Chesapeake Bay and other surface waters—more than forested buffers, by G.K. Speiran, M.D. Woodside, and P. A. Hamilton: U.S. Geological Survey Fact Sheet 178-97.

Nutrient and suspended solids loads, yields, and trends in the non-tidal part of five major river basins in Virginia, 1985-96, by H. M. Johnson and D. L. Belval: U.S. Geological Survey Water-Resources Investigations Report 98-4025. 1998. 36 pages.

Plan of study for the regional aquifer-system analyses of the Appalachian Valley and Ridge, Piedmont,

and Blue Ridge physiographic provinces of the eastern and southeastern United States with a description of study-area geology and hydrogeology, by L. A. Swain, E. F. Hollyday, C. C. Daniel, III, and O. S. Zapecza. 1991. 44 pages.

Potentiometric surface of the Brightseat-upper Potomac aquifer in Virginia, 1994, by E. C. Hammond, E. R. McFarland, and M. J. Focazio: U.S. Geological Survey Open-File Report 94-370. 1995. 1 page.

WATER RESOURCES DATA - VIRGINIA, 1998

SELECTED U.S. GEOLOGICAL SURVEY REPORTS ON WATER RESOURCES IN VIRGINIA--Continued

<u>Potentiometric surface of the lower Potomac aquifer in Virginia, 1994</u>, by E. C. Hammond, E. R. McFarland, and M. J. Focazio: U.S. Geological Survey Open-File Report 94-373. 1995. 1 page.

<u>Potentiometric surface of the middle Potomac aquifer in Virginia, 1994</u>, by E. C. Hammond, E. R. McFarland, and M. J. Focazio: U.S. Geological Survey Open-File Report 94-372. 1995. 1 page.

Preliminary estimates of residence times and apparent ages of ground water in the Chesapeake Bay watershed and water-quality data from a survey of springs, by M.J. Focazio, L. N. Plummer, J. K. Bohlke, E. Busenberg, L. J. Bachman, and D. S. Powars: U.S. Geological Survey Water-Resources Investigations Report 97-4225. 1998. 75 pages.

Preliminary investigation of soil and ground-water contamination at the U.S. Army Petroleum Training Facility, Fort Lee, Virginia, September-October 1989, by W. G. Wright and J. D. Powell: U.S. Geological Survey Open-File Report 90-387. 1990. 28 pages.

<u>Quality of ground water in southern Buchanan County, Virginia</u>, by S. M. Rogers and J. D. Powell: U.S. Geological Survey Water-Resources Investigations 82-4022. 1983. 36 pages.

Quality of ground water in the Coastal Plain physiographic province of Virginia, by M. J. Focazio, G. K. Speiran, and M. E. Rowan: U.S. Geological Survey Water-Resources Investigations Report 92-4175. 1994. 20 pages.

Relation between ground-water quality and mineralogy in the coal-producing Norton Formation of Buchanan County, Virginia, by J. D. Powell and J. D. Larson: U.S. Geological Survey Water-Supply Paper 2274. 1985. 30 pages.

Relation of stream quality to streamflow, and estimated loads of selected water-quality constituents in the James and Rappahannock Rivers near the Fall Line of Virginia, July 1988 through 1990, by D. L. Belval, M. D. Woodside, and J. P. Campbell: U.S. Geological Survey Water-Resources Investigations Report 94-4042. 1995. 85 pages.

Scour at bridge sites in Delaware, Maryland, and Virginia, by D.C. Hayes: U.S. Geological Survey Water Resources Investigations Report 96-4089. 1996. 35 pages.20

Selected characteristics of stormflow and base flow affected by land use and cover in the Chickahominy River Basin, Virginia, 1989-91, by M. J. Focazio and R. E. Cooper: U.S. Geological Survey Water-Resources Investigations Report 94-4225. 1995. 37 pages.

<u>Selected heavy metals and other constituents in soil and stormwater runoff at the Interstate 95 Interchange near Atlee, Virginia, April 1993-May 1997</u>, by G. K. Speiran: USGS WRI 98-4115. 1998. 39 pages.

<u>Selected hydrologic data for the Powell River basin in Wise County, Virginia</u>, by J. D. Larson: U.S. Geological Survey Open-File Report 85-186. 1985. 22 pages.

<u>Selected U.S. Geological Survey publications on the water resources of Virginia, 1910-94,</u> by J. A. McFarland: supersedes U.S. Geological Survey Open-File Report 92-69. 1995. 15 pages.

<u>Sensitivity of stream basins in Shenandoah National Park to acid deposition</u>, by D. D. Lynch and N. B. Dise: U.S. Geological Survey Water-Resources Investigations Report 85-4115. 1985. 61 pages.

<u>Site selection and collection of bridge-scour data in Delaware, Maryland, and Virginia</u>, by D. C. Hayes: U.S. Geological Survey Water-Resources Investigations Report 93-4017. 1994. 23 pages.

<u>Technique for estimating the magnitude and frequency of Virginia floods</u>, by E. M. Miller: U.S. Geological Survey Water-Resources Investigations Report 78-5. 1978. 83 pages.

Trends in nutrients and suspended solids at the Fall Line of five tributaries to the Chesapeake Bay, July 1988 through June 1995, by C.F. Bell, D.L. Belval, J.P. Campbell: U.S. Geological Survey Water Resources Investigations Report 96-4191. 1996. 37 pages.

<u>Use during 1990, availability, and resource-information needs</u>, by E. R. McFarland and M. J. Focazio: U.S. Geological Survey Open-File Report 94-114. 1995. 2 pages.

<u>Use of fathometers and electrical-conductivity probes to monitor riverbed scour at bridge piers</u>, by D. C. Hayes and F. E. Drummond: U.S. Geological Survey Water-Resources Investigations Report 94-4164. 1995. 17 pages.

<u>Virginia ground-water quality</u>, by J. D. Powell and P. A. Hamilton: U.S. Geological Survey Open-File Report 87-759. 1987. 7 pages.

Water-level hydrographs for observation wells in Virginia, by S. T. Farrington, N. R. Carrington, and W. V. Daniels: U.S. Geological Survey Open-File Report 83-134. 1984. 167 pages.

Water-quality and evaluation of raw-water-routing scenarios, Chickahominy, Diascund Creek, and Little Creek Reservoirs, southeastern Virginia, 1983-86, by D. D. Lynch: U.S. Geological Survey Water-Resources Investigations Report 92-4034. 1992. 104 pages.

Water-quality assessment of the Albemarle-Pamlico Basin, North Carolina and Virginia-Chemical analyses of organic compounds and inorganic constituents in streambed sediment, 1992-93, by M.D. Woodside and B.R. Simerl: U.S. Geological Survey Open-File Report 96-103. 1996. 25 pages.

Water-quality assessment of the Delmarva Peninsula, Delaware, Maryland, and Virginia--Effects of agricultural activities on, and distribution of, nitrate and other inorganic constituents in the surficial aquifer, by P. A. Hamilton, J. M. Denver, P. J. Phillips, and R. J. Shedlock: U.S. Geological Survey Open-File Report 93-40. 1994. 87 pages.

Water-quality characteristics of five tributaries to the Chesapeake Bay at the Fall Line, Virginia, July 1988 through June 1993, by D.L. Belval, J.P. Campbell, S.W. Phillips, and C.F. Bell: U.S. Geological Survey Water Resources Investigations Report 95-4258. 1995. 71 pages.

WATER RESOURCES DATA - VIRGINIA, 1998

SELECTED U.S. GEOLOGICAL SURVEY REPORTS ON WATER RESOURCES IN VIRGINIA--Continued

Water-quality data and estimated loads of selected constituents in five tributaries to the Chesapeake Bay at the Fall Line, Virginia, July 1993 through June 1995, by D.L. Belval and J.P. Campbell: U.S. Geological Survey Open-File Report 96-220. 1996. 79 pages.

Water-Quality in the Appalachian Valley and Ridge, the Blue Ridge, and the Piedmont Physiographic Provinces, Eastern United States, by L.I. Briel: U.S. Geological Survey Professional Paper 1422-D. [in press].

Water-resources activities of the U.S. Geological Survey Mid-Atlantic Programs 1987-91, by J. A. McFarland, L. S. Weiss, A. J. Chen, D. R. Lowry, K. A. Bouder, W. R. Caughron, and G. J. Hyatt: U.S. Geological Survey Open-File Report 91-505. 1991. 154 pages.

<u>Water use in Virginia: Surface-water and ground-water withdrawals during 1992</u>, by E. C. Hammond and M. J. Focazio: U.S. Geological Survey Fact Sheet 94-057. 1995. 2 pages.

Well-construction, water-level, and ground-water-quality data for Prince William County, Virginia, 1992, by D. L. Nelms and A. R. Brockman: U.S. Geological Survey Open-File Report 93-443. 1994. 73 pages.

Figure 4.--Location of surface-water-discharge and surface-water-quality data-collection station

(Left side of map)

Figure 4.--Location of surface-water-discharge and surface-water-quality data-collection stations

(Right side of map)

Figure 5.--Location of surface-water partial-record stations (Left side of map)

Figure 5.--Location of surface-water partial-record stations (Right side of map)

THIS IS A BLANK PAGE

SURFACE-WATER-DISCHARGE AND SURFACE-WATER-OUALITY RECORDS

Remarks Codes

The following remark codes may appear with the water-quality data in this section:

PRINT OUTPUT	REMARK
E	Estimated value.
>	Actual value is known to be greater than the value shown.
<	Actual value is known to be less than the value shown.
K	Results based on colony count outside the acceptance range (non-ideal colony count).
L	Biological organism count less than 0.5 percent (organism may be observed rather than counted).
D	Biological organism count equal to or greater than 15 percent (dominant).
&	Biological organism estimated as dominant.
V	Analyte was detected in both the enviromental sample and the associated blanks.

Dissolved Trace-Element Concentrations

NOTE.-- Traditionally, dissolved trace-element concentrations have been reported at the microgram per liter (ug/L) level. Recent evidence, mostly from large rivers, indicates that actual dissolved-phase concentrations for a number of trace elements are within the range of 10's to 100's of nanograms per liter (ng/L). Data above the ug/L level should be viewed with caution. Such data may actually represent elevated environmental concentrations from natural or human causes; however, these data could reflect contamination introduced during sampling, processing, or analysis. To confidently produce dissolved trace-element data with insignificant contamination, the U.S. Geological Survey began using new trace-element protocols at some stations in water year 1994.

Change in National Trends Network Procedures

NOTE.-- Sample handling procedures at all National Trends Network stations were changed substantially on January 11, 1994, in order to reduce contamination from the sample shipping container. The data for samples before and after that date are different and not directly comparable. A tabular summary of the differences based on a special intercomparison study, is available from the NADP/NTN Coordination Office, Colorado State University, Fort Collins, CO 80523 (Telephone: 303-491-5643).

WATER RESOURCES DATA - VIRGINIA, 1998

DISCONTINUED SURFACE-WATER-DISCHARGE OR STAGE-ONLY STATIONS

The following continuous-record surface-water-discharge or stage-only stations (gaging stations) in Virginia have been discontinued. Daily streamflow or stage records were collected and published for the period of record, expressed in water years, shown for each station. Those stations with an asterisk (*) after the station number are currently operated as crest-stage partial-record stations. Discontinued project stations with less than 3 years of record have not been included. Information regarding these stations may be obtained from the District Office at the address given on the back side of the title page of this report.

[Letters after station name designate type of data collected: (d) discharge, (e) elevation]

Station name	Station number	Drainage area (mi2)	Period of record (water years)
NASSAWADOX	CREEK BASIN		
uy Creek (head of Holly Grove Cove) near Nassawadox, VA (d)	01484800	1.72	1963-96
POTOMAC R	IVER BASIN		
pequon Creek near Berryville, VA (d)	01615000	57.4	1943-97
brams Creek at Winchester, VA (d)	01615500	5.6	1946-49
brams Creek near Winchester, VA (d)	01616000	16.5	1949-60 1979-94
ry River at Rawley Springs, VA (d)	01621000	72.6	1946-48
ooks Creek at Mt. Crawford, VA (d)	01621500	42	1905-06
astle Spring near Churchville, VA (d)	01622500	-	1949-56
ell Creek at St. Pauls Chapel, near Staunton, VA (d)	01623000	.61	1948-55
ell Creek near Staunton, VA (d)	01623500	3.8	1948-55
ell Creek at Franks Mill, near Staunton, VA (d)	01624000	9.6	1948-56
iddle River near Verona, VA (d)	01624300	178	1967-86
ewis Creek near Staunton, VA (d)	01624500	18	1905-06
hristians Creek near Fishersville, VA (d)	01624800	70.1	1967-97
North River at Port Republic, VA (d)	01625500	804	1895-99
ack Creek near Lyndhurst, VA (d)	01625900	41.2	1974-77
outh River at Waynesboro, VA (d)	01626500	133	1905-06 1928-52
outh River near Dooms, VA (d)	01626850	149	1974-95
outh River at Port Republic, VA (d)	01628000	248	1895-99
Nhite Oak Run near Grottoes, VA (d)	01628060	1.94	1979-96
lk Run at Elkton, VA (d)	01629000	17	1901-06
agers Spring near Luray, VA (d)	01629990	-	1949-56
awksbill Creek near Luray, VA (d)	01630000	52	1905-06
lains Mill Spring near New Market, VA (d)	01632500	-	1949-56
tony Creek at Columbia Furnace, VA (d)	01633500	79.4	1947-56
arlboro Spring at Marlboro, VA (d)	01635000	-	1949-56
orth Fork Shenandoah River near Riverton, VA (d)	01636000	1,040	1899-1906
appy Creek at Front Royal, VA (d)	01636210	14.0	1948-77
ig Spring near Leesburg, VA (d)	01643610	.03	1968-69 1980-81
Goose Creek near Middleburg, VA (d)	01643700	123	1965-67 1969-95

1969-95

Station name	Station number	Drainage area (mi ²)	Period of record (water years)
POTOMAC RIVER BAS	SINContinue	ed	
Stave Run at Reston, VA (d)	01644290	.05	1966-71, 1973
Stave Run near Reston, VA (d)	01644291	.08	1971-82
Smilax Branch at Reston, VA (d)	01644295	.32	1967-78
Snakeden Branch at Reston, VA (d)	01645784	.79	1973-78
Fourmile Run at Alexandria, VA (d)	01652500*	14.4 13.8	1951-69, 1974-75, 1979-82
Long Branch near Annandale, VA (d)	01654500	3.71	1947-57
Accotink Creek near Accotink Station, VA (d)	01655000	37.0	1949-57
Cedar Run near Warrenton, VA (d)	01655500	12.3	1950-87
Broad Run at Buckland, VA (d)	01656500	50.5	1950-79, 1981-87
Broad Run near Bristow, VA (d)	01656650	89.6	1975-87
Occoquan River near Manassas, VA (d)	01656700	343	1968-81
Bull Run near Catharpin, VA (d)	01656725	25.8	1969-87
Cub Run near Bull Run, VA (d)	01656960	49.9	1973-87
Bull Run near Manassas, VA (d)	01657000	147	1950-81
Bull Run near Manassas Park, VA (d)	01657020	148	1984-87
Bull Run near Clifton, VA (d)	01657415	185	1972-84
Occoquan River (Creek) near Occoquan, VA (d)	01657500	570	1913-16, 1921-23, 1937-56
Hooes Run near Occoquan, VA (d)	01657655	3.97	1975-82
Neabsco Creek at Dale City, VA (d)	01657850	6.11	1994-96
Neabsco Creek Tributary at Telegraph Road near Dale City, VA (d)	01657885	.91	1995-96
Powells Creek near Dale City, VA (d)	01657895	7.93	1994-96
Quantico Creek near Dumfries, VA (d)	01658480	6.90	1983-85
South Fork Quantico Creek near Joplin, VA (d)	01658550	9.62	1983-85
South Fork Quantico Creek near Dumfries, VA (d)	01658650	16.6	1983-85
North Branch Chopawamsic Creek near Independent Hill, VA (d)	01659000	5.79	1951-57, 1990
Middle Fork Chopawamsic Creek near Garrisonville, VA (d)	01659500	4.51	1951-57, 1960-67
South Branch Chopawamsic Creek near Garrisonville, VA (d)	01660000	2.56	1951-57
Cannon Creek near Garrisonville, VA (d)	01660380	10.2	1994-96
Aquia Creek near Garrisonville, VA (d)	01660400	34.9	1971-97
GREAT WICOMICO	RIVER BASIN		
Bush Mill Stream near Heathsville, VA (d)	01661800*	6.82	1964-87

 $[\]mbox{\ensuremath{\star}}$ Currently operated as a crest-stage partial-record station.

Discontinued surface-water-discharge or stage-only stations--Continued Period of record Drainage Station (water area (mi²)Station name number years) RAPPAHANNOCK RIVER BASIN Carter Run near Marshall, VA (d) 01661900 19.5 1977-82 Rappahannock River near Warrenton, VA (d) 01662000 195 1943-86 Rush River at Washington, VA (d) 01662500 14.7 1953-77 Thornton River near Laurel Mills, VA (d) 01663000 142 1943-56 Hazel River at Rixeyville, VA (d) 01663500 287 1942-92 Rappahannock River at Kellys Ford, VA (d) 01664500 1925-52 641 1949-97 Mountain Run near Culpeper, VA (d) 01665000 15 9 Rapidan River near Ruckersville, VA (d) 01665500 114 1942-95 Robinson River at Locust Dale, VA (d) 01666000 148 1942 01667000 1924-31 Rapidan River at Rapidan, VA (d) 446 Mountain Run near Burr Hill, VA (d) 01667870 28.8 1990-92 Hoskins Creek near Tappahannock, VA (d) 01668800 15.5 1965-86 PIANKATANK RIVER BASIN Dragon Swamp near Church View, VA (d) 01669500 84.9 1943-81 YORK RIVER BASIN Beaverdam Swamp near Ark, VA (d) 01670000 6 63 1950-89 Pamunkey Creek at Lahore, VA (d) 01670180* 40.5 1989-92 Contrary Creek near Mineral, VA (d) 01670300* 5.53 1976-86 01670400 1978-95 North Anna River near Partlow, VA (d) 344 North Anna River near Hewlett, VA (d) 01670500 424 1926-28 North Anna River near Doswell, VA (d) 01671000 441 1926-86 01671500 4.37 1949-79 Bunch Creek near Boswells Tavern, VA (d) South Anna River at Vontay, VA (d) 01672000 332 1927-30 South Anna River near Ashland, VA (d) 01672500 394 1930-97 Totopotomoy Creek near Atlee, VA (d) 01673500 5.89 1949-77 1979-95 Ware Creek near Toano, VA (d) 01677000 6.29 JAMES RIVER BASIN 02010000 1950-56 Bolar Spring at Bolar, VA (d) 1946-56 Muddy Run Spring near Warm Springs, VA (d) 02010500 Warm Spring at Warm Springs, VA (d) 02011000 1928-44 Back Creek on Rt. 600, near Mountain Grove, VA (d) 02011480 85.8 1974-84 Falling Spring Creek near Falling Spring, VA (d) 11.5 1948-52 02012000 Jackson River at Falling Spring, VA (d) 02012500* 411 1925-84 Jackson River at Covington, VA (d) 02012900 440 1907-08

^{*} Currently operated as a crest-stage partial-record station.

Station name	Station number	Drainage area (mi ²)	Period of record (water years)
JAMES RIVER BASI	INContinued	i	
Smith Creek above old dam, near Clifton Forge, VA (d)	02014500	12.4	1947-56
Smith Creek near Clifton Forge, VA (d)	02015000	12.5	1944-47
Stuart Spring near McDowell, VA (d)	02015500	-	1950-56
Meadow Creek at New Castle, VA (d)	02017000	13.8	1929-52
Catawba Creek near Fincastle, VA (d)	02019000	104	1928-37
Karnes Spring near Buchanan, VA (d)	02020000	-	1950-56
Calfpasture River (head of Maury River) above Mill Creek, at Goshen, VA (d)	02020500	144	1938-96
Calfpasture River at Goshen, VA (d)	02021000	190	1925-39
Big Spring at Kerrs Creek, VA (d)	02022000	-	1950-56
Maury River near Lexington, VA (d)	02023000	487	1925-60
South River near Riverside, VA (d)	02023500	111	1950-62
Buffalo Creek near Glasgow, VA (d)	02024300	123	1963-64
Maury River at Glasgow, VA (d)	02024500	831	1895-1906
Pedlar River near Pedlar Mills, VA (d)	02025000	91	1942-56
ye River at Roseland, VA (d)	02026500	68	1927-38
Buffalo river near Tye River, VA (d)	02027800	147	1960-95
Ye (Buffalo) River near Norwood, VA (d)	02028000	360	1940-60
Mardware River near Scottsville, VA (d)	02029500	104	1925-39
Slate River near Arvonia (d)	02030500	226	1926-95
Mechums River near White Hall (Ivy), VA (d)	02031000	95.4	1942-51
North Fork Moormans River near White Hall, VA (d)	02031500	11.4	1952-63, 1982-84
Moormans River near White Hall, VA (d)	02032000	18	1943-46
Moormans River near Free Union, VA (d)	02032250	74.6	1979-97
Buck Mountain Creek near Free Union, VA (d)	02032400	37	1979-97
South Fork Rivanna River near Earlysville, VA (d)	02032500	216	1951-66
South Fork Rivanna River near Charlottesville, VA (d)	02032515	260	1979-97
North Fork Rivanna River near Proffit, VA (d)	02032680	176	1970-92
Rivanna River near Charlottesville, VA (d)	02033000	473	1925
Rivanna River below Moores Creek, near Charlottesville, VA (d)	02033500	507	1925-34
Villis River at Lakeside Village (Flanagan Mills), VA (d)	02034500*	262	1927-86
Big) Lickinghole Creek near Goochland, VA (d)	02035500	70	1944-46
Beaverdam Creek at State Farm, VA (d)	02036000	42	1944-47,
alling Creek near Chesterfield, Va. (d)	02038000*	32.8	1957-64, 1955-94
Falling Creek near Drewrys Bluff, VA (d)	02038500	54	1942-56, 1957-64
Vaughans Creek near Hixburg, VA (d)	02038880	23.2	1980-81

 $^{^{\}star}$ Currently operated as a crest-stage partial-record station.

Discontinued surface-water-discharge or stage-only stations--Continued Period of record Drainage Station (water area (mi²)years) Station name number JAMES RIVER BASIN--Continued Fishpond Creek near Hixburg, VA (d) 02038830 14 1980-81 02040500* 1946-48 Flat Creek near Amelia, VA (d) 73 02041500 1927-66 Appomattox River near Petersburg, VA (d) 1,335 Swift Creek near Chester, VA (d) 02042000 143 1943-49 Chickahominy River near Atlee, VA (d) 02042287 62.2 1990-97 GREAT DISMAL SWAMP BASIN Cypress Swamp at Cypress Chapel, VA (d) 02043500 23.8 1953-71, 1978-96 Washington Ditch near Cypress Chapel, VA (d) 02043550 41 1979-81 CHOWAN RIVER BASIN 1946-86 Nottoway River near Burkeville, VA (d) 02044000 38.7 Nottoway River near McKenney, VA (d) 02045000 362 1946-50 02045200 15.0 1966-67 Waqua Creek near Alberta, VA (d) 1949-56 Anderson Branch at Sussex, VA (d) 02046500 5.35 Assamoosick Swamp near Sebrell, VA (d) 02047100 86.4 1982-88 Blackwater River at Zuni, VA (d) 02048000 456 1943-88 02048500 1943-49 Seacock Creek at Unity, VA (d) 102 Blackwater River near Burdette, VA (d) 02049000 576 1942-44 North Meherrin River near Keysville, VA (d) 02050500 9.2 1949-61 Great Creek near Cochran, VA (d) 02051600 30.7 1958-86 Fountains Creek near Brink, VA (d) 65.2 1953-95 02052500 Fontaine (Fountains) Creek near Emporia, VA (d) 02053000 1944-53 ROANOKE RIVER BASIN

	ROANORE RIVER BASIN		
Big Springs at Elliston, VA (d)	02054000	-	1948-56
Tinker Creek at Roanoke, VA (d)	02055500	70	1907-08
Back Creek near Roanoke, VA (d)	02056500	43	1907-08
Blackwater River near Union Hall, VA (d)	02057000	208	1925-64
Roanoke River near Toshes, VA (d)	02057500	1,020	1925-63
Snow Creek at Sago, VA (d)	02058000	60	1935-44
Pigg River near Toshes, VA (d)	02058500	394	1930-63
Roanoke River near Gretna, VA (d)	02059000	1,430	1925-30
Goose Creek at Huddleston, VA (d)	02060000	218	1929-32
Big Otter River near Bedford, VA (d)	02061000	116	1944-60
Big Otter River near Altavista, VA (d)	02062000	372	1929-37
Caldwells Creek near Appomattox, VA (d)	02063000	5.13	1954-60

^{*} Currently operated as a crest-stage partial-record station.

Station name	Station number	Drainage area (mi²)	Period of record (water years)
ROANOKE RIVER BAS	SINContinu	ed	
Falling River at Spring Mills, VA (d)	02063500	52.2	1954-60
Little Falling River at Hat Creek, VA (d)	02064500	43	1929-36
Falling River near Brookneal, VA (d)	02065000	228	1936-41
Roanoke River at Clarkton, VA (d)	02065200	2,691	1963-76
Roanoke Creek at Saxe, VA (d)	02066500	135	1946-72
Roanoke River near Clover, VA (d)	02067000	3,230	1929-52
Roanoke River above Dan River, at Clarksville, VA (d)	02067500	-	1895-98
Leatherwood Creek near Martinsville (Old Liberty), VA (d)	02073500	68	1926-34
Dan River at Danville, VA (d)	02075000	2,050	1934-95
Dan River at South Boston, VA (d)	02076000*	2,730	1900-07, 1923-52
Georges Creek near Gretna, VA (d)	02076500	9.24	1949-97
Hyco River near Omega, VA (d)	02078000	413	1934-50
Dan River at Clarksville, VA (d)	02078500	-	1896-98
Roanoke River at Clarksville, VA (d)	02079000	7,320	1935-52
Roanoke River at Buggs Island, VA (d)	02079500*	7,780	1947-62
Allen Creek near Boydton, VA (d)	02079640	53.4	1961-96
KANAWHA RIV	ER BASIN		
New River near Baywood, VA (d)	03163000	1,000	1928-30
New River near Grayson, VA (d)	03164500	1,160	1908-12
New River at Ivanhoe, VA (d)	03165500	1,340	1927, 1930-78
Cripple Creek near Ivanhoe, VA (d)	03166000	148	1930-34
Neff-Litz Spring near Rural Retreat, VA (d)	03166500	-	1947-56
Glade Creek at Grahams Forge, VA (d)	03166800	7.15	1976-93
Big Reed Island Creek near Allisonia, VA (d)	03167500	278	1908-16, 1939-95
Peak Creek at Pulaski, VA (d)	03168500	58.3 60.9	1927-33, 1951-57
Little River near Copper Valley, VA (d)	03169500	239	1908-16
New River at Eggleston, VA (d)	03171500	2,941	1915-76
Wabash Spring near Poplar Hill, VA (d)	03172000	-	1950-51
Walker Creek at Staffordsville, VA (d)	03172500	277	1908-16
Francis Spring near Bane, VA (d)	03173500	-	1952-56
Wolf Creek near Shawver Mill (Burkes Garden), VA (d)	03174500	36	1927-28
West Fork Cove Creek near Bluefield, VA (d)	03175000	5.5	1929-32

 $^{^{\}star}$ Currently operated as a crest-stage partial-record station.

WATER RESOURCES DATA - VIRGINIA, 1998

Station name	Station number	Drainage area (mi²)	Period of record (water years)
KANAWHA RIVER BA	SINContinu	ed	
Cox Branch above Tazewell Reservoir, near Gratton, VA (d)	03175100	2.06	1988-92
Bluestone River at Bluefield, VA (d)	03177700	39.8	1965-80
Bluestone River at Falls Mills, VA (d)	03177710	44.2	1980-97
BIG SANDY R.	IVER BASIN		
Levisa Fork near Grundy, VA (d)	03207500	235	1942-74, 1986-87
Grissom Creek near Council, VA (d)	03208034	2.82	1981-83
Barton Fork near Council, VA (d)	03208036	1.23	1981-83
Russell Fork at Council, VA (d)	03208040*	10.2	1981-83
Russell Fork near Birchleaf, VA (d)	03208100	87.4	1981-83
North Fork Pound River at Pound, VA (d)	03208700*	18.5	1962-87
Pound River above Indian Creek, at Pound, VA (d)	03208800*	36.7	1966-78
Pound River below Bold Camp Creek, at Pound, VA (d)	03208850*	61.2	1966-78
Pound River near Georges Fork, VA (d)	03208900*	82.5	1964-82
Russell Fork at Bartlick, VA (d)	03209200*	526	1963-82
Kersaw Branch near Hurley, VA (d)	03213577	.60	1981-82
Knox Creek at Kelsa, VA (d)	03213590*	84.3	1980-81
Steve Keesling Spring at Sugar Grove, VA (d)	03471000	-	1928, 1948-56
TENNESSEE R	IVER BASIN		
South Fork Holston River near Chilhowie, VA (d)	03472000	89.5	1907-10
Beaverdam Creek at Damascus, VA (d)	03472500	56.0	1947-59
Middle Fork Holston River at Groseclose, VA (d)	03473500	7.39	1948-57, 1988-89
Middle Fork Holston River at Chilhowie, VA (d)	03474500	155	1907-10, 1921-32
Cedarville Spring at Cedarville, VA (d)	03475500	-	1950-53
Beaver Creek near Wallace, VA (d)	03477500	13.7	1946-57
Percy Preston Spring near Wallace, VA (d)	03478000	-	1950-56
Lick Creek near Chatham Hill, VA (d)	03487800*	25.5	1966-68
North Fork Holston River near Plasterco, VA (d)	03488100	259	1963-66
Brumley Creek near Hansonville, VA (d)	03488445	4.29	1979-82
Brumley Creek at Brumley Gap, VA (d)	03488450*	21.1	1979-82
North Fork Holston River at Holston, VA (d)	03488500	402	1951-59
North Fork Holston River near Mendota, VA (d)	03489500	493	1921-32
Cove Creek near Hilton, VA (d)	03489850	17.6	1966-68

 $[\]mbox{\ensuremath{\star}}$ Currently operated as a crest-stage partial-record station.

WATER RESOURCES DATA - VIRGINIA, 1998

Station name	Station number	Drainage area (mi²)	Period of record (water years)
TENNESSEE RIVER	BASINContin	ued	
Big Moccasin Creek at Collinwood, near Hansonville, VA (d)	03489870	41.9	1966-68
Big Moccasin Creek near Gate City, VA (d)	03489900	79.6	1953-59, 1966-68
North Fork Holston River near Gate City, VA (d)	03490000*	672	1932-82
Caylor Springs at Cedar Bluff, VA (d)	03520500	-	1953
Clinch River at Cedar Bluff, VA (d)	03521000	125	1944-46
Clinch River at Richlands, VA (d)	03521500*	137	1946-89
Little River at Wardell, VA (d)	03522000	103	1949-52
Will Brooks Spring at Wardell, VA (d)	03522500	-	1950-52
Big) Cedar Creek near Lebanon, VA (d)	03523000	51.5	1953-59
Chompson Creek near Coulwood, VA (d)	03523500	14.0	1942-49
Guest River at Coeburn, VA (d)	03524500*	87.3	1949-59 1979-81
Stony Creek at Ka, VA (d)	03524900*	30.9	1980-81
Stony Creek at Fort Blackmore, VA (d)	03525000	41.4	1949-52
Clinch River at Clinchport, VA (d)	03525500	986	1907-10
Quillen Springs near Gate City, VA (d)	03526500	-	1954-56
Clinch River at Speers Ferry, VA (d)	03527000	1,126	1920-76 1979-81
North Fork Clinch River at Duffield, VA (d)	03527500	23.1	1953-59
Powell River at Big Stone Gap, VA (d)	03529500	112	1945-59 1979-81
South Fork Powell River at Big Stone Gap, VA (d)	03530000	40	1945-47 1951-77
orth Fork Powell River at Pennington Gap, VA (d)	03530500	71.4	1944-51, 1978-81, 1993-95
Powell River near Pennington Gap, VA (d)	03531000	290	1921-32

^{*} Currently operated as a crest-stage partial-record station.

DISCONTINUED SURFACE-WATER-QUALITY STATIONS

The following surface-water-quality stations in Virginia have been discontinued. Water-quality data (daily or periodic samples with collection frequency not less than quarterly) were collected and published for the period of record, expressed in water years, shown for each station. For each station entry, a period of record is provided for each type of record listed. Those stations with an asterisk (*) after the station number are currently operated as partial-record water-quality sampling stations.

[Type of record: C (chemical), T (water temperature), SC (specific conductance), SED (sediment)]

Discontinued surface-water-quality stations Drainage Type Period of				
Station name	Station number	area (mi ²)	of record	record (water years)
				_
POTO	MAC RIVER B	ASIN		
forth River near Burketown, VA	01622000	379	C, T, SC	1994
Middle River near Grottoes, VA	01625000	375	C, T, SC	1994
outh River at Harriston, VA	01627500	212	SC C, T, SC	1949 1994
outh Fork Shenandoah River near Luray, VA	01629500	1,377	SC C, T, SC	1949 1994
outh Fork Shenandoah River at Front Royal, VA	01631000	1,642	T, SC	1953-56,
			SED C	1968-77,1980 1953-56 1949,1953-56
				1949,1953-56 1968-86 1994
Forth Fork Shenandoah River near Strasburg, VA	01634000	768	C, T, SC T, SC	1994
ofth Fork Shehahdoan River hear Strasburg, VA	01034000	700	SED	1969-71 1956
			C	1930,1949, 1952,1956,
			C, T, SC	1932,1930, 1970-86 1994
atoctin Creek at Taylorstown, VA	01638480	89.6	C, 1, 5C	1993-95
Goose Creek near Leesburg, VA	01644000	332	T, SC	1969-71
nobe creek hear beessurg, vii	01011000	332	C, T, SC	1994
tave Run near Reston, VA	01644291	.08	SED	1971-74
milax Branch at Reston, VA	01644295	.32	SED	1971-75
nakeden Branch at Reston, VA	01645784	.79	SED	1973-78
ccotink Creek near Annandale, VA	01654000	23.5	С	1993-95
edar Run near Aden, VA	01656100*	155	SED	1974
Bull Run near Catharpin, VA	01656725	25.8	SED	1974
ub Run near Bull Run, VA	01656960	49.9	SED	1972-74
ull Run near Clifton, VA	01657415	185	SED	1973-74
Meabsco Creek Tributary at Telegraph Road near Dale City, VA	01657885	.91	C, S	1995-96
quantico Creek near Dumfries, VA	01658480	6.90	C	1983-85
South Fork Quantico Creek near Independent Hill, VA	01658500*	7.64	С	1951,1953, 1955-56,1969 1973-75, 1983-85
outh Fork Quantico Creek at Camp 5, near Joplin, VA	01658550	9.62	С	1983-85
outh Fork Quantico Creek near Dumfries, VA	01658650	16.6	C	1983-85
outh Fork Quantico Creek near Triangle, VA	01658620	15.7	T, SC	1973

1948

Discontinued surface-water-quality stations--Continued Drainage Type Period of Station area of record Station name number (mi²)record (water years) RAPPAHANNOCK RIVER BASIN Carter Run near Marshall, VA 01661900 19.5 SED 1977-78 Hazel River at Rixeyville, VA 01663500 287 1951-55 SC 1953-55 SED 1952-55 Rappahannock River at Remington, VA 01664000 620 SC, T 1951-56. 1965-86 SED 1951-93 Rapidan River near Culpeper, VA 01667500 472 1946,1951-56 1953-56 SC 1951-56 SED Mountain Run near Burr Hill, VA 01667870 28.8 C, T, SC 1990-92 Rappahannock River near Fredericksburg, VA 01668000* 1,596 T, SC 1956,1968-74 Rappahannock River at VEPCO Dam, T, SC 1971-72 01668020 at Fredericksburg, VA YORK RIVER BASIN North Anna River below Lake Anna, 01670600 T, SC 1972-73 near Hewlett, VA Pamunkey Creek at Lahore, VA 01670180 40.5 C, T, SC 1989-92 Bunch Creek near Boswells Tavern, VA 01671500 4.37 1954-56 Т 01673000* 1946,1968-76 1968-76 Pamunkey River near Hanover, VA 1,081 1946 Mattaponi River near Bowling Green, VA 01674000 257 т Mattaponi River near Beulahville, VA 01674500* 601 Т 1946 01677000 1979-81, Ware Creek near Toano, VA 6.29 1985-95 JAMES RIVER BASIN 02011460 60.1 1984-95 Back Creek near Sunrise, VA Т Back Creek at Sunrise, VA 02011470 76.1 Т 1984-92, 1993-95 Little Back Creek near Sunrise, VA 02011490 4.91 Т 1984-92, 1993-95 Jackson River at Falling Spring, VA 02012500 411 T, SC 1969-86 1930,1948, 1968-86 02019500 2,075 т 1948,1951-56, 1968-86 James River at Buchanan, VA SC 1953-56, 1968-86 SED 1930,1948, 1951-56, 1968-86

James River at Bent Creek, VA

02026000

3.683

Т

TYPE OF RECORD: C (chemical), T (water temperature), SC (specific conductance), SED (sediment) \star Presently active periodic sampling station.

Discontinued surface-water-quality stations--Continued

Station name	Station number	Drainage area (mi ²)	Type of record	Period of record (water years)
JAMES RIVE	R BASINC	ontinued		-
James River at Scottsville, VA	02029000	4,584	T, SC SED	1951-56,1987 1951-56
Tames River at Cartersville, VA	02035000*	6,257	T, SC SED	1968-76, 1979,1981 1981
Tames River and Kanawha Canal, near Richmond, VA	02037000	-	C, T, SC	1972-73
ames River near Richmond, VA	02037500	6,758	T, SC	1948-51, 1953-56
ishpond Creek near Hixsburg, VA	02038830	14.0	SC	1981
Noliday Creek near Andersonville, VA	02038850	8.53	C, M, S	1968-96
Waughans Creek near Hixsburg, VA	02038880	23.2	SC	1981
Chickahominy River tributary at Atlee Exit, near Greenwood, VA	0204228301	-	C, T, SC,	1994
Chickahominy River near Atlee, VA	02042287	62.2	C, SED	1989-91
pham Brook near Richmond, VA	02042428	38.6	C, SED	1989-91
hickahominy River at Rt. 156, near Seven Pines, VA	02042440	149.3	C SED	1984,1987-91 1988-91
hickahominy River near Providence Forge, VA	02042500*	248	C, T, SC SED	1969-70, 1972-91 1990-91
hickahominy River above Walkers Dam, at Walkers, VA	02042720	301	C, T, SC SED	1983-91 1990-91
Diascund Creek at Rt. 628, near New Kent, VA	02042726	9.25	C, T, SC SED	1986-91 1991
Diascund Creek Reservoir off Timber Swamp, near Walkers, VA	02042734	-	C, T, SC	1983-91
Beaverdam Creek at Rt. 632, near Barhamsville, VA	02042736	4.82	C, T, SC SED	1986-91 1991
Jahrani Swamp at Rt. 632, near Barhamsville, VA	02042742	4.02	C, T, SC	1986-91
diascund Creek Reservoir off pump station, near Walkers, VA	02042746	-	C, T, SC	1983-91
ittle Creek Reservoir Infall near Norge, VA	0204275415	-	C, T, SC	1983-85
ittle Creek Reservoir (North) near Norge, VA	0204275420	-	C, T, SC	1983-85
uittle Creek Reservoir (North Central) near Norge, VA	0204275430	-	C, T, SC	1983-91
ittle Creek Reservoir (Northeast) near Norge, VA	0204275440	-	C, T, SC	1983-85
ittle Creek Reservoir (South Central) near Norge, VA	0204275470	-	C, T, SC	1983-91
ittle Creek Reservoir (West) near Norge, VA	0204275490	-	C, T, SC	1983-91
CHOWA	AN RIVER BA	SIN		
ottoway River near Burkeville, VA	02044000	38.7	Т	1947
Nottoway River near Sebrell, VA	02047000	1,421	T C, T, S	1947 1978-96

TYPE OF RECORD: C (chemical), T (water temperature), SC (specific conductance), SED (sediment) \star Presently active periodic sampling station.

Discontinued surface-water-quality stations--Continued

Discontinued surface-water-quality stationsContinued					
	Station	Drainage area	Type of	Period of record	
Station name	number	(mi^2)	record	(water years)	
CHOWAN RIV	/ER BASIN(Continued			
Blackwater River at Zuni, VA	02048000	456	Т	1947	
Blackwater River near Franklin, VA	02049500	617	C, M, S	1947, 1952, 1975-96	
North Meherrin River near Lunenburg, VA	02051000	55.6	T	1947	
Meherrin River at Emporia, VA	02052000	747	T, SC C	1968-80 1968-93	
ROANG	OKE RIVER BA	ASIN			
Roanoke River at Lafayette, VA	02054500	257	T, SC	1951	
Roanoke River at Altavista, VA	02060500	1,789	Т	1951,1953-56,	
			SC	1968-86 1953-56,	
			SED C	1968-86 1953-56 1951,1953-56,	
			C	1968-86	
Roanoke River at Randolph, VA	02066000	2,977	T, SC	1951-56, 1968-62	
			SED C	1954-81 1930,1951-86	
Smith River above Route 615, near Woolwine, VA	02071510	-	C, T, SC	1994-95	
Smith River at Rt 8 near Woolwine, VA	02071520	-	C, T, SC	1994	
Smith River near Philpott, VA	02072000	216	C, T, SC	1994-95	
Smith River near Irisburg, VA	02073600	-	C, T, SC	1994-95	
Dan River at Sewage Treatment Plant, near Danville, VA	02075045	2,105	C, T, SC	1993-94	
Dan River at Sewage Treatment Plant effluent, near Danville, VA	02075046	-	C, T, SC	1993-94	
Dan River at Paces, VA	02075500	2,550	T, SC SED	1954-56 1954-81	
			С	1954-93	
Dan River at South Boston, VA	02076000	2,730	T SC	1952 1951-52	
Roanoke River at Clarksville, VA	02079000	7,320	С	1987-91	
Lake Gaston near Elams, NC	02079785	-	T, SC SED	1988 1988	
Lake Gaston (Little River Channel) near Henrico, VA	0207987950	-	C, T, SC	1987-92	
Pea Hill Creek at Route 665, near Gasburg, VA	02079880	-	C, T, SC	1987-92	
Pea Hill Creek above Rt. 667, near Gasburg, VA	0207988050	-	C, T, SC	1989-90	
Pea Hill Creek tributary No. 1, near Gasburg, VA	02079881	-	C, T, SC	1989-90	
Pea Hill Creek tributary No. 2, near Valentines, VA	0207988130	-	C, T, SC	1989-90	
Pea Hill Creek tributary No. 3, near Valentines, VA	0207988160	-	C, T, SC	1989-90	
Pea Hill Creek tributary No. 4, near Valentines, VA	02079883	-	C, T, SC	1989-90	

TYPE OF RECORD: C (chemical), T (water temperature), SC (specific conductance), SED (sediment) \star Presently active periodic sampling station.

Discontinued surface-water-quality stations--Continued Drainage Type Period of Station of record area Station name number (mi²)record (water years) ROANOKE RIVER BASIN--Continued Pea Hill Creek tributary No. 4 tributary, 0207988430 C, T, SC 1989-90 near Valentines, VA Cold Spring Branch near Gasburg, VA 0207988440 C, T, SC 1989-90 Pea Hill Creek above North Carolina 0207988450 C, T, SC 1987-92 State line, near Gasburg, VA 0207988490 1989-90 Lake Gaston (Pea Hill Creek) near Henrico, NC C, T, SC Lake Gaston tributary near Tillans Chapel, 0207988510 C. T. SC 1989-90 near Elams, NC 02079888550 C, T, SC Pea Hill Creek tributary No. 5, near Henrico, NC 1989-90 Pea Hill Creek near Bowens Corner, 02079882 C, T, SC 1988 near Valentines, VA KANAWHA RIVER BASIN 03164000 New River near Galax, VA 1,131 T, SC 1950,1968-83 1931,1950, 1952,1968-86 03171000 2.748 1950,1956 New River at Radford, VA T, SC New River at Eggleston, VA 03171500 2,941 T, SC 1953-55 New River at Glen Lyn, VA 03176500* SC 1968-88 3,768 1964-88 C,T,SC,SED 1931,1950, 1952,1955-56, 1965-95 BIG SANDY RIVER BASIN Levisa Fork near Grundy, VA 03207500 235 T, SC SED 1950 1986 T, SC SED Levisa Fork at Big Rock, VA 03207800 297 1970-81 1970-81 03208034 T,SC,C,SED Grissom Creek near Council, VA 2.82 1982-83 Barton Fork near Council, VA 03208036 10.2 T,SC,C,SED 1981-83 Russell Fork at Council, VA 03208040 T, SC 1981-83 1.23 1982-83 Russell Fork near Birchleaf, VA 03208100 87.4 1982-83 T, SC, C TENNESSEE RIVER BASIN South Fork Holston River near Damascus, VA 03473000 301 Т 1950,1968-73 SC 1950 1950,1952, С 1968-86 Middle Fork Holston River at Chilhowie, VA 03474500 1962 Brumley Creek near Hansonville, VA 03488445 4.29 1980-81 Т Brumley Creek at Brumley Gap, VA 03488450 21.1 т 1979-81

03488500

402

T, SC

1952-56

North Fork Holston River at Holston, VA

TYPE OF RECORD: C (chemical), T (water temperature), SC (specific conductance), SED (sediment) \star Presently active periodic sampling station.

Discontinued surface-water-quality stations--Continued

	Station	Drainage area	Type of	Period of record	
Station name	number	(mi ²)	record	(water years)	
TENNESSEE R	IVER BASIN	Continued			
North Fork Holston River near Gate City, VA	03490000	672	T SC SED	1950-51, 1968-78 1950-51 1935-38, 1963-65	
linch River at Speers Ferry, VA	03527000	1,126	T SC SED	1950,1965-67 1950 1935-38, 1963-65	
Powell River at Big Stone Gap, VA	03529500	112	T, SC	1950	
owell River near Jonesville, VA	03531500	319	Т	1964-67	

TYPE OF RECORD: C (chemical), T (water temperature), SC (specific conductance), SED (sediment) \star Presently active periodic sampling station.

01646580 POTOMAC RIVER AT CHAIN BRIDGE AT WASHINGTON, DC

DRAINAGE AREA. -- 11,570 mi².

PERIOD OF RECORD.--Water years 1973 to current year. Prior to October 1977, published as "at Great Falls."

PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: June 1978 to September 1981.

pH: June 1978 to September 1981. WATER TEMPERATURE: June 1978 to September 1981. DISSOLVED OXYGEN: June 1978 to September 1981.

SUSPENDED SEDIMENT DISCHARGE: October 1978 to September 1981.

INSTRUMENTATION. -- Water-quality monitor June 1978 to September 1981.

REMARKS--Extreme high flows are sampled from the George Mason Memorial Bridge (14th Street) located 6 mi downstream from Chain Bridge. On May 3 and Nov. 17, 1994 samples were collected and analyzed using ultraclean methodologies.

trace metals for these dates are available from the University of Delaware. Data on organics for these dates are available from George Mason University.

EXTREMES FOR PERIOD OF DAILY RECORD--

SPECIFIC CONDUCTANCE (water years 1979, 1981): Maximum, 598 microsiemens, Sept. 12, 1981; minimum, 116

microsiemens, Jan. 25, 1979. pH (water years 1979, 1981): Maximum, 9.3 units, Mar. 29, 1981; minimum, 6.7 units, June 2, 1981. WATER TEMPERATURE (water years 1979, 1981): Maximum, 31.0°C, July 23-24, 1978; minimum, 0.0°C on many days during winter periods.

DISSOLVED OXYGEN (water years 1979, 1981): Maximum, 16.4 mg/L, on many days in 1979; minimum, 5.6 mg/L, June 2, 1981.

SEDIMENT CONCENTRATION: Maximum daily mean, 812 mg/L, Sept. 6, 1979; minimum daily mean, 1 mg/L on many days during winter periods.
SEDIMENT LOAD: Maximum daily, 281,000 tons, Feb. 27, 1979; minimum daily, 3.2 tons, Jan. 5, 1981.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER	SPE- CIFIC CON- DUCT- ANCE	PH WATER WHOLE FIELD (STAND- ARD	TEMPER- ATURE AIR	TEMPER- ATURE WATER	BARO- METRIC PRES- SURE (MM OF	OXYGEN, DIS- SOLVED	OXYGEN, DIS- SOLVED (PER- CENT SATUR-	HARD- NESS TOTAL (MG/L AS	CALCIUM DIS- SOLVED (MG/L	MAGNE- SIUM, DIS- SOLVED (MG/L
DIII	111111	SECOND (00061)	(US/CM) (00095)	UNITS) (00400)	(DEG C) (00020)	(DEG C) (00010)	HG) (00025)	(MG/L) (00300)	ATION) (00301)	CACO3) (00900)	AS CA) (00915)	AS MG) (00925)
OCT												
28 NOV	1115	1940	369	7.7	10.5	11.0	763	10.4	94	150	40	12
24 DEC	0930	10300	285	8.3	9.0	6.5	765	12.4	100	110	33	7.5
17 JAN	0945	6100		7.9	4.0	5.0	758			130	38	8.8
22 MAR	1000	19100	244	7.1	2.0	4.0	769	13.2	100	100	30	6.7
05	1030	39100	200	7.2	9.0	7.5	762	12.8	107	83	24	5.3
31	1045	22700	244	7.7	26.5	16.5	760	9.8	101	110	32	7.0
APR 15	1130	24300	202	7.9	20.5	14.0	760	10.0	97	89	26	6.0
MAY	1130	24300	202	1.5	20.5	14.0	700	10.0	21	09	20	0.0
14 JUN	1045	45300	191	7.8	17.0	15.5	767	10.0	100	84	25	5.4
02	0845	7310										
11	1315	5540	339	8.1	18.0	19.5	766	9.0	98	150	42	11
JUL 15 AUG	1500	3830	316	8.4	26.5	28.5		7.3				
26 SEP	1330	2040	365	8.1	31.5	29.5	760	7.9	104	150	40	12
23	1600	1510	347	8.0	18.5	25.0	766	7.1	86	140	36	12

01646580 POTOMAC RIVER AT CHAIN BRIDGE AT WASHINGTON, DC--Continued

DATE	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS NO3) (71851)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)
OCT 28 NOV	15	2.9	108	132	0	40	20	.20	.91	207		<.010
24	7.9	2.6	84	102	0	30	12	<.10	7.1	169	7.8	.036
DEC 17	9.1	2.1	96	117	0	40	13	<.10	1.8	190		<.010
JAN 22 MAR	6.6	2.0	74	90	0	25	11	<.10	7.2	143	8.0	.016
05	4.4	1.6	59	72	0	18	7.0	<.10	6.2	128		<.010
31 APR	4.9	1.7				21	8.1	<.10	5.8	145		<.010
15 MAY	4.8	1.6	63	77	0	19	6.6	<.10	5.4	122	4.4	.014
14 JUN	4.6	1.9	64	78	0	16	5.8	<.10	7.4	117	4.9	.017
02 11	9.3	2.4	112	137	0	32	13	.13	2.8	200	6.5	.020
JUL	9.3	2.4		137		32	13	.13	2.0	200	0.5	.020
15 AUG			100	117	2						4.9	.017
26 SEP	13	3.2	117	135	4	34	17	.15	5.5	216	4.6	.017
23	15	3.0				38	20	.17	4.3	209	3.6	.015
DATE	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663)	PHORATE WATER FLITRD 0.7 U GF, REC (UG/L) (82664)
OCT 28	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	GEN, AMMONIA DIS- SOLVED (MG/L AS N)	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	GEN, TOTAL (MG/L AS N)	PHORUS TOTAL (MG/L AS P)	PHORUS DIS- SOLVED (MG/L AS P)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	DIS- SOLVED (UG/L AS FE)	NESE, DIS- SOLVED (UG/L AS MN)	FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L)	WATER FLTRD 0.7 U GF, REC (UG/L)
OCT 28 NOV 24	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	GEN, TOTAL (MG/L AS N) (00600)	PHORUS TOTAL (MG/L AS P) (00665)	PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	DIS- SOLVED (UG/L AS FE) (01046)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663)	WATER FLTRD 0.7 U GF, REC (UG/L) (82664)
OCT 28 NOV 24 DEC 17	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	GEN, TOTAL (MG/L AS N) (00600)	PHORUS TOTAL (MG/L AS P) (00665)	PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	DIS- SOLVED (UG/L AS FE) (01046)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663)	WATER FLTRD 0.7 U GF, REC (UG/L) (82664)
OCT 28 NOV 24 DEC	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .681	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	GEN, TOTAL (MG/L AS N) (00600)	PHORUS TOTAL (MG/L AS P) (00665)	PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	DIS- SOLVED (UG/L AS FE) (01046)	NESE, DIS- SOLVED (UG/L AS MN) (01056) 8.5	FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663) <.0040	WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <.0020
OCT 28 NOV 24 DEC 17 JAN 22 MAR 05	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .681 1.79 1.48	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.020 <.020	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .24 .18	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) <.20 .12	GEN, TOTAL (MG/L AS N) (00600)	PHORUS TOTAL (MG/L AS P) (00665) .038 .027	PHORUS DIS- SOLVED (MG/L AS P) (00666) .013 .017	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) .015 .029	DIS- SOLVED (UG/L AS FE) (01046) 31 31	NESE, DIS- SOLVED (UG/L AS MN) (01056) 8.5 8.1	FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663) <.0040 <.0040	WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <.0020
OCT 28 NOV 24 DEC 17 JAN 22 MAR 05 31 APR	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .681 1.79 1.48 1.82 1.35	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.020 <.020 <.020 .028	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .24 .18 .16 .22 .23	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) <.20 .12 .12 .10 .15	GEN, TOTAL (MG/L AS N) (00600) .92 2.0 1.6 2.0	PHORUS TOTAL (MG/L AS P) (00665) .038 .027 .020 .038 .043	PHORUS DIS- SOLVED (MG/L AS P) (00666) .013 .017 .015 .013	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) .015 .029 .013 .030	DIS- SOLVED (UG/L AS FE) (01046) 31 31 37 14 <10	NESE, DIS- SOLVED (UG/L AS MN) (01056) 8.5 8.1 5.7 5.4	FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663) <.0040 <.0040 <.0040	WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <.0020 <.0020 <.0020
OCT 28 NOV 24 DEC 17 JAN 22 MAR 05 31 APR 15 MAY 14	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .681 1.79 1.48 1.82 1.35 1.46	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.020 <.020 .028 .025	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .24 .18 .16 .22 .23 .17	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) <.20 .12 .12 .10 .15 <.10	GEN, TOTAL (MG/L AS N) (00600) .92 2.0 1.6 2.0 1.6	PHORUS TOTAL (MG/L AS P) (00665) .038 .027 .020 .038 .043 .041	PHORUS DIS- SOLVED (MG/L AS P) (00666) .013 .017 .015 .013	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) .015 .029 .013 .030	DIS- SOLVED (UG/L AS FE) (01046) 31 31 37 14 <10	NESE, DIS- SOLVED (UG/L AS MN) (01056) 8.5 8.1 5.7 5.4 4.7 <4.0	FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663) <.0040 <.0040 <.0040 <.0040	WATER FLITRD 0.7 U GF, REC (UG/L) (82664) <.0020 <.0020 <.0020 <.0020
OCT 28 NOV 24 DEC 17 JAN 22 MAR 05 31 APR 15 MAY 14 JUN 02	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .681 1.79 1.48 1.82 1.35 1.46	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.020 <.020 <.020 .028 .025 .064	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .24 .18 .16 .22 .23 .17 .23	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) <.20 .12 .12 .10 .15 <.10 .15	GEN, TOTAL (MG/L AS N) (00600) .92 2.0 1.6 2.0 1.6 1.6	PHORUS TOTAL (MG/L AS P) (00665) .038 .027 .020 .038 .043 .041	PHORUS DIS- SOLVED (MG/L AS P) (00666) .013 .017 .015 .013 .025 .024	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) .015 .029 .013 .030 .027 .017	DIS- SOLVED (UG/L AS FE) (01046) 31 31 37 14 <10 10	NESE, DIS- SOLVED (UG/L AS MN) (01056) 8.5 8.1 5.7 5.4 4.7 <4.0	FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663) <.0040 <.0040 <.0040 <.0040 <.0040	WATER FLIRD 0.7 U GF, REC (UG/L) (82664) <.0020 <.0020 <.0020 <.0020 <.0020
OCT 28 NOV 24 DEC 17 JAN 22 MAR 05 31 APR 15 MAY 14 JUN 02 11 JUL 15	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .681 1.79 1.48 1.82 1.35 1.46 1.01 1.13	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.020 <.020 <.020 .028 .025 .064 .072	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .24 .18 .16 .22 .23 .17 .23 .51	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) <.20 .12 .12 .10 .15 <.10 .15 <.10 .12	GEN, TOTAL (MG/L AS N) (00600) .92 2.0 1.6 2.0 1.6 1.6	PHORUS TOTAL (MG/L AS P) (00665) .038 .027 .020 .038 .043 .041 .045 .093	PHORUS DIS- SOLVED (MG/L AS P) (00666) .013 .017 .015 .013 .025 .024 .019 .027	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) .015 .029 .013 .030 .027 .017 .013	DIS- SOLVED (UG/L AS FE) (01046) 31 31 37 14 <10 10 42 27	NESE, DIS- SOLVED (UG/L AS MN) (01056) 8.5 8.1 5.7 5.4 4.7 <4.0 <4.0	FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663) <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040	WATER FILTRD 0.7 U GF, REC (UG/L) (82664) <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020
OCT 28 NOV 24 DEC 17 JAN 22 MAR 05 31 APR 15 MAY 14 JUN 02 11	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .681 1.79 1.48 1.82 1.35 1.46 1.01 1.13	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.020 <.020 <.020 .028 .025 .064 .072062	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .24 .18 .16 .22 .23 .17 .23 .51	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) <.20 .12 .12 .10 .15 <.10 .12 .25	GEN, TOTAL (MG/L AS N) (00600) .92 2.0 1.6 2.0 1.6 1.6 1.2 1.6	PHORUS TOTAL (MG/L AS P) (00665) .038 .027 .020 .038 .041 .045 .093 <.010	PHORUS DIS- SOLVED (MG/L AS P) (00666) .013 .017 .015 .013 .025 .024 .019 .027 <.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) .015 .029 .013 .030 .027 .017 .013	DIS- SOLVED (UG/L AS FE) (01046) 31 31 37 14 <10 10 42 27 15	NESE, DIS- SOLVED (UG/L AS MN) (01056) 8.5 8.1 5.7 5.4 4.7 <4.0 <4.0	FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663) <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040	WATER FILTRD 0.7 U GF, REC (UG/L) (82664) <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020

01646580 POTOMAC RIVER AT CHAIN BRIDGE AT WASHINGTON, DC--Continued

DATE	TER- BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	TRI- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661)	2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660)	ACETO- CHLOR, WATER FLTRD REC (UG/L) (49260)	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)	BEN- FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	BUTYL- ATE, WATER, DISS, REC (UG/L) (04028)	CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	CARBO- FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674)	CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)	CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)
OCT 28 NOV	<.0070	<.0020	<.0030	<.0020	<.002	.040	<.0020	<.0020	E.0108	<.0030	<.0040	<.0040
24	<.0070	<.0020	<.0030	<.0020	<.002	.035	<.0020	<.0020	E.0039	<.0030	<.0040	<.0040
DEC 17 JAN	<.0070	<.0020	<.0030	<.0020	<.002	.041	<.0020	<.0020	<.0030	<.0030	<.0040	<.0040
22												
MAR 05 31 APR	<.0070 <.0070	<.0020 <.0020	<.0030 <.0030	<.0020 <.0020	<.002 <.002	.018	<.0020 <.0020	<.0020 <.0020	<.0030 <.0030	<.0030 <.0030	<.0040 <.0040	<.0040 <.0040
15	<.0070	<.0020	<.0030	<.0020	<.002	.026	<.0020	<.0020	<.0030	<.0030	<.0040	.0081
MAY 14 JUN	<.0120	<.0020	<.0030	.0157	E.003	.546	<.0020	<.0020	E.0077	<.0030	<.0040	.0263
02	<.0070	<.0020	<.0030	<.0020	<.002	.049	<.0020	<.0020	<.0030	<.0030	<.0040	<.0040
JUL	<.0070	<.0020	<.0030	<.0020	<.002	.230	<.0020	<.0020	<.0030	<.0030	<.0040	.0263
15 AUG	<.0070	<.0020	<.0030	<.0020	<.002	.219	<.0020	<.0020	<.0030	<.0030	<.0040	.0439
26 SEP	<.0070	<.0020	<.0030	<.0020	<.002	.075	<.0020	<.0020	<.0030	<.0030	<.0040	<.0040
23	<.0070	<.0020	<.0030	<.0020	<.002	.066	<.0020	<.0020	E.0162	<.0030	<.0040	<.0040
DATE	DCPA WATER FLITRD 0.7 U GF, REC (UG/L) (82682)	P,P' DDE DISSOLV (UG/L) (34653)	DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	DI- AZINON, DIS- SOLVED (UG/L) (39572)	DI- ELDRIN DIS- SOLVED (UG/L) (39381)	DISUL- FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	EPTC WATER FLTRD 0.7 U GF, REC (UG/L) (82668)	ETHO- PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672)	FONOFOS WATER DISS REC (UG/L) (04095)	LINDANE DIS- SOLVED (UG/L) (39341)	LIN- URON WATER FLIRD 0.7 U GF, REC (UG/L) (82666)	MALA- THION, DIS- SOLVED (UG/L) (39532)
OCT 28	WATER FLTRD 0.7 U GF, REC (UG/L)	DDE DISSOLV (UG/L)	ATRA- ZINE, WATER, DISS, REC (UG/L)	AZINON, DIS- SOLVED (UG/L)	ELDRIN DIS- SOLVED (UG/L)	FOTON WATER FLTRD 0.7 U GF, REC (UG/L)	WATER FLTRD 0.7 U GF, REC (UG/L)	PROP WATER FLTRD 0.7 U GF, REC (UG/L)	WATER DISS REC (UG/L)	DIS- SOLVED (UG/L)	URON WATER FLTRD 0.7 U GF, REC (UG/L)	THION, DIS- SOLVED (UG/L)
OCT 28 NOV 24	WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	DDE DISSOLV (UG/L) (34653)	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	AZINON, DIS- SOLVED (UG/L) (39572)	ELDRIN DIS- SOLVED (UG/L) (39381)	FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	WATER FLTRD 0.7 U GF, REC (UG/L) (82668)	PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672)	WATER DISS REC (UG/L) (04095)	DIS- SOLVED (UG/L) (39341)	URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666)	THION, DIS- SOLVED (UG/L) (39532)
OCT 28 NOV 24 DEC 17	WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	DDE DISSOLV (UG/L) (34653)	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	AZINON, DIS- SOLVED (UG/L) (39572)	ELDRIN DIS- SOLVED (UG/L) (39381)	FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	WATER FLTRD 0.7 U GF, REC (UG/L) (82668)	PROP WATER FLITRD 0.7 U GF, REC (UG/L) (82672)	WATER DISS REC (UG/L) (04095)	DIS- SOLVED (UG/L) (39341)	URON WATER FLITRD 0.7 U GF, REC (UG/L) (82666) <.0020	THION, DIS- SOLVED (UG/L) (39532)
OCT 28 NOV 24 DEC	WATER FLITRD 0.7 U GF, REC (UG/L) (82682) <.0020	DDE DISSOLV (UG/L) (34653) <.0060	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) E.0213	AZINON, DIS- SOLVED (UG/L) (39572) .007	ELDRIN DIS- SOLVED (UG/L) (39381) <.001	FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677) <.0170	WATER FLTRD 0.7 U GF, REC (UG/L) (82668) <.0020	PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672) <.0030	WATER DISS REC (UG/L) (04095) <.0030	DIS- SOLVED (UG/L) (39341) <.004	URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) <.0020 <.0020	THION, DIS- SOLVED (UG/L) (39532) <.005
OCT 28 NOV 24 DEC 17 JAN 22 MAR 05	WATER FLITRD 0.7 U GF, REC (UG/L) (82682) <.0020 <.0020	DDE DISSOLV (UG/L) (34653) <.0060 <.0060	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) E.0213 E.0514	AZINON, DIS- SOLVED (UG/L) (39572) .007 E.004	ELDRIN DIS- SOLVED (UG/L) (39381) <.001 <.001	FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677) <.0170 <.0170 <.0170	WATER FLTRD 0.7 U GF, REC (UG/L) (82668) <.0020 <.0020	PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672) <.0030 <.0030	WATER DISS REC (UG/L) (04095) <.0030 <.0030 <.0030	DIS- SOLVED (UG/L) (39341) <.004 <.004	URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) <.0020 <.0020 <.0020	THION, DIS- SOLVED (UG/L) (39532) <.005 <.005
OCT 28 NOV 24 DEC 17 JAN 22 MAR 05 31 APR 15	WATER FLIRD 0.7 U GF, REC (UG/L) (82682) <.0020 <.0020 <.0020	DDE DISSOLV (UG/L) (34653) <.0060 <.0060 <.0060	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) E.0213 E.0514 E.0544	AZINON, DIS- SOLVED (UG/L) (39572) .007 E.004 <.002	ELDRIN DIS- SOLVED (UG/L) (39381) <.001 <.001 <.001	FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677) <.0170 <.0170 <.0170 <.0170 <.0170 <.0170	WATER FLTRD 0.7 U GF, REC (UG/L) (82668) <.0020 <.0020 <.0020	PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672) <.0030 <.0030 <.0030	WATER DISS REC (UG/L) (04095) <.0030 <.0030 <.0030	DIS- SOLVED (UG/L) (39341) <.004 <.004 <.004	URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) <.0020 <.0020 <.0020	THION, DIS- SOLVED (UG/L) (39532) <.005 <.005 <.005 <.005
OCT 28 NOV 24 DEC 17 JAN 22 MAR 05 31 APR 15 MAY 14	WATER FLITRD 0.7 U GF, REC (UG/L) (82682) <.0020 <.0020 <.0020 <.0020	DDE DISSOLV (UG/L) (34653) <.0060 <.0060 <.0060 <.0060	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) E.0213 E.0514 E.0544 E.0272 E.0368	AZINON, DIS- SOLVED (UG/L) (39572) .007 E.004 <.002 <.002 <.002	ELDRIN DIS- SOLVED (UG/L) (39381) <.001 <.001 <.001 <.001 <.001	FOTON WATER FLITED 0.7 U GF, REC (UG/L) (82677) <.0170 <.0170 <.0170 <.0170 <.0170	WATER FLTRD 0.7 U GF, REC (UG/L) (82668) <.0020 <.0020 <.0020 <.0020	PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672) <.0030 <.0030 <.0030 <.0030	WATER DISS REC (UG/L) (04095) <.0030 <.0030 <.0030 <.0030 <.0030	DIS- SOLVED (UG/L) (39341) <.004 <.004 <.004 <.004	URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) <.0020 <.0020 <.0020 <.0020 <.0020	THION, DIS- SOLVED (UG/L) (39532) <.005 <.005 <.005 <.005 <.005
OCT 28 NOV 24 DEC 17 JAN 22 MAR 05 31 APR 15 MAY 14 JUN 02	WATER FLIRD 0.7 U GF, REC (UG/L) (82682) <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020	DDE DISSOLV (UG/L) (34653) <.0060 <.0060 <.0060 <.0060 <.0060 <.0060 <.0060 <.0060	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) E.0213 E.0514 E.0544 E.0272 E.0368 E.0293 E.0348 E.0376	AZINON, DIS- SOLVED (UG/L) (39572) .007 E.004 <.002 <.002 <.002 <.002 <.002 <.002	ELDRIN DIS- SOLVED (UG/L) (39381) <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001	FOTON WATER FLITED 0.7 U GF, REC (UG/L) (82677) <.0170 <.0170 <.0170 <.0170 <.0170 <.0170 <.0170 <.0170 <.0170 <.0170	WATER FLITRD 0.7 U GF, REC (UG/L) (82668)	PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672) <.0030 <.0030 <.0030 <.0030 <.0030 <.0030	WATER DISS REC (UG/L) (04095) <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030	DIS- SOLVED (UG/L) (39341) <.004 <.004 <.004 <.004 <.004 <.004 <.004	URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020	THION, DIS- SOLVED (UG/L) (39532) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005
OCT 28 NOV 24 DEC 17 JAN 22 MAR 05 31 APR 15 MAY 14 JUN 02 11 JUL	WATER FLIRD 0.7 U GF, REC (UG/L) (82682)	DDE DISSOLV (UG/L) (34653) <.0060 <.0060 <.0060 <.0060 <.0060 <.0060 <.0060	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) E.0213 E.0514 E.0514 E.0272 E.0368 E.0293 E.0348 E.0376 E.0376	AZINON, DIS- SOLVED (UG/L) (39572) .007 E.004 <.002 <.002 <.002 <.002 <.002 <.002	ELDRIN DIS- SOLVED (UG/L) (39381) <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001	FOTON WATER FLITRD 0.7 U GF, REC (UG/L) (82677) <.0170 <.0170 <.0170 <.01770 <.01770 <.01770 <.01770 <.01770 <.01770 <.01770	WATER FLITRD 0.7 U GF, REC (UG/L) (82668)	PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672) <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030	WATER DISS REC (UG/L) (04095) <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030	DIS- SOLVED (UG/L) (39341) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004	URON WATER FLITRD 0.7 U GF, REC (UG/L) (82666) <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020	THION, DIS- SOLVED (UG/L) (39532) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005
OCT 28 NOV 24 DEC 17 JAN 22 MAR 05 31 APR 15 MAY 14 JUN 02 11 JUL 15 AUG	WATER FLIRD 0.7 U GF, REC (UG/L) (82682)	DDE DISSOLV (UG/L) (34653) <.0060 <.0060 <.0060 <.0060 <.0060 <.0060 <.0060 <.0060 <.0060 <.0060	ATRA-ZINE, WATER, DISS, REC (UG/L) (04040) E.0213 E.0514 E.0544 E.0272 E.0368 E.0293 E.0348 E.0376 E.0682 E.0788	AZINON, DIS- SOLVED (UG/L) (39572) .007 E.004 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	ELDRIN DIS- SOLVED (UG/L) (39381) <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001	FOTON WATER FILTRD 0.7 U GF, REC (UG/L) (82677) <.0170 <.0170 <.0170 <.0170 <.0170 <.0170 <.0170 <.0170 <.0170 <.0170 <.0170 <.0170 <.0170	WATER FLTRD 0.7 U GF, REC (UG/L) (82668) <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020	PROP WATER FLITRD 0.7 U GF, REC (UG/L) (82672) <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030	WATER DISS REC (UG/L) (04095) <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030	DIS- SOLVED (UG/L) (39341) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004	URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020	THION, DIS- SOLVED (UG/L) (39532) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005
OCT 28 NOV 24 DEC 17 JAN 22 MAR 05 31 APR 15 MAY 14 JUN 02 11 JUL 15	WATER FLIRD 0.7 U GF, REC (UG/L) (82682)	DDE DISSOLV (UG/L) (34653) <.0060 <.0060 <.0060 <.0060 <.0060 <.0060 <.0060	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) E.0213 E.0514 E.0514 E.0272 E.0368 E.0293 E.0348 E.0376 E.0376	AZINON, DIS- SOLVED (UG/L) (39572) .007 E.004 <.002 <.002 <.002 <.002 <.002 <.002	ELDRIN DIS- SOLVED (UG/L) (39381) <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001	FOTON WATER FLITRD 0.7 U GF, REC (UG/L) (82677) <.0170 <.0170 <.0170 <.01770 <.01770 <.01770 <.01770 <.01770 <.01770 <.01770	WATER FLITRD 0.7 U GF, REC (UG/L) (82668)	PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672) <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030	WATER DISS REC (UG/L) (04095) <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030	DIS- SOLVED (UG/L) (39341) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004	URON WATER FLITRD 0.7 U GF, REC (UG/L) (82666) <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020	THION, DIS- SOLVED (UG/L) (39532) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005

E Estimated value

01646580 POTOMAC RIVER AT CHAIN BRIDGE AT WASHINGTON, DC--Continued

DATE	METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)	0.7 t	. I METO- IT LACHLO WATER C DISSOL (UG/L)	WATER V DISSOLV (UG/L)	WATER FLTRD 0.7 U V GF, REC (UG/L)	(UG/L)	E ULATE R WATE D FILT U 0.7 CC GF, RE U (UG/L	E R PARA- RD THION U DIS- EC SOLVE) (UG/I	I, WAT FL O.7 U D GF, RE O (UG/L)	METHR CIS T WAT F 0.7 C GF, RE (UG/L	IN PRO- METON, LT WATER, U DISS, EC REC) (UG/L)	
OCT 28	<.0010	<.006	0 .013	<.004	<.0040	<.003	30 <.004	10 <.004	<.004	0 <.005	0 E.0116	<.0030
NOV 24	<.0010	<.006	0 .024	<.004	<.0040	<.003	<.004	10 <.004	<.004	0 <.005	0 E.0077	<.0030
DEC 17	<.0010	<.006	0 .017	<.004	<.0040	<.003	30 <.004	10 <.004	<.004	0 <.005	<.0180	<.0030
JAN 22												
MAR 05	<.0010			<.004	<.0040							
31 APR	<.0010			<.004	<.0040							
15 MAY	<.0010	<.006	0 .016	<.004	<.0040	<.003	<.004	10 <.004	<.004	0 <.005	50 E.0072	<.0030
14 JUN	<.0010	<.006	0 .195	<.004	<.0040	<.003	<.004	<.004	<.004	0 <.005	E.0069	<.0030
02 11	<.0010 <.0010			<.004 <.004	<.0040							
JUL 15	<.0010	<.006		<.004	<.0040							
AUG 26	<.0010	<.006	0 .016	<.004	<.0040	<.003	30 <.004	10 <.004	<.004	0 <.005	.0207	<.0030
SEP 23	<.0010	<.006	0 .009	<.004	<.0040	<.003	30 <.004	10 <.004	<.004	0 <.005	50 E.0153	<.0030
Ι	DATE (PROP- CHLOR, WATER, DISS, REC UG/L) 04024)	(UG/L)	FLTRD 0.7 U GF, REC (UG/L)	MAZINE, WATER, DISS, REC ((UG/L)	TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670)	TER- BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675)	THIO- BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681)	TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678)	ALPHA BHC DIS- SOLVED (UG/L) (34253)	SEDI- MENT, (SUS- PENDED (MG/L) (SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)
OCT 28.		<.0070	<.0130	<.0040	.0140	<.0100	<.0130	<.0020	<.0010	<.0020	1	6.3
NOV 24.		<.0070	<.0130	<.0040	.0135	<.0100	<.0130	<.0020	<.0010	<.0020	6	167
DEC 17.		<.0070	<.0130	<.0040	.0103	E.0066	<.0130	<.0020	<.0010	<.0020	3	49
JAN 22.											13	670
MAR 05. 31.		<.0070 <.0070	<.0130 <.0130	<.0040 <.0040	.0065	<.0100 E.0064	<.0130 <.0130	<.0020 <.0020	<.0010 <.0010	<.0020 <.0020	21 2 14	2220 858
APR 15.		<.0070	<.0130	<.0040	.0128	<.0100	<.0130	<.0020	<.0010	<.0020	15	984
MAY 14.		<.0070	<.0130	<.0040	.247	E.0057	<.0130	<.0020	<.0010	<.0020	40 4	1890
JUN 02. 11.		<.0070 <.0070	<.0130 <.0130	<.0040 <.0040	.0224	<.0100 E.0067	<.0130 <.0130	<.0020 <.0020	<.0010 <.0010	<.0020 <.0020	 10	 150
JUL 15.		<.0070	<.0130	<.0040	.0691	E.0090	<.0130	<.0020	<.0010	<.0020	3	31
AUG 26.		<.0070	<.0130	<.0040	.0233	<.0100	<.0130	<.0020	<.0010	<.0020	4	22
SEP 23.		<.0070	<.0130	<.0040	.0176	E.0077	<.0130	<.0020	<.0010	<.0020	6	24
E Est	imated v	alue										

TENNESSEE RIVER BASIN

03531500 POWELL RIVER NEAR JONESVILLE, VA

LOCATION.--Lat 36°39'43", long 83°05'42", Lee County, Hydrologic Unit 06010206, on right bank 175 ft downstream from highway bridge, 2 mi southeast of Jonesville, 10 mi upstream from Wallen Creek, and at mile 143.1.

DRAINAGE AREA. -- 319 mi².

PERIOD OF RECORD.--October 1931 to current year. Monthly discharge only for some periods, published in WSP 1306.

REVISED RECORDS.--WSP 823: Drainage area. WSP 1033: 1932-44. WSP 1436: 1946(M), 1948(M).

GAGE.--Water-stage recorder. Datum of gage is 1,259.08 ft above sea level.

REMARKS.--Records good except for period of no gage-height record, Apr. 19-20, which is fair. National Weather Service gage-height telemeter at station. Tennessee Valley Authority gage-height data recorder at station, called at 6-hour intervals by computer at Knoxville, Tennessee. Maximum discharge, 57,000 ft³/s, from rating curve extended above 20,000 ft³/s on basis of slope-area measurement of peak flow. Minimum gage height, 0.68 ft, Oct. 18, 1961, result of storage behind temporary dam. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 5,000 ft^3/s and maximum (*):

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Mar. 19 Apr. 17	0900 1415	5,140 *13,700	10.31 *21.55	Apr. 20	Unknown	Unknown	Unknown

Minimum discharge, 43 ft³/s, Sept. 19-21, 29, gage height, 1.19 ft.

					D2	AILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	73	56	88	122	729	447	523	839	312	397	204	59
2	59	58	192	102	594	416	697	942	270	301	159	57
3	54	73	145	111	604	383	605	868	244	255	122	56
4	51	86	117	123	2870	353	2120	1560	378	232	107	55
5	48	73	110	184	2050	328	2580	1530	981	209	97	54
6	47	71	98	242	1310	304	1590	1220	1090	192	91	52
7	47	68	86	322	940	294	1050	1030	727	172	86	52
8	46	66	74	3000	856	308	810	1050	523	162	83	59
9	47	63	74	2280	807	599	1600	1160	472	180	80	65
10	47	66	193	1240	836	932	2050	1790	917	187	93	68
11	49	66	509	719	877	700	1930	2760	876	156	141	55
12	51	60	309	521	1270	562	1470	2060	802	145	109	52
13	54	56	202	426	1200	475	1050	1440	853	137	97	50
14	53	60	151	367	878	429	866	1040	869	137	154	48
15	54	81	121	333	686	391	758	809	826	178	460	45
16	53	95	102	424	590	388	1470	656	770	141	276	45
17	56	73	92	435	608	511	11000	560	570	131	626	44
18	54	61	86	403	1210	798	4450	470	445	127	554	44
19	53	55	80	393	1100	4270	e4400	409	384	120	296	43
20	53	50	74	421	944	2820	e7000	364	376	122	198	43
21	51	57	72	383	830	2960	3290	347	325	135	149	48
22	51	236	103	351	710	1910	2280	356	338	120	124	49
23	51	277	155	554	694	1280	1880	391	372	116	109	49
24	51	153	134	1100	713	924	1510	712	402	137	97	51
25	53	98	202	890	646	740	1210	450	327	144	91	48
26	82	75	206	649	581	645	1020	468	296	135	81	45
27	169	64	183	626	542	558	895	439	255	123	74	44
28	156	58	196	1770	490	505	868	361	226	112	70	44
29	93	54	171	1660		458	714	323	209	106	66	43
30	71	54	156	1160		416	671	296	309	101	64	73
31	61		143	941		381		275		103	60	
TOTAL	1938	2463	4624	22252	26165	26485	62357	26975	15744	5013	5018	1540
MEAN	62.5	82.1	149	718	934	854	2079	870	525	162	162	51.3
MAX	169	277	509	3000	2870	4270	11000	2760	1090	397	626	73
MIN	46	50	72	102	490	294	523	275	209	101	60	43
CFSM	.20 .23	.26 .29	.47	2.25 2.59	2.93 3.05	2.68 3.09	6.52 7.27	2.73 3.15	1.65	.51 .58	.51 .59	.16
IN.	. 43	. 29	.54	2.59	3.05	3.09	1.21	3.15	1.84	.58	.59	.18

e Estimated.

TENNESSEE RIVER BASIN

03531500 POWELL RIVER NEAR JONESVILLE, VA--Continued

STATISTICS	OF	MONTHLY	MEAN	DATA	FOR	WATER	YEARS	1932	-	1998,	BY	WATER	YEAR	(WY)

	OCT	NOV	DEC	JAN	FEB	3	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	154	317	661	947	1082		1146	818	578	319	233	201	118
MAX	1086	1405	2026	2765	2666		3423	2542	1436	1601	825	1187	603
(WY)	1978	1974	1973	1937	1994		1963	1977	1984	1989	1941	1942	1982
MIN	22.9	29.7	46.5	57.8	124		281	169	108	46.7	47.7	49.0	24.5
(WY)	1955	1954	1966	1940	1941		1988	1986	1941	1936	1944	1953	1955
SUMMARY	STATIST:	ICS	FOR 3	1997 CALEN	IDAR YE	AR	F	OR 1998	WATER YE	AR	WATER Y	EARS 1932	- 1998
ANNUAL	TOTAL			192629				200574					
ANNUAL	MEAN			528				550			545		
HIGHEST	C ANNUAL 1	MEAN									943		1974
LOWEST	ANNUAL MI	EAN									218		1941
HIGHEST	C DAILY M	EAN		7150	Mar	3		11000	Apr	17	35000	Apr	5 1977
LOWEST	DAILY ME	AN		46	Oct	8		43	aSep	19	18	Oct	3 1933
ANNUAL	SEVEN-DAY	Y MINIMUM		47	Oct	5		45	Sep	14	18	Sep 3	11 1954
INSTANI	TANEOUS PI	EAK FLOW						13700	Apr	17	57000	Apr	5 1977
INSTANI	TANEOUS PI	EAK STAGE						21.	55 Apr	17	b44.32	-	5 1977
INSTANI	TANEOUS LO	OW FLOW						43	cSep	19	17	_	1954
ANNUAL	RUNOFF (CFSM)		1.65	5			1.	72		1.7	L	
ANNUAL	RUNOFF (INCHES)		22.46	5			23.	39		23.23	3	
10 PERC	CENT EXCE	EDS		1260				1230			1230		
50 PERC	CENT EXCE	EDS		261				255			256		
90 PERC	CENT EXCE	EDS		54				53			54		

a Also Sept. 20, 29, 1998.
b From floodmark.
c Also Sept. 20, 21, 29, 1998.
d Also Sept. 20, 1954, and as a result of storage behind temporary dam Oct. 18, 1961.

01613900 HOGUE CREEK NEAR HAYFIELD, VA

LOCATION.--Lat 39°12'52", long 78°17'18", Frederick County, Hydrologic Unit 02070004, on right bank 15 ft upstream from bridge on State Highway 614, 0.8 mi upstream from Gap Run, and 1.3 mi southeast of Hayfield.

DRAINAGE AREA. -- 15.0 mi².

PERIOD OF RECORD.--August 1960 to December 1986, October 1992 to current year.

REVISED RECORDS.--WSP 2103: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 668.60 ft above sea level.

REMARKS.--Records good except for period with ice effect, Jan. 1, which is fair. Maximum discharge, 4,090 $\rm ft^3/s$, from rating curve extended above 870 $\rm ft^3/s$. Several measurements of water temperature were made during the year.

COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 400 ft^3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Nov. 7 Jan. 28	1400 1445	*1,040 571	*4.96 3.81	Mar. 21	0230	626	3.96

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Minimum discharge, 1.0 ft³/s, Sept. 5, 6, gage height, 0.33 ft.

		DISCHA	MGE, IN	JUBIC FEET		LY MEAN V		OBER 1997	IO SEPIEI	IDEK 1990		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.8	12	6.9	e6.9	38	40	17	15	5.5	8.1	2.3	1.4
2	1.6	13	5.1	9.5	29	34	16	29	4.3	6.2	2.3	1.4
3	1.4	7.5	4.6	23	25	32	13	28	3.9	5.1	1.9	1.4
4	1.3	5.5	4.5	36	35	25	25	35	3.4	4.8	1.8	1.5
5	1.3	4.2	4.2	27	301	21	24	59	3.2	4.5	1.8	1.3
6	1.3	3.6	4.0	20	169	18	18	80	3.1	3.8	1.7	1.3
7	1.3	329	3.9	20	101	16	16	40	2.8	3.4	1.7	1.4
8	1.5	141	3.6	229	74	82	15	76	2.7	4.5	1.8	1.9
9	1.7	54	3.4	190	64	114	43	64	2.8	4.1	1.8	1.6
10	1.8	25	3.9	92	52	70	53	47	6.4	3.4	3.3	1.6
11	1.8	15	4.2	49	48	44	35	43	5.6	2.9	5.2	1.5
12	1.8	11	3.7	33	65	33	26	99	18	2.6	2.5	1.5
13	1.9	8.8	3.4	25	46	26	22	82	49	2.6	2.1	1.4
14	1.7	20	3.3	19	36	23	19	49	26	2.6	3.0	1.4
15	1.8	21	3.1	25	28	19	17	32	55	2.4	4.2	1.4
16	1.6	15	3.1	58	23	16	15	25	91	2.6	2.9	1.4
17	1.6	10	3.1	51	101	15	16	30	28	4.0	7.1	1.5
18	1.7	8.3	2.9	44	131	57	15	17	15	2.9	4.4	1.6
19	1.5	7.2	2.9	33	78	188	79	13	11	2.4	2.8	1.5
20	1.4	6.1	2.8	26	59	129	114	10	9.5	2.3	2.4	1.6
21	1.4	6.7	2.8	21	44	351	51	8.5	7.1	2.2	2.3	1.5
22	1.5	17	3.2	17	34	122	34	7.3	6.0	2.0	2.4	1.9
23	1.6	15	4.2	105	56	71	27	6.6	75	2.1	2.3	1.9
24	1.8	11	4.7	106	224	49	21	6.6	53	2.4	2.2	1.8
25	2.2	8.8	17	65	109	36	17	11	16	2.0	2.1	1.8
26	2.5	8.0	14	43	64	29	15	7.1	10	1.8	2.0	1.8
27	3.0	6.7	12	33	48	24	17	6.1	7.7	1.7	1.8	1.5
28	2.4	6.0	11	272	43	21	13	5.6	19	1.7	1.7	1.6
29	2.3	5.8	9.4	160		18	11	4.8	17	1.7	1.6	1.7
30	2.2	6.3	11	89		16	11	4.6	10	1.7	1.6	1.7
31	2.2		8.6	54		14		6.7		3.4	1.4	
TOTAL	54.9	808.5	174.5	1981.4	2125	1753	815	947.9	567.0	97.9	78.4	46.8
MEAN	1.77	27.0	5.63	63.9	75.9	56.5	27.2	30.6	18.9	3.16	2.53	1.56
MAX	3.0	329	17	272	301	351	114	99	91	8.1	7.1	1.9
MIN	1.3	3.6	2.8	6.9	23	14	11	4.6	2.7	1.7	1.4	1.3
CFSM	.12	1.80	.38	4.26	5.06	3.77	1.81	2.04	1.26	.21	.17	.10
IN.	.14	2.01	.43	4.91	5.27	4.35	2.02	2.35	1.41	.24	.19	.12

e Estimated.

1.08

14.65

5.5

35

POTOMAC RIVER BASIN

01613900 HOGUE CREEK NEAR HAYFIELD, VA--Continued

.71

9.70

21

5.3

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	7.19	13.1	16.4	20.2	27.2	39.0	26.3	17.0	12.1	5.05	5.16	5.54
MAX	53.6	52.5	51.2	81.0	75.9	114	89.7	47.4	94.2	30.6	54.2	65.8
(WY)	1980	1986	1973	1996	1998	1993	1983	1978	1972	1978	1978	1996
MIN	.52	1.08	1.06	1.72	4.38	5.81	6.31	2.17	.98	.81	.60	.78
(WY)	1964	1966	1966	1966	1977	1981	1963	1969	1969	1964	1977	1963
SUMMARY	STATIST	ICS	FOR 1	.997 CALEN	IDAR YEAR	FC	OR 1998 WA	ATER YEAR		WATER YEA		
											1993	- 1998
ANNUAL T	COTAL			3909.95	;		9450.3					
ANNUAL M	1EAN			10.7			25.9			16.2		
HIGHEST	ANNUAL N	MEAN								32.2		1996
LOWEST A	ANNUAL ME	EAN								3.84		1969
HIGHEST	DAILY ME	EAN		329	Nov 7		351	Mar 21		1060	Sep	6 1996
LOWEST I	DAILY MEA	AN		.93	aSep 26		1.3	bOct 4		.06	Sep 1	4 1968
ANNUAL S	SEVEN-DAY	Y MINIMUM		1.0	Sep 21		1.4	Oct 2		.31	Aug	6 1963
INSTANTA	ANEOUS PE	EAK FLOW					1040	Nov 7		4090	Sep	6 1996
INSTANTA	ANEOUS PE	EAK STAGE					4.96	Nov 7		9.71	Sep	6 1996
INSTANTA	ANEOUS LO	OW FLOW					1.0	cSep 5		d.00	Sep 1	4 1968

1.73

23.44

8.1 1.6

65

ANNUAL RUNOFF (CFSM)

10 PERCENT EXCEEDS

50 PERCENT EXCEEDS 90 PERCENT EXCEEDS

ANNUAL RUNOFF (INCHES)

a Also Sept. 27, 1997. b Also Oct. 5-7, 1997, and Sept. 5, 6, 1998. c Also Sept. 6, 1998. d No flow part of Sept. 14, 1968, cause unknown.

01622000 NORTH RIVER NEAR BURKETOWN, VA

LOCATION.--Lat 38°20'25", long 78°54'50", Rockingham County, Hydrologic Unit 02070005, on right bank 0.8 mi downstream from Pleasant Run, 2.8 mi northeast of Burketown, and 8.5 mi upstream from Middle River.

DRAINAGE AREA. -- 379 mi².

PERIOD OF RECORD.--October 1925 to October 1972, May 1975 to current year. Monthly discharge only for some periods, published in WSP 1302.

REVISED RECORDS.--WSP 1171: 1936(M). WSP 1302: 1928-29(M), 1932-34(M), 1937-38(M). WSP 2103: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,103.49 ft above sea level. Prior to Dec. 12, 1938, nonrecording gage at site 3.0 mi downstream at different datum.

REMARKS.--Records good except those for period with ice effect, Dec. 31 to Jan. 2, and period of doubtful gage-height record, Jun. 16-25, which are fair. At a point 26.8 mi upstream from station, there is an aqueduct tunnel diversion of about 2.8 ft³/s from Staunton Dam Reservoir by city of Staunton for industrial and municipal use. Diurnal fluctuation at low and medium flow caused by wastewater treatment plant and diversions for industrial, municipal, and irrigation at points upstream. Maximum discharge, 70,400 ft³/s, from rating curve extended above 16,000 ft³/s on basis of slope-area measurements at gage heights 32.4 ft and 36.3 ft and contracted-opening measurements at gage heights 35.85 ft and 36.3 ft. Minimum discharge, 16 ft³/s, result of temporary dam upstream. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage since at least 1852, that of June 18, 1949.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 2,500 ft³/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 8	1200	*11,200	*14.91	Mar. 9	2130	3,690	7.70
Jan. 28	1830	4,180	8.27	Mar. 19	0500	4,380	8.49
Feb. 5	1930	2,880	6.72	Mar. 21	0900	7,020	11.19
Feb. 17	2200	6,780	10.96	May 9	0430	2,620	6.39

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
DAILY MEAN VALUES

SEP

Minimum discharge, 66 ft^3/s , Sept. 6.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG
1	93	136	185	e185	1280	1520	701	484	218	181	86
2	91	136	169	e190	1090	1510	687	703	206	174	89
3	90	118	165	194	1010	1340	642	678	198	204	91
4	88	108	166	225	1410	1130	814	716	190	176	79
5	88	106	159	337	2600	970	1010	843	187	167	79
6	91	110	153	485	2330	832	1020	1000	188	162	77
7	87	724	150	540	1870	739	921	918	180	154	78
8	85	1200	147	6020	1590	1160	827	1770	175	167	73
9	83	1140	141	4360	1450	2980	1060	2490	173	153	86
10	82	883	150	2790	1330	3270	1600	1900	184	163	103

10	82	883	150	2790	1330	3270	1600	1900	184	163	103	83
11 12 13 14 15	80 81 83 80 83	668 513 411 387 345	151 142 140 141 139	1900 1410 1140 872 780	1400 1910 1830 1610 1350	2360 1780 1410 1150 929	1480 1270 1070 907 787	1470 1220 989 830 722	177 186 176 172 222	146 142 140 133 131	106 93 85 91 162	82 82 80 84 80
16 17 18 19 20	78 79 81 81 83	330 312 291 273 254	137 136 134 133 132	926 942 892 801 717	1150 3000 4710 3270 2610	779 688 802 3430 3030	699 652 582 705 1240	646 678 642 557 496	e260 e370 e265 e260 e350	125 131 124 121 120	114 270 183 123 116	79 86 85 80 81
21 22 23 24 25	78 76 74 80 127	248 258 235 221 205	131 134 132 135 176	628 572 1080 1350 1400	2200 1850 1750 1690 1410	6120 4150 2690 2010 1570	1230 1080 933 806 696	447 386 343 328 314	e270 e240 e230 e285 e220	112 105 100 97 89	110 105 101 101 96	79 84 80 77 78
26 27 28 29 30 31	109 125 100 100 92 90	200 199 189 183 185	162 179 202 202 212 e200	1190 1030 2430 2280 1860 1550	1290 1250 1310 	1250 1040 930 876 814 740	623 596 532 484 454	286 285 270 252 236 229	201 189 193 247 196	95 102 90 88 87 87	92 88 90 84 85 84	76 76 81 75 75
TOTAL MEAN MAX MIN CFSM IN.	2738 88.3 127 74 .23 .27	10568 352 1200 106 .93 1.04	4835 156 212 131 .41 .47	41076 1325 6020 185 3.50 4.03	51550 1841 4710 1010 4.86 5.06	53999 1742 6120 688 4.60 5.30	26108 870 1600 454 2.30 2.56	23128 746 2490 229 1.97 2.27	6608 220 370 172 .58 .65	4066 131 204 87 .35 .40	3220 104 270 73 .27 .32	2439 81.3 146 71 .21
_												

e Estimated.

01622000 NORTH RIVER NEAR BURKETOWN, VA--Continued

STATISTICS	OF	MONTHLY	MEAN	DATA	FOR	WATER	YEARS	1926	_	1973.	1976	- 1998	BY	WATER	YEAR	(WY)

90

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MA	/ JUN	JUL	AUG	SEP
MEAN	249	285	335	448	532	721	615	495	335	200	241	225
MAX	1500	2080	1087	1777	1841	1932	1831	1486		809	1102	3130
(WY)	1943	1986	1935	1996	1998	1936	1987	1942			1949	1996
MIN	38.1	36.5	39.2	53.5	47.9	136	107	106	72.7	48.6	41.0	34.2
(WY)	1931	1931	1966	1966	1931	1981	1981	1930			1964	1930
SUMMARY	STATIST	ICS	FOR 1	L997 CALEN	IDAR YEAR	F	OR 1998	WATER Y	EAR	WATER	YEARS 1926	- 1973
												- 1998
ANNUAL '	TOTAL			124660			230335					
ANNUAL I	MEAN			342			631			389		
HIGHEST	ANNUAL N	MEAN								871		1996
LOWEST A	ANNUAL M	EAN								168		1956
HIGHEST	DAILY M	EAN		3870	Jun 3		6120	Mar	21	e32000	Sep	7 1996
LOWEST 1	DAILY MEA	AN		74	Oct 23		71	aSep	5	22	Sep	24 1930
ANNUAL S	SEVEN-DAY	Y MINIMUM		79	Oct 17		75	Sep	1	30	Dec	20 1930
INSTANT	ANEOUS PI	EAK FLOW					11200	Jan	8	70400	Sep	6 1996
INSTANT	ANEOUS PI	EAK STAGE					14.	91 Jan	8	b36.	70 Sep	6 1996
INSTANT	ANEOUS LO	OW FLOW					66	Sep	6	c16	Nov	23 1965
ANNUAL I	RUNOFF (CFSM)		.90)		1.	67		1.	03	
ANNUAL 1	RUNOFF (INCHES)		12.24	1		22.	61		13.	93	
10 PERCI	ENT EXCE	EDS		660			1580			830		
50 PERCI	ENT EXCE	EDS		204			205			207		

81

64

90 PERCENT EXCEEDS

a Also Sept. 6, 1997. b From high-water mark in gage house. c Result of temporary dam upstream. e Estimated.

01625000 MIDDLE RIVER NEAR GROTTOES, VA

LOCATION.--Lat 38°15'42", long 78°51'44", Augusta County, Hydrologic Unit 02070005, on left bank at upstream side of bridge on State Highway 769 at Mount Meridian, 1.8 mi upstream from mouth, and 2.0 mi west of Grottoes.

DRAINAGE AREA. -- 375 mi².

PERIOD OF RECORD.--April 1927 to current year. Records for February 1925 to September 1926, published in WSP 601 and 621, are unreliable and should not be used.

REVISED RECORDS.--WSP 1051: 1928-29, 1930(M), 1932, 1935-37, 1938(M), 1940. WSP 1171: 1933. WSP 1302: 1928-29(M), 1931-34(M). WSP 2103: Drainage area. See also PERIOD OF RECORD.

GAGE.--Water-stage recorder. Datum of gage is 1,061.51 ft above sea level. Prior to Sept. 1, 1938, nonrecording gage at same site and datum.

REMARKS.--Records good except for period with ice effect, Jan. 1, 2, which is fair. There are discharges of about $11.0~{\rm ft}^3/{\rm s}$ from wastewater treatment plants upstream from station. Most of water discharged from treatment plants was diverted from another drainage basin for industrial and municipal supply. Small diurnal fluctuation at low flow caused by mills upstream from station. Maximum discharge, $44,300~{\rm ft}^3/{\rm s}$, from rating curve extended above $15,000~{\rm ft}^3/{\rm s}$ on basis of slope-area measurement at gage height $33.09~{\rm ft}$. Minimum discharge, $18~{\rm ft}^3/{\rm s}$, result of freezeup. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1877, that of Sept. 7, 1996.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 3,000 ft³/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 8	2330	*9,590	*16.79	Feb. 18	0400	9,240	16.49
Jan. 28	2130	3,950	10.64	Mar. 19	1500	3,150	9.56
Feb. 5	0400	8,340	15.68	Mar. 21	1400	5,640	12.77
Feb. 13	0130	3,630	10.22				

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Minimum discharge, 85 ft³/s, Oct. 8, 9, 12.

					DAIL	Y MEAN VA	LUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	111	133	162	e185	1390	1100	677	448	321	304	152	117
2	97	272	164	e198	1140	1040	647	648	305	277	146	116
2	94	223	151	226	1080	999	587	630	295	327	143	114
4	94	174	151	297	2510	847	780	704	282	283	139	114
5	91	148	151	375	6090	775	944	705	281	271	135	112
6	91	137	144	399	3290	713	797	720	279	256	132	111
7	88	738	138	410	2390	664	699	609	271	237	129	112
8	87	1140	135	4760	1970	1130	643	1190	262	244	132	138
9	86	796	133	5020	1780	2330	758	1920	258	249	155	133
10	88	497	141	1740	1560	1990	1060	1300	272	228	163	119
11	88	362	171	1120	1660	1310	964	956	264	212	156	115
12	85	292	159	839	3070	1040	799	896	261	204	149	113
13	87	250	151	715	2910	892	699	877	262	200	142	112
14	89	264	147	600	2060	815	635	705	263	196	138	111
15	93	283	146	643	1600	734	595	624	460	191	149	109
16	100	248	143	1220	1360	672	551	567	459	200	146	108
17	97	218	141	962	3860	629	569	1220	818	304	182	114
18	97	204	139	804	6640	698	558	879	458	213	233	122
19	98	193	136	677	2990	2300	741	646	516	194	169	119
20	96	184	134	622	2390	1980	2000	550	649	187	146	115
21	95	179	131	537	2010	4660	1170	498	451	179	139	116
22	91	201	133	487	1600	2830	883	452	376	174	136	118
23	91	192	145	1190	1540	1810	750	430	353	171	133	114
24	94	178	141	1500	1940	1430	683	440	429	182	130	108
25	136	166	194	1410	1600	1200	594	433	334	173	127	107
26	141	162	209	1040	1330	1060	540	389	301	164	124	109
27	181	159	223	855	1200	963	526	392	282	162	123	108
28	137	154	247	2310	1100	873	503	470	289	161	119	106
29	116	151	232	2840		803	457	389	375	159	120	105
30	103	151	238	2270		747	433	352	380	155	119	103
31	99		229	1850		694		332		152	118	
TOTAL	3141	8449	5059	38101	64060	39728	22242	21371	10806	6609	4424	3418
MEAN	101	282	163	1229	2288	1282	741	689	360	213	143	114
MAX	181	1140	247	5020	6640	4660	2000	1920	818	327	233	138
MIN	85	133	131	185	1080	629	433	332	258	152	118	103
CFSM	. 27	.75	. 44	3.28	6.10	3.42	1.98	1.84	.96	.57	.38	.30
IN.	.31	.84	.50	3.78	6.35	3.94	2.21	2.12	1.07	.66	.44	.34

e Estimated.

POTOMAC RIVER BASIN

01625000 MIDDLE RIVER NEAR GROTTOES, VA--Continued

STATIST	CICS OF MO	ONTHLY MEAN	I DATA FO	R WATER	YEARS 1928	- 1998,	BY WATER	YEAR (WY)				
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	236	237	306	412	477	592	467	346	258	180	197	201
MAX	1138	2019	1111	1436	2288	1704	1674	963	993	705	1017	1887
(WY)	1980	1986	1949	1996	1998	1936	1987	1989	1972	1972	1940	1996
MIN	64.8	58.9	55.8	66.9	91.3	106	95.8	89.7	77.7	47.2	55.6	64.4
(WY)	1964	1931	1966	1981	1931	1981	1981	1969	1969	1966	1977	1932
SUMMARY	STATIST	ics	FOR 1	.997 CALE	NDAR YEAR	F	OR 1998 W	ATER YEAR		WATER YEA	RS 1928	- 1998
ANNUAL	TOTAL			112157			227408					
ANNUAL	MEAN			307			623			325		
HIGHEST	ANNUAL N	1EAN								623		1998
LOWEST	ANNUAL M	EAN								105		1981
HIGHEST	DAILY ME	EAN		2350	Mar 4		6640	Feb 18		26000	Nov	5 1985
LOWEST	DAILY MEA	AN		85	Oct 12		85	Oct 12		28	Nov 2	8 1930
ANNUAL	SEVEN-DAY	MINIMUM		87	Oct 7		87	Oct 7		38	Sep	6 1966
INSTANT	CANEOUS PI	EAK FLOW					9590	Jan 8		44300	Sep	7 1996
INSTANT	CANEOUS PI	EAK STAGE					16.79	9 Jan 8		a35.62	Sep	7 1996
INSTANT	CANEOUS LO	OW FLOW					85	bOct 8		c18	Dec 1	6 1988
ANNUAL	RUNOFF (CFSM)		.8	2		1.6	6		.87		
ANNUAL	RUNOFF (INCHES)		11.1	.3		22.5	6		11.77		
10 PERC	CENT EXCE	EDS		647			1550			642		
50 PERC	CENT EXCE	EDS		205			272			190		
90 PERC	CENT EXCE	EDS		101			111			84		

a From high-water mark in gage house. b Also Oct. 9, 12, 1997. c Result of freezeup.

01626000 SOUTH RIVER NEAR WAYNESBORO, VA

LOCATION.--Lat 38°03'27", long 78°54'30", Waynesboro City, Hydrologic Unit 02070005, on right bank 80 ft downstream from bridge on State Highway 664, 1.3 mi southwest of Waynesboro Post Office, and 2.4 mi downstream from Back Creek.

DRAINAGE AREA.--127 mi², of which 41 mi² are above flood-detention structures.

PERIOD OF RECORD. -- October 1952 to current year.

REVISED RECORDS. -- WSP 2103: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,296.20 ft above sea level.

REMARKS.--No estimated daily discharges. Records good. There is discharge of about 1.9 ft³/s from a wastewater treatment plant upstream from station, originating from well fields. Flow from 41 mi² upstream from station slightly regulated by flood-detention reservoirs (sixteen of which were built by Soil Conservation Service between 1954 and 1961). National Weather Service gage-height telemeter and Virginia Department of Emergency Services gage-height radio transmitter at station. Maximum discharge, 17,500 ft³/s, from rating curve extended above 4,200 ft³/s on basis of contracted-opening measurement at gage height 13.95 ft. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in October 1942 reached a stage of 14.3 ft, from floodmarks, discharge, $14,500~{\rm ft}^3/{\rm s}$.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 1,000 ${\rm ft}^3/{\rm s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 8	1130	3,880	8.61	Mar. 9	1400	1,760	6.27
Feb. 4	2100	2,140	6.76	Mar. 21	1130	1,220	5.48
Feb. 13	0430	1,580	6.03	Apr. 20	0900	1,380	5.73
Feb. 17	1800	*5,810	*10.05	May 8	0700	1,050	5.21

Minimum discharge, 30 ft³/s, Oct. 4-6, 8-13, 20-23.

		DISCHARGE	, IN CU	JBIC FEET F		O, WATER 7 MEAN VA		BER 1997 '	TO SEPTEME	BER 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	34	89	87	80	464	888	287	266	172	121	50	41
2	32	99	84	81	408	864	280	311	159	113	49	40
3	32	70	77	86	392	804	255	297	148	116	48	40
4	32	58	79	112	1030	678	346	331	136	103	48	41
5	31	50	78	154	1970	590	430	343	135	113	46	39
6	31	51	74	177	1560	519	373	345	134	98	46	39
7	32	468	71	217	1020	468	331	353	128	91	45	39
8	31	749	69	2460	758	603	305	951	120	96	47	43
9	31	446	68	1760	623	1510	357	782	116	98	52	41
10	31	280	70	1040	551	1320	443	602	122	89	53	39
11	31	192	77	722	584	891	414	502	117	81	52	39
12	32	153	71	569	1340	704	364	463	115	76	48	38
13	31	131	68	506	1420	556	332	463	109	73	47	38
14	32	147	67	389	999	487	308	413	103	71	47	38
15	34	153	65	322	758	431	288	365	203	68	47	38
16	35	135	64	390	661	386	269	341	259	83	51	38
17	35	122	64	379	3410	352	311	865	358	80	86	40
18	36	113	63	341	3930	349	330	638	241	66	69	39
19	39	105	62	312	2570	437	573	474	269	64	56	39
20	31	99	61	293	2260	484	1250	394	300	62	51	38
21	31	96	60	265	1950	1110	753	341	219	59	48	39
22	32	115	61	245	1500	886	566	297	187	56	47	38
23	32	109	65	452	1390	664	482	274	176	56	46	37
24	33	102	64	613	1370	550	428	270	161	64	45	36
25	37	97	87	562	1160	475	376	257	142	59	44	36
26	41	94	98	465	972	423	335	223	130	57	44	36
27	49	89	100	411	856	389	317	243	124	56	43	36
28	46	84	101	608	837	361	303	295	123	56	43	36
29	39	81	97	631		340	270	232	168	54	42	36
30	37	79	101	587		319	252	203	146	52	41	35
31	36		90	533		296		186		51	41	
TOTAL	1066	4656	2343	15762	36743	19134	11928	12320	5020	2382	1522	1152
MEAN	34.4	155	75.6	508	1312	617	398	397	167	76.8	49.1	38.4
MAX	49	749	101	2460	3930	1510	1250	951	358	121	86	43
MIN	31	50	60	80	392	296	252	186	103	51	41	35
CFSM	.27	1.22	.60	4.00	10.3	4.86	3.13	3.13	1.32	.61	.39	.30
IN.	.31	1.36	.69	4.62	10.76	5.60	3.49	3.61	1.47	.70	.45	.34

01626000 SOUTH RIVER NEAR WAYNESBORO, VA--Continued

STATISTICS OF	Y.THTROM '	MEAN	DATA	FOR	WATER	YEARS	1953 -	1998.	BY	WATER	YEAR	(WY)

	OCT	NOV	DEC	JAN	FEB	3	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	114	134	137	185	214	Ŀ	287	245	170	121	67.1	82.0	79.4
MAX	549	1214	355	767	1312	2	748	1062	485	875	305	700	546
(WY)	1973	1986	1997	1996	1998	}	1993	1987	1989	1972	1972	1955	1996
MIN	25.5	25.1	24.2	23.6	64.5	,	49.0	44.0	50.4	37.5	26.1	26.3	27.0
(WY)	1966	1966	1966	1966	1959)	1981	1981	1981	1964	1966	1966	1970
SUMMARY	Y STATIST	ICS	FOR 3	1997 CALEI	NDAR YE	AR	F	DR 1998	WATER YEAR		WATER YE	ARS 1953	- 1998
ANNUAL	TOTAL			42714				114028					
ANNUAL	MEAN			117				312			152		
HIGHEST	r annual i	MEAN									312		1998
LOWEST	ANNUAL M	EAN									47.5		1981
HIGHEST	r Daily M	EAN		749	Nov	8		3930	Feb 18		9670	Aug 3	L8 1955
LOWEST	DAILY ME	AN		31	Oct	5		31	aOct 5		17	Aug	8 1966
ANNUAL	SEVEN-DA	Y MINIMUM		31	Oct	5		31	Oct 5		21	bFeb	1 1966
INSTANT	TANEOUS P	EAK FLOW						5810	Feb 17		17500	Nov	4 1985
INSTANT	CANEOUS P	EAK STAGE						10.	05 Feb 17		15.30	Nov	4 1985
INSTANT	CANEOUS LO	OW FLOW						30	cOct 4		d7.0	Jul 3	L8 1966
ANNUAL	RUNOFF (CFSM)		.92	2			2.	46		1.20		
ANNITAT.	RINOFF (INCHES)		12 5	ı			33	40		16 31		

121

10 PERCENT EXCEEDS 50 PERCENT EXCEEDS

90 PERCENT EXCEEDS

a Also Oct. 6, 8-11, 13, 20-21, 1997. b Also Feb. 2, 1966. c Also Oct. 5-6, 8-13, 20-23, 1997. d Result of regulation from unknown source upstream from gage.

01627500 SOUTH RIVER AT HARRISTON, VA

LOCATION.--Lat 38°13'07", long 78°50'13", Augusta County, Hydrologic Unit 02070005, on left bank 200 ft downstream from bridge on State Highway 778, 0.3 mi northwest of Harriston, 0.6 mi downstream from Paine Run, and 7.2 mi upstream from confluence with North River.

DRAINAGE AREA. -- 212 mi².

PERIOD OF RECORD.--February 1925 to September 1951, October 1968 to current year.

REVISED RECORDS.--WSP 1171: 1926(M), 1927-28, 1929-32(M), 1933, 1934(M), 1935, 1937. WSP 1302: 1937(M), 1938(M). WSP 2103: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,129.87 ft above sea level. Prior to Sept. 1, 1938, nonrecording gage at same site and datum.

REMARKS. -- Records good except those for period with ice effect, Jan. 1, and periods of doubtful or no gage-height record, Feb. 18, Mar. 18, Mar. 31 to Apr. 18, Apr. 21 to May 7, and May 9-21, which are fair. There are discharges of about $8.4~{\rm ft}^3/{\rm s}$ from industrial and municipal wastewater treatment plants upstream from station, originating from well fields. Maximum discharge, $28,900 \text{ ft}^3/\text{s}$, from rating curve extended above $10,000 \text{ ft}^3/\text{s}$ on basis of slope-area measurement at gage height 15.47 ft. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Floods in 1870 and 1877 reached a stage of about 18.8 ft, from information by observer in 1925.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 1,200 ${\rm ft}^3/{\rm s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Nov. 8	0900	1,680	5.87	Mar. 9	1930	2,360	6.19
Jan. 8	1530	7,380	10.57	Mar. 21	1630	1,740	5.48
Jan. 28	1530	3,280	7.14	Apr. 20	0430	2,850	6.71
Feb. 4	2100	8,020	10.89	May 8	1630	2,130	5.93
Feb. 12	2030	2,490	6.33	May 17	2400	Unknown	Unknown
Feb. 17	1730	*10,000	*11.59				

Minimum discharge, 62 ft³/s, Oct. 22, 23.

		DISCHARG	E, IN CU	BIC FEET		D, WATER Y MEAN VA		BER 1997 '	TO SEPTEME	BER 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	76	141	140	e135	922	1210	e415	e470	240	185	99	82
2	72	187	139	137	790	1220	e405	e550	224	174	98	81
3	70	140	133	138	748	1160	e400	e460	213	183	96	78
4	69	121	133	156	3230	994	e580	e545	202	169	95	80
5	69	108	132	198	4650	870	e750	e580	198	169	93	80
6	68	101	129	235	2970	763	e600	e590	197	161	92	79
7	67	836	125	252	1930	683	e520	e695	192	151	92	80
8	68	1450	122	4120	1410	804	e480	1780	184	159	98	110
9	68	766	122	3160	1150	1860	e600	e1300	178	158	132	83
10	67	445	127	1700	1000	1910	e750	e1000	184	150	112	79
11	67	292	132	1170	1170	1320	e650	e870	181	141	104	77
12	66	229	128	906	2320	1050	e600	e800	181	134	98	77
13	69	198	123	793	2200	842	e550	e770	175	130	93	76
14	65	222	122	660	1570	725	e500	e690	170	127	92	74
15	69	224	119	566	1200	637	e460	e610	271	123	93	75
16	67	204	118	687	1060	567	e420	e570	313	134	98	74
17	68	185	116	669	5980	515	e520	e1400	465	192	174	76
18	73	173	116	603	e6200	e485	e560	e1150	331	135	153	92
19	79	166	114	548	3520	663	1120	e800	339	124	116	79
20	70	158	113	512	2890	693	2590	e600	399	120	103	78
21	65	155	113	459	2490	1530	e1300	e450	299	114	97	78
22	65	173	115	422	1960	1400	e950	394	252	111	95	78
23	65	167	117	754	1810	1050	e800	361	240	108	92	75
24	69	159	117	1020	1870	853	e710	355	244	114	90	74
25	82	151	138	974	1640	726	e620	342	207	115	87	74
26	84	147	149	813	1390	640	e570	304	192	110	86	74
27	97	145	153	710	1230	582	e490	319	183	109	85	75
28	87	140	158	2300	1170	535	e460	387	188	109	85	74
29	78	137	152	1760		498	e440	325	217	105	86	72
30	76	137	158	1330		463	e410	276	218	101	84	73
31	74		149	1120		e420		256		100	83	
TOTAL	2229	7857	4022	29007	60470	27668	20220	19999	7077	4215	3101	2357
MEAN	71.9	262	130	936	2160	893	674	645	236	136	100	78.6
MAX	97	1450	158	4120	6200	1910	2590	1780	465	192	174	110
MIN	65	101	113	135	748	420	400	256	170	100	83	72
CFSM	.34	1.24	.61	4.41	10.2	4.21	3.18	3.04	1.11	.64	.47	.37
IN.	.39	1.38	.71	5.09	10.61	4.85	3.55	3.51	1.24	.74	.54	.41

e Estimated.

Sep 6 1996 Oct 15 1942 Nov 14 1941

POTOMAC RIVER BASIN

01627500 SOUTH RIVER AT HARRISTON, VA--Continued

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1925 - 1951, 1969 - 1998, BY WATER YEAR (W)	STATISTICS	OF	MONTHLY	MEAN	DATA	FOR	WATER	YEARS	1925	- 1951.	1969	- 1998	. BY	WATER	YEAR	(WY	.)
---	------------	----	---------	------	------	-----	-------	-------	------	---------	------	--------	------	-------	------	-----	----

	OCT	NOV	DEC	JAN	FEB	MAI	APR	MAY	JUN	JUL	AUG	SEP
MEAN	227	237	257	323	364	412	400	289	211	134	152	179
MAX	1048	1988	802	1252	2160	1407	1414	819	1454	520	925	1047
(WY)	1943	1986	1949	1996	1998	1936	1987	1989	1972	1972	1940	1996
MIN	46.5	54.0	53.8	64.9	57.0	102	93.1	83.2	67.8	47.3	42.1	41.0
(WY)	1931	1931	1932	1981	1931	1981	1981	1930	1930	1930	1930	1930
SUMMARY	/ STATIST	ICS	FOR I	1997 CALE	NDAR YE	AR	FOR 1998	WATER YEA	R	WATER Y		- 1951 - 1998
ANNUAL	TOTAL			70859			188222					
ANNUAL	MEAN			194			516			266		
HIGHEST	C ANNUAL N	MEAN								516		1998
LOWEST	ANNUAL M	EAN								97.5		1981
HIGHEST	DAILY M	EAN		1450	Nov	8	e6200	Feb 1	8	16400	Nov	5 1985
LOWEST	DAILY MEA	AN		64	aSep	5	65	bOct 1	4	c25	Aug 2	24 1930
ANNUAL	SEVEN-DAY	Y MINIMUM		65	Sep	2	67	Oct	8	38	Sep 2	23 1930

ANNUAL MEAN	194		516		266
HIGHEST ANNUAL MEAN					516
LOWEST ANNUAL MEAN					97.5
HIGHEST DAILY MEAN	1450	Nov 8	e6200	Feb 18	16400
LOWEST DAILY MEAN	64 a	Sep 5	65	b0ct 14	c25
ANNUAL SEVEN-DAY MINIMUM	65	Sep 2	67	Oct 8	38
INSTANTANEOUS PEAK FLOW			10000	Feb 17	28900
INSTANTANEOUS PEAK STAGE			11.59	Feb 17	d17.20
INSTANTANEOUS LOW FLOW			62	fOct 22	c17
ANNUAL RUNOFF (CFSM)	.92		2.43		1.26
ANNUAL RUNOFF (INCHES)	12.43		33.03		17.06
10 PERCENT EXCEEDS	391		1220		497
50 PERCENT EXCEEDS	149		185		158
90 PERCENT EXCEEDS	69		76		70

a b c d e f

Also Sept. 6-8, 1997.
Also Oct. 21-23, 1997.
Probably result of regulation by mill then in existence upstream from station.
Peak discharge, 23,100 ft³/s.
Estimated.
Also Oct. 23, 1997.

01628500 SOUTH FORK SHENANDOAH RIVER NEAR LYNNWOOD, VA

LOCATION.--Lat 38°19'21", long 78°45'18", Rockingham County, Hydrologic Unit 02070005, on left bank 1.2 mi northeast of Lynnwood and 3.3 mi downstream from confluence of North and South Rivers.

DRAINAGE AREA. -- 1,084 mi².

PERIOD OF RECORD. -- September 1930 to current year.

REVISED RECORDS.--WSP 1171: 1933(M). WSP 2103: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,013.17 ft above sea level.

REMARKS.--Records good except for period with ice effect, Dec. 31 to Jan. 1, which is fair. Diurnal fluctuation at low flow prior to 1960 caused by mill at Lynnwood. National Weather Service rain gage and gage-height telemeters and Virginia Department of Emergency Services gage-height radio transmitter at station. Maximum discharge, 107,000 ft³/s, from rating curve extended above 22,000 ft³/s on basis of computations of flow over dam at gage heights 23.60 ft and 27.2 ft. Minimum gage height, 1.63 ft, Sept. 20, 1932. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1870, that of Sept. 7, 1996.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 7,000 ft^3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 8	1730	27,200	17.38	Mar. 9	2200	8,790	10.13
Jan. 28	2200	11,700	11.88	Mar. 19	1500	7,650	9.36
Feb. 5	0130	20,700	15.35	Mar. 21	1430	14,200	12.93
Feb. 13	0330	8,730	10.09	Apr. 20	0600	7,400	9.19
Feb. 18	0330	*27,600	*17.49	÷ ' '		• • •	

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Minimum discharge, 228 ft³/s, Oct. 23, 24, gage height, 2.14 ft.

DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP			DISCH	ARGE, IN	CORIC LEI		AILY MEAN		IOBER 199	/ IO SEPI	EMBEK 199	8	
2 270 592 519 559 3280 4120 2150 1900 813 683 367 313 3 4 264 492 490 589 2990 3890 2000 1880 782 739 368 309 4 263 404 491 683 6860 3290 2320 2180 748 701 357 308 5 257 363 493 842 15900 2870 2900 2380 737 655 342 306 6 261 345 475 1060 9640 2540 2760 2560 731 638 337 299 7 256 2380 458 1150 7230 2280 2520 2300 715 597 333 302 8 252 4900 448 15000 5820 3120 2240 4380 691 605 335 392 9 246 3220 442 14600 5060 7220 2550 6420 675 615 391 368 10 243 2080 455 77000 4340 7860 3600 4750 705 588 406 324 11 242 1460 503 4610 4410 5690 3500 3760 693 551 413 314 12 240 1110 474 3340 7980 4300 3060 3090 692 526 389 310 13 240 912 457 2770 7920 3480 2700 2830 689 514 370 306 14 240 901 448 2230 6170 2960 2440 2340 680 499 360 302 15 244 911 445 1960 4770 2530 2240 2040 991 499 360 302 15 244 911 445 1960 4770 2530 2240 2040 991 490 425 300 16 247 827 437 2260 3940 2000 2040 2830 1510 688 500 301 18 252 716 427 2370 2100 2000 2040 2830 1510 688 500 301 18 252 716 427 2370 2100 2000 2040 2830 1510 668 500 301 18 252 716 427 2370 2100 2100 2000 2640 1090 531 736 329 19 255 678 421 2080 10300 6570 2330 1990 1050 484 466 313 20 254 647 416 1890 8450 5980 6230 1690 1400 473 412 306 22 330 651 428 2980 5510 6280 529 531 313 568 522 3980 5510 6280 5610 6280 2690 1200 929 420 372 300 254 647 416 1890 8450 5980 6230 1690 1400 473 412 306 22 330 282 510 637 6380 130 3950 230 1170 842 425 354 289 288 329 531 635 6693 1540 329 1540 320 1700 842 425 354 289 288 329 531 635 6690 5100 6280 2590 1400 1500 771 842 341 299 288 329 531 635 6690 5100 6280 2690 1200 998 420 372 300 240 2830 1500 667 300 340 382 250 330 340 382 250 330 340 350 380 380 380 370 370 380 380 382 510 637 6360 2440 1340 952 875 384 328 290 377 393 552 578 2700 4010 3200 1710 1050 718 412 341 299 288 329 531 635 6690 1600 1700 761 403 334 285 293 310 154 622 8110 2590 1430 1400 473 412 341 299 288 329 531 635 6690 15400 2440 1340 952 875 384 328 280 31 510 637 6360 2440 1340 952 875 384 328 280 31 5266 6994 487 3724 6939 4257 2545 2178 867 526 386 308 3	DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
3 264 492 490 589 2990 3890 2000 1280 782 739 368 309 4 263 404 491 683 666 3290 2300 2180 748 701 357 308 5 257 363 493 842 15900 2870 2900 2380 737 655 342 306 6 261 345 475 1060 9640 2540 2760 2560 731 638 337 299 7 256 2380 458 1150 7230 2280 2520 2300 715 597 333 302 8 252 4900 448 15000 5620 3120 2340 430 691 605 335 392 9 246 3220 442 14600 503 4610 750 588 406 324 11	1	293	327	531	e540	3940	4130	2190	1350	869	738	374	320
3 264 492 490 589 2990 3890 2000 1280 782 739 368 309 4 263 404 491 683 666 3290 2300 2180 748 701 357 308 5 257 363 493 842 15900 2870 2900 2380 737 655 342 306 6 261 345 475 1060 9640 2540 2760 2560 731 638 337 299 7 256 2380 458 1150 7230 2280 2520 2300 715 597 333 302 8 252 4900 448 15000 5620 3120 2340 430 691 605 335 392 9 246 3220 442 14600 503 4610 750 588 406 324 11	2	270	592	519	559	3280	4120	2150	1900	813	683	367	313
5 257 363 493 842 15900 2870 2900 2380 737 655 342 306 6 261 345 475 1060 9640 2540 2560 2560 731 638 337 299 7 256 2380 458 1150 7230 2280 2520 300 715 597 333 302 8 252 4900 448 15000 5820 3120 2340 4380 691 605 335 392 9 246 3220 445 7000 4340 7860 3630 4750 705 588 406 324 10 243 2200 4610 4410 5690 3500 3560 693 551 413 314 12 240 1110 474 3340 7900 4300 3500 3560 693 551 413 314	3	264		490	589						739	368	
5 257 363 493 842 15900 2870 2900 2380 737 655 342 306 6 261 345 475 1060 9640 2540 2560 2560 731 638 337 299 7 256 2380 458 1150 7230 2280 2520 300 715 597 333 302 8 252 4900 448 15000 5820 3120 2340 4380 691 605 335 392 9 246 3220 445 7000 4340 7860 3630 4750 705 588 406 324 10 243 2200 4610 4410 5690 3500 3560 693 551 413 314 12 240 1110 474 3340 7900 4300 3500 3560 693 551 413 314	4												
7 256 2380 458 11500 7230 2280 2520 2300 715 597 333 302 9 246 3220 442 14600 5060 7220 2550 6420 675 615 391 368 10 243 2080 455 7000 4340 7860 3630 4750 705 588 406 324 11 242 1460 503 4610 4410 5690 3500 3560 693 551 413 314 12 240 1110 474 3340 7980 4300 3060 3090 692 526 389 310 13 240 912 457 2770 7920 3480 2710 2830 689 514 370 306 14 240 901 448 1960 4770 2530 2240 2040 951 490 425 <td></td> <td></td> <td></td> <td>493</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				493									
7 256 2380 458 11500 7230 2280 2520 2300 715 597 333 302 9 246 3220 442 14600 5060 7220 2550 6420 675 615 391 368 10 243 2080 455 7000 4340 7860 3630 4750 705 588 406 324 11 242 1460 503 4610 4410 5690 3500 3560 693 551 413 314 12 240 1110 474 3340 7980 4300 3060 3090 692 526 389 310 13 240 912 457 2770 7920 3480 2710 2830 689 514 370 306 14 240 901 448 1960 4770 2530 2240 2040 951 490 425 <td>6</td> <td>261</td> <td>345</td> <td>475</td> <td>1060</td> <td>9640</td> <td>2540</td> <td>2760</td> <td>2560</td> <td>731</td> <td>638</td> <td>337</td> <td>299</td>	6	261	345	475	1060	9640	2540	2760	2560	731	638	337	299
8 252 4900 448 15000 5820 3120 2340 4380 691 605 335 392 10 243 2080 455 7000 4340 7860 3630 4750 705 588 406 324 11 242 1460 503 4610 4410 5690 3500 3560 693 551 413 314 12 240 1110 474 3340 7980 4300 3060 3090 692 556 389 310 13 240 912 457 2770 7920 3480 2710 2830 689 514 370 360 14 240 901 448 2230 6170 2960 2440 2340 294 499 360 302 15 244 911 445 1960 4770 2530 2240 2040 951 499 360				458								333	
9 246 3220 442 14600 5060 7220 2550 6420 675 615 391 368 100 243 2080 455 7000 4340 7860 3630 4750 705 588 406 324 11 242 1460 503 4610 4410 5690 3500 3560 693 551 413 314 12 240 1110 474 3340 7980 4300 3060 3090 692 526 389 310 13 240 912 457 2770 7920 3480 2710 2830 689 514 370 306 14 240 901 448 2230 6170 2960 2440 2340 680 499 360 302 15 244 911 445 1960 4770 2530 2240 2040 951 490 425 300 16 247 827 437 2960 3940 2210 2040 951 490 425 300 16 247 827 437 2960 3940 2210 2040 1810 1060 494 401 296 17 247 767 433 2650 11200 2000 2040 2830 1510 668 500 301 18 252 716 427 2370 21100 2100 2000 2040 2830 1510 668 500 301 18 252 716 427 2370 21100 2100 2000 2640 1090 531 736 329 19 255 678 421 2080 10300 6570 2330 1990 1050 484 466 313 20 254 647 416 1890 8450 5980 6230 1690 1400 473 412 306 22 237 673 413 1480 6110 9100 3220 1320 929 437 377 309 23 233 651 428 2980 5610 6280 2690 1210 909 420 372 300 24 236 610 427 4000 6290 4830 250 1210 909 420 372 300 24 236 610 427 4000 6290 4830 250 1210 909 420 372 300 24 236 610 427 4000 6290 4830 250 1210 909 420 372 300 24 236 610 427 4000 6290 4830 250 1210 909 420 372 300 24 236 610 427 4000 6290 4830 250 1210 909 420 372 300 24 236 610 427 4000 6290 4830 2350 1190 1050 484 465 290 255 313 568 522 3980 5310 3950 2030 1170 882 425 354 289 26 331 555 561 3210 4460 3390 1800 1070 761 403 348 290 27 393 542 578 2700 4010 3020 1710 1050 718 412 341 289 28 329 531 635 6930 3840 2750 1590 1200 721 403 334 285 29 301 514 622 8110 2590 1430 1060 864 394 335 286 30 328 2510 637 6360 2440 1340 952 875 389 675 339 325 8600 5160 2290 898 379 325 8600 5160 2290 898 675 379 325 8600 5160 2290 1 898 675 379 325 8600 5160 2290 1 898 675 379 325 8600 5160 2290 1 898 675 379 325 8600 5160 2290 1 898 675 379 325 8600 5160 2290 1 898 675 379 325 8600 5160 2290 1 898 675 379 325 8600 5160 2290 1 898 675 379 325 800 30 30 30 30 300 3000 3000 3000 300	8												
10													
12 240 1110 474 3340 7980 4300 3060 3090 692 526 389 310 13 240 912 457 2770 7920 3480 2710 2830 689 514 370 306 14 240 901 448 2230 6170 2960 2440 2340 680 499 360 302 15 244 911 445 1960 4770 2530 2240 2040 951 490 425 300 16 247 827 437 2960 3940 2210 2040 1810 1060 494 401 296 17 247 767 433 2650 11200 2000 2040 2830 1510 668 500 301 18 252 716 427 2370 21100 2100 2000 2640 1090 531 736 329 19 255 678 421 2080 10300 657													
12 240 1110 474 3340 7980 4300 3060 3090 692 526 389 310 13 240 912 457 2770 7920 3480 2710 2830 689 514 370 306 14 240 901 448 2230 6170 2960 2440 2340 680 499 360 302 15 244 911 445 1960 4770 2530 2240 2040 951 490 425 300 16 247 827 437 2960 3940 2210 2040 1810 1060 494 401 296 17 247 767 433 2650 11200 2000 2040 2830 1510 668 500 301 18 252 716 427 2370 21100 2100 2000 2640 1090 531 736 329 19 255 678 421 2080 10300 657	11	242	1.460	502	4610	4410	5600	3500	2560	602	551	412	21/
13 240 912 457 2770 7920 3480 2710 2830 689 514 370 306 14 240 901 448 2230 6170 2960 2440 2340 680 499 360 302 16 247 827 437 2960 3940 2210 2040 1810 1060 494 401 296 17 247 767 433 2650 11200 2000 2040 2830 1510 668 500 301 18 252 716 427 2370 21100 2100 2000 2640 1090 531 736 329 19 255 678 421 2080 10300 6570 2330 1990 1050 484 466 313 20 254 647 416 1890 8450 5980 6230 1690 1400 473 412 306 21 243 624 413 1640 7350 12													
14 240 901 448 2230 6170 2960 2440 2340 680 499 360 302 15 244 911 445 1960 4770 2530 2240 2040 951 490 425 300 16 247 827 437 2960 3940 2210 2000 1810 1600 494 401 296 17 247 767 433 2650 11200 2000 2040 2830 1510 668 500 301 18 252 716 427 2370 21100 2100 2000 2640 1090 531 736 329 19 255 678 421 2080 10300 6570 2330 1690 1400 473 412 306 21 243 624 413 1640 7350 12200 4240 1490 1060 451 393 300 22 237 673 413 1446 6110 9													
15													
16 247 827 437 2960 3940 2210 2040 1810 1060 494 401 296 17 247 767 433 2650 11200 2000 2040 2830 1510 668 500 301 18 252 716 427 2370 21100 2100 2000 2640 1090 531 736 329 19 255 678 421 2080 10300 6570 2330 1990 1050 484 466 313 20 254 647 416 1890 8450 5980 6230 1690 1400 473 412 306 21 243 624 413 1640 7350 12200 4240 1490 1060 451 393 300 22 237 673 413 1480 6110 9100 3220 1320 929 437 37													
17	15	244	911	445	1960	4//0	2530	2240	2040	951	490	425	300
18 252 716 427 2370 21100 2100 2000 2640 1090 531 736 329 19 255 678 421 2080 10300 6570 2330 1990 1050 484 466 313 20 254 647 416 1890 8450 5980 6230 1690 1400 473 412 306 21 243 624 413 1640 7350 12200 4240 1490 1060 451 393 300 22 237 673 413 1480 66110 9100 3220 1320 929 437 377 309 23 233 651 428 2980 5610 6280 2690 1210 909 420 372 300 24 236 610 427 4000 6290 4830 2350 1190 1050 424 365 290 25 313 568 522 3980 5310 3													
19 255 678 421 2080 10300 6570 2330 1990 1050 484 466 313 20 254 647 416 1890 8450 5980 6230 1690 1400 473 412 306 21 243 624 413 1640 7350 12200 4240 1490 1060 451 393 300 22 237 673 413 1480 6110 9100 3220 1320 929 437 377 309 23 233 651 428 2980 5610 6280 2690 1210 909 420 372 300 24 236 610 427 4000 6290 4830 2350 1190 1050 424 365 290 25 313 568 522 3980 5310 3950 2030 1170 842 425 354 289 26 331 555 561 3210 4460 3390													
20 254 647 416 1890 8450 5980 6230 1690 1400 473 412 306 21 243 624 413 1640 7350 12200 4240 1490 1060 451 393 300 22 237 673 413 1480 6110 9100 3220 1320 929 437 377 309 23 233 651 428 2980 5610 6280 2690 1210 909 420 372 300 24 236 610 427 4000 6290 4830 2350 1190 1050 424 365 290 25 313 568 522 3980 5310 3950 2030 1170 842 425 354 289 26 331 555 561 3210 4460 3390 1800 1070 761 403 348													
21 243 624 413 1640 7350 12200 4240 1490 1060 451 393 300 222 237 673 413 1480 6110 9100 3220 1320 929 437 377 309 23 233 651 428 2980 5610 6280 2690 1210 909 420 372 300 24 236 610 427 4000 6290 4830 2350 1190 1050 424 365 290 25 313 568 522 3980 5310 3950 2030 1170 842 425 354 289 26 331 555 561 3210 4460 3390 1800 1070 761 403 348 290 27 393 542 578 2700 4010 3020 1710 1050 718 412 341 289 28 329 531 635 6930 3840 2750 1590 1200 721 403 334 285 29 301 514 622 8110 2590 1430 1060 864 394 335 286 31 269 e600 5160 2440 1340 952 875 384 328 280 31 269 e600 5160 2290 898 379 325 TOTAL 8233 29810 15099 115433 194280 131980 76350 67530 26010 16321 11954 9236 MBAX 393 4900 637 15000 21100 12200 6230 6420 1510 739 736 392 MIN 233 327 413 540 2990 2000 1340 898 675 379 325 280 CFSM .25 .99 .45 3.44 6.40 3.93 2.35 2.01 .80 .49 .36 .28													
22 237 673 413 1480 6110 9100 3220 1320 929 437 377 309 23 233 651 428 2980 5610 6280 2690 1210 909 420 372 300 24 236 610 427 4000 6290 4830 2350 1190 1050 424 365 290 25 313 568 522 3980 5310 3950 2030 1170 1050 424 365 290 26 331 555 561 3210 4460 3390 1800 1070 761 403 348 290 27 393 542 578 2700 4010 3020 1710 1050 718 412 341 289 28 329 531 635 6930 3840 2750 1590 1200 721 403 334 285 29 301 514 622 8110 2590	20	254	647	416	1890	8450	5980	6230	1690	1400	473	412	306
23 233 651 428 2980 5610 6280 2690 1210 909 420 372 300 24 236 610 427 4000 6290 4830 2350 1190 1050 424 365 290 25 313 568 522 3980 5310 3950 2030 1170 842 425 354 289 26 331 555 561 3210 4460 3390 1800 1070 761 403 348 290 27 393 542 578 2700 4010 3020 1710 1050 718 412 341 289 28 329 531 635 6930 3840 2750 1590 1200 721 403 334 285 29 301 514 622 8110 2590 1430 1060 864 394 335 286 30 282 510 637 6360 2440 1340 952 875 384 328 280 31 269 e600 5160 2290 898 379 325 TOTAL 8233 29810 15099 115433 194280 131980 76350 67530 26010 16321 11954 9236 MEAN 266 994 487 3724 6939 4257 2545 2178 867 526 386 308 MAX 393 4900 637 15000 21100 12200 6230 6420 1510 739 736 392 MIN 233 327 413 540 2990 2000 1340 898 675 379 325 280 CFSM .25 .92 .45 3.44 6.40 3.93 2.35 2.01 .80 .49 .36 .28	21	243	624	413	1640	7350	12200	4240	1490	1060	451	393	300
23 233 651 428 2980 5610 6280 2690 1210 909 420 372 300 24 236 610 427 4000 6290 4830 2350 1190 1050 424 365 290 25 313 568 522 3980 5310 3950 2030 1170 842 425 354 289 26 331 555 561 3210 4460 3390 1800 1070 761 403 348 290 27 393 542 578 2700 4010 3020 1710 1050 718 412 341 289 28 329 531 635 6930 3840 2750 1590 1200 721 403 334 285 29 301 514 622 8110 2590 1430 1060 864 394 335 286 30 282 510 637 6360 2440 1340 952 875 384 328 280 31 269 e600 5160 2290 898 379 325 TOTAL 8233 29810 15099 115433 194280 131980 76350 67530 26010 16321 11954 9236 MEAN 266 994 487 3724 6939 4257 2545 2178 867 526 386 308 MAX 393 4900 637 15000 21100 12200 6230 6420 1510 739 736 392 MIN 233 327 413 540 2990 2000 1340 898 675 379 325 280 CFSM .25 .92 .45 3.44 6.40 3.93 2.35 2.01 .80 .49 .36 .28	22	237	673	413	1480	6110	9100	3220	1320	929	437	377	309
24 236 610 427 4000 6290 4830 2350 1190 1050 424 365 290 25 313 568 522 3980 5310 3950 2030 1170 842 425 354 289 26 331 555 561 3210 4460 3390 1800 1070 761 403 348 290 27 393 542 578 2700 4010 3020 1710 1050 718 412 341 289 28 329 531 635 6930 3840 2750 1590 1200 721 403 334 285 29 301 514 622 8110 2590 1430 1060 864 394 335 286 30 282 510 637 6360 2440 1340 952 875 384 328 280 31 269 e600 5160 2290	23	233	651	428	2980	5610	6280	2690	1210	909	420	372	300
25 313 568 522 3980 5310 3950 2030 1170 842 425 354 289 26 331 555 561 3210 4460 3390 1800 1070 761 403 348 290 27 393 542 578 2700 4010 3020 1710 1050 718 412 341 289 28 329 531 635 6930 3840 2750 1590 1200 721 403 334 285 29 301 514 622 8110 2590 1430 1060 864 394 335 286 30 282 510 637 6360 2440 1340 952 875 384 328 280 31 269 e600 5160 2290 898 379 325 TOTAL 8233 29810 15099 115433 194280 131980 76350 67530 26010 16321 11954 9236 MEAN 266 994 487 3724 6939 4257 2545 2178 867 526 386 308 MAX 393 4900 637 15000 21100 12200 6230 6420 1510 739 736 392 MIN 233 327 413 540 2990 2000 1340 898 675 379 325 280 CFSM .25 .92 .45 3.44 6.40 3.93 2.35 2.01 .80 .49 .36 .28		236	610	427	4000	6290				1050	424	365	290
27 393 542 578 2700 4010 3020 1710 1050 718 412 341 289 28 329 531 635 6930 3840 2750 1590 1200 721 403 334 285 29 301 514 622 8110 2590 1430 1060 864 394 335 286 30 282 510 637 6360 2440 1340 952 875 384 328 280 31 269 e600 5160 2290 898 379 325 TOTAL 8233 29810 15099 115433 194280 131980 76350 67530 26010 16321 11954 9236 MEAN 266 994 487 3724 6939 4257 2545 2178 867 526 386 308 MAX 393 4900 637 15000 21100 12200 6230 6420 1510 739 736 392 MIN 233 327 413 540 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
27 393 542 578 2700 4010 3020 1710 1050 718 412 341 289 28 329 531 635 6930 3840 2750 1590 1200 721 403 334 285 29 301 514 622 8110 2590 1430 1060 864 394 335 286 30 282 510 637 6360 2440 1340 952 875 384 328 280 31 269 e600 5160 2290 898 379 325 TOTAL 8233 29810 15099 115433 194280 131980 76350 67530 26010 16321 11954 9236 MEAN 266 994 487 3724 6939 4257 2545 2178 867 526 386 308 MAX 393 4900 637 15000 21100 12200 6230 6420 1510 739 736 392 MIN 233 327 413 540 <t< td=""><td>26</td><td>331</td><td>555</td><td>561</td><td>3210</td><td>4460</td><td>3390</td><td>1800</td><td>1070</td><td>761</td><td>403</td><td>348</td><td>290</td></t<>	26	331	555	561	3210	4460	3390	1800	1070	761	403	348	290
28 329 531 635 6930 3840 2750 1590 1200 721 403 334 285 29 301 514 622 8110 2590 1430 1060 864 394 335 286 30 282 510 637 6360 2440 1340 952 875 384 328 280 31 269 e600 5160 2290 898 379 325 TOTAL 8233 29810 15099 115433 194280 131980 76350 67530 26010 16321 11954 9236 MEAN 266 994 487 3724 6939 4257 2545 2178 867 526 386 308 MAX 393 4900 637 15000 21100 12200 6230 6420 1510 739 736 392 MIN 233 327 413 540 2990 2000 1340 898 675 379 325 280 CFSM .25 .92 .45 3.44 6.40 3.93 2.35 2.01 .80 .49 .36 .28													
29 301 514 622 8110 2590 1430 1060 864 394 335 286 30 282 510 637 6360 2440 1340 952 875 384 328 280 31 269 e600 5160 2290 898 379 325 TOTAL 8233 29810 15099 115433 194280 131980 76350 67530 26010 16321 11954 9236 MEAN 266 994 487 3724 6939 4257 2545 2178 867 526 386 308 MAX 393 4900 637 15000 21100 12200 6230 6420 1510 739 736 392 MIN 233 327 413 540 2990 2000 1340 898 675 379 325 280 CFSM .25 .92 .45 3.44 6.40 3.93 2.35 2.01 .80 .49 .36 .28													
30 282 510 637 6360 2440 1340 952 875 384 328 280 31 269 e600 5160 2290 898 379 325 TOTAL 8233 29810 15099 115433 194280 131980 76350 67530 26010 16321 11954 9236 MEAN 266 994 487 3724 6939 4257 2545 2178 867 526 386 308 MAX 393 4900 637 15000 21100 12200 6230 6420 1510 739 736 392 MIN 233 327 413 540 2990 2000 1340 898 675 379 325 280 CFSM .25 .92 .45 3.44 6.40 3.93 2.35 2.01 .80 .49 .36 .28													
31 269 e600 5160 2290 898 379 325 TOTAL 8233 29810 15099 115433 194280 131980 76350 67530 26010 16321 11954 9236 MEAN 266 994 487 3724 6939 4257 2545 2178 867 526 386 308 MAX 393 4900 637 15000 21100 12200 6230 6420 1510 739 736 392 MIN 233 327 413 540 2990 2000 1340 898 675 379 325 280 CFSM .25 .92 .45 3.44 6.40 3.93 2.35 2.01 .80 .49 .36 .28													
TOTAL 8233 29810 15099 115433 194280 131980 76350 67530 26010 16321 11954 9236 MBAN 266 994 487 3724 6939 4257 2545 2178 867 526 386 308 MAX 393 4900 637 15000 21100 12200 6230 6420 1510 739 736 392 MIN 233 327 413 540 2990 2000 1340 898 675 379 325 280 CFSM .25 .92 .45 3.44 6.40 3.93 2.35 2.01 .80 .49 .36 .28													
MEAN 266 994 487 3724 6939 4257 2545 2178 867 526 386 308 MAX 393 4900 637 15000 21100 12200 6230 6420 1510 739 736 392 MIN 233 327 413 540 2990 2000 1340 898 675 379 325 280 CFSM .25 .92 .45 3.44 6.40 3.93 2.35 2.01 .80 .49 .36 .28	31	200		2000	3100		2250		070		313	323	
MEAN 266 994 487 3724 6939 4257 2545 2178 867 526 386 308 MAX 393 4900 637 15000 21100 12200 6230 6420 1510 739 736 392 MIN 233 327 413 540 2990 2000 1340 898 675 379 325 280 CFSM .25 .92 .45 3.44 6.40 3.93 2.35 2.01 .80 .49 .36 .28	TOTAL	8233	29810	15099	115433	194280	131980	76350	67530	26010	16321	11954	9236
MAX 393 4900 637 15000 21100 12200 6230 6420 1510 739 736 392 MIN 233 327 413 540 2990 2000 1340 898 675 379 325 280 CFSM .25 .92 .45 3.44 6.40 3.93 2.35 2.01 .80 .49 .36 .28													
MIN 233 327 413 540 2990 2000 1340 898 675 379 325 280 CFSM .25 .92 .45 3.44 6.40 3.93 2.35 2.01 .80 .49 .36 .28													
CFSM .25 .92 .45 3.44 6.40 3.93 2.35 2.01 .80 .49 .36 .28													

e Estimated.

SED

7 1996

7 1996

POTOMAC RIVER BASIN

01628500 SOUTH FORK SHENANDOAH RIVER NEAR LYNNWOOD, VA--Continued

MAR

ΔPR

MAV

.TITN

TITT.

ΔIIG

STATISTICS OF	MONTHLY	MEAN	DATA	FOR	WATER	YEARS	1931	-	1998,	BY	WATER	YEAR	(WY)	

FEB

.TΔM

	001	INOV	DEC	UAIN	FED	MAR	APR	MAI	JUN	UUL	AUG	SEP	
MEAN	733	786	962	1275	1477	1903	1588	1214	873	552	622	621	
MAX	4172	6886	3302	4904	6939	5785	5454	3086	3656	2013	2895	5823	
(WY)	1943	1986	1949	1996	1998	1936	1987	1989	1972	1949	1940	1996	
MIN	122	150	156	154	203	360	317	362	245	162	166	173	
(WY)	1931	1931	1966	1966	1931	1981	1981	1977	1956	1966	1932	1964	
SUMMAI	RY STATIST	ICS	FOR I	1997 CALEI	NDAR YEAR	F	OR 1998 W	ATER YEAR		WATER YI	EARS 1931	- 1998	
ANNUA	L TOTAL			331837			702236						
ANNUA	L MEAN			909			1924			1048			
HIGHE	ST ANNUAL	MEAN								2020		1996	
LOWEST	C ANNUAL M	EAN								397		1981	
HIGHES	ST DAILY M	EAN		7090	Mar 4		21100	Feb 18		e63500	Sep	7 1996	
LOWEST	C DAILY ME.	AN		233	Oct 23		233	Oct 23		100	Oct 1	3 1930	

Oct 23 Oct 9 ANNUAL SEVEN-DAY MINIMUM 242 Oct 9 242 106 Oct 9 1930 INSTANTANEOUS PEAK FLOW 27600 Feb 18 107000 Sep INSTANTANEOUS PEAK STAGE 17.49 Feb 18 a30.84 Sep INSTANTANEOUS LOW FLOW 228 b0ct 23 c32 Sep 20 1932 ANNUAL RUNOFF (CFSM) .84 1.77 ANNUAL RUNOFF (INCHES) 11.39 24.10 13.14 10 PERCENT EXCEEDS 1880 4860 2140 50 PERCENT EXCEEDS 589 718 608 90 PERCENT EXCEEDS 274 240 300

ОСТ

MOM

DEC

a From high-water mark in gage house.
b Also Oct. 24, 1997.
c Result of regulation.

e Estimated.

01629500 SOUTH FORK SHENANDOAH RIVER NEAR LURAY, VA

LOCATION.--Lat 38°38'46", long 78°32'06", Page County, Hydrologic Unit 02070005, on right bank between bridges on U.S. Highway 211, 1.2 mi downstream from Big Run, 2.2 mi upstream from Mill Creek, and 4.1 mi west of Luray.

DRAINAGE AREA. -- 1,377 mi².

PERIOD OF RECORD.--April 1925 to September 1930, October 1938 to September 1951, June 1979 to current year.

GAGE.--Water-stage recorder. Datum of gage is 721.76 ft above sea level. April 1925 to September 1930, nonrecording gage at same site and datum.

REMARKS .-- Records good except those for period with ice effect, Jan. 1, and periods of doubtful or no gage-height record, Feb. 1-3, May 13, May 30 to June 14, and Aug. 20-26, which are fair. Diurnal fluctuation at low and medium flow caused by powerplant 10 mi upstream from station. Virginia Department of Emergency Services gageheight radio trans- mitter at station. Maximum discharge, 112,000 ft³/s, from rating curve extended above 86,300 ft³/s. Minimum gage height, 2.15 ft, Sept. 27, 1941. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION .-- Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood of Mar. 18, 1936, reached a stage of 23.6 ft, from floodmarks, discharge, 81,600 ft³/s.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of $8,000~\text{ft}^3/\text{s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Nov. 8	1400	10,800	8.93	Feb. 18	1100	35,400	16.12
Jan. 8	2400	*36,700	*16.39	Mar. 10	0630	11,400	9.00
Jan. 29	0430	16,200	11.02	Mar. 21	2100	17,700	11.53
Feb. 5	1000	26,400	14.08	Apr. 20	1330	10,300	8.51
Feb. 12	1630	12,500	9.49	May 9	1300	8,850	7.83

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES

Minimum discharge, 290 ft³/s, Oct. 23, 24, 31.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	542	398	775	e770	e6100	5600	2390	1630	e1100	1000	529	423
2	446	621	762	744	e5000	5650	2320	2110	e1050	861	520	416
3	407	972	703	777	e4360	5550	2140	2570	e1000	825	513	408
4	392	765	660	920	5590	4770	2190	2610	e960	913	510	400
5	396	614	649	1180	22000	4110	3160	3760	e950	829	502	393
6	394	545	615	1480	15100	3610	3210	3690	e930	806	484	392
7	381	3420	601	1660	11000	3170	2900	3470	e910	779	469	392
8	380	9900	597	16300	8620	3310	2610	4550	e880	756	467	459
9	377	6400	575	26200	7630	7880	2640	8370	e860	779	542	489
10	367	3730	575	11200	6560	10800	4210	7140	e920	766	629	494
11	354	2580	614	7300	6400	8240	4640	5250	e880	736	616	428
12	355	1980	651	5230	10800	6160	3950	4420	e860	690	595	413
13	362	1620	596	4150	11600	4950	3360	e4150	e850	670	555	411
14	352	1470	579	3390	9320	4150	2910	3480	e830	655	531	409
15	367	1540	576	2780	7230	3540	2590	2920	859	644	535	389
16	362	1430	573	3800	5850	3030	2310	2530	1280	634	612	398
17	365	1300	552	3950	12300	2680	2130	2740	1330	691	636	391
18	372	1200	543	3500	31600	2710	2160	3830	1620	852	831	392
19	381	1120	523	3050	16500	6590	2360	2720	1140	685	908	425
20	381	1070	518	2720	12100	8360	8170	2210	1470	656	e600	419
21	371	1020	511	2400	10500	13500	6810	1890	1410	635	e540	413
22	354	999	519	2100	8740	13700	4860	1670	1180	606	e505	413
23	339	1040	516	3060	7510	9240	3880	1500	1070	596	e480	408
24	339	993	536	6150	8810	6730	3290	1420	1130	571	e470	394
25	371	922	575	5750	7820	5360	2810	1470	1140	579	e460	379
26 27 28 29 30 31	463 521 569 473 426 400	880 850 836 772 766	723 762 797 861 873 855	4870 3990 8050 13500 9790 8160	6630 5880 5440 	4430 3800 3330 3020 2780 2560	2430 2200 2060 1860 1690	1360 1240 1300 1340 e1200 e1150	944 889 867 932 1110	579 561 572 561 546 534	e450 445 434 433 432 426	375 381 384 372 370
TOTAL	12359	51753	19765	168921	276990	173310	94240	89690	31351	21567	16659	12230

5591

2560

4.06

4.68

13700

2893

8370

1150

2.10

2.42

3141 8170

1690

2.28

2.55

1045

1620

830

.76

.85

696

534

.51

.58

1000

408 494

370

.30

.33

537

908

426

.39

.45

9893

31600

4360 7.18 7.48

5449

26200

3.96

4.56

638 873

511

.46

.53

399

569

339

.29

.33

1725

9900

398

1.25

1.40

MEAN

MAX

MIN

IN.

CFSM

e Estimated.

01629500 SOUTH FORK SHENANDOAH RIVER NEAR LURAY, VA--Continued

STATIST	CICS OF M	ONTHLY MEAN	DATA	FOR WATER	YEARS 1	926 -	1930,	1939 -	1951, 1980	- 1998,	BY WATER	YEAR (WY)		
	OCT	NOV	DEC	JAN	FEB		MAR	APR	MAY	JUN	JUL	AUG		SEP
MEAN	1046	1166	1355	1669	2092	:	2314	2197	1702	1245	770	874		1007
MAX	6332	8783	3821	6490	9893		7143	7412	4449	3418	2460	3637		8043
(WY)	1943	1986	1949	1996	1998		1993	1987	1989	1949	1949	1940		1996
MIN	271	254	351	260	574		548	452	499	438	296	258		257
(WY)	1942	1942	1944	1981	1944		1981	1981	1930	1930	1930	1930		1930
SUMMARY	STATIST	ICS	FOR	R 1997 CAL	ENDAR YE	AR	F	OR 1998	WATER YEAR		WATER	YEARS 1926		
														1951
												1980) –	1998
ANNUAL	TOTAL			463319				968835						
ANNUAL	MEAN			1269				2654			1441			
HIGHEST	ANNUAL	MEAN									2707			1996
LOWEST	ANNUAL M	EAN									580			1981
HIGHEST	DAILY M	EAN		9900	Nov	8		31600	Feb 18		84400	Sep	7	1996
LOWEST	DAILY ME	AN		335	Sep	6		339	a0ct 23		b135	cSep	28	1930
ANNUAL	SEVEN-DA	Y MINIMUM		353	Sep	3		360	Oct 11		195	Sep	24	1930
INSTANT	CANEOUS P	EAK FLOW						36700	Jan 8		112000	Sep	7	1996
INSTANT	CANEOUS P	EAK STAGE						16.	39 Jan 8		26.9	95 Sep	7	1996
INSTANI	CANEOUS L	OW FLOW						290	dOct 23		b70	Sep	27	1941
	RUNOFF (. !				1.	93		1.0			
	RUNOFF (12.	52			26.	17		14.2	22		
	CENT EXCE			2390				7180			2860			
	CENT EXCE			880				950			865			
90 PERC	CENT EXCE	EDS		381				398			367			

a Also Oct. 24, 1997.
b Result of regulation.
c Also Sept. 16, 1925; data were collected for only part of the 1925 water year.
d also Oct. 24, 31, 1997.

01632082 LINVILLE CREEK AT BROADWAY, VA

LOCATION.--Lat 38°36'24", long 78°48'13", Rockingham County, Hydrologic Unit 02070006, on left bank at Linville, 170 ft downstream from bridge on State Highway 1421, and 1.1 mi upstream from mouth.

DRAINAGE AREA. -- 45.5 mi².

PERIOD OF RECORD. -- August 1985 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,029.90 ft above sea level.

REMARKS.--Records good except those for period of doubtful or no gage-height record, Oct. 9 to Dec. 4, and period with ice effect, Jan. 1, which are fair. Maximum discharge, 17,800 ft³/s, from rating curve extended above 1,860 ft³/s on basis of slope-area measurement at gage height 12.58 ft. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location by the Virginia Department of Environmental Quality - Water Division.

COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 500 ${\rm ft}^3/{\rm s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 8	0800	*2,200	*5.71	Mar. 9	0715	535	3.66
Jan. 28	1815	546	3.68	Mar. 19	0045	1,460	4.96
Feb. 5	1630	737	4.01	Mar. 20	2200	982	4.37
Feb. 12	0015	530	3.65	Mar. 21	0645	896	4.25
Feb. 17	1730	1,220	4.68				

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES

Minimum discharge, 6.4 ft³/s, Oct. 5, 7, 8, gage height, 1.39 ft.

					DAI	LY MEAN V	ALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	8.3	e13	e15	e15	143	94	72	45	29	23	11	9.2
2	8.0	e24	e13	17	125	90	66	62	28	21	10	9.1
3	7.4	e17	e13	20	127	86	62	57	27	20	10	8.6
4	7.0	e13	e12	27	171	78	74	54	26	19	10	8.4
5	6.7	e11	12	32	532	74	63	74	27	19	9.9	8.0
6	6.8	e10	12	31	370	70	58	73	26	17	9.7	8.0
7	6.8	e125	11	34	252	66	55	66	24	17	9.7	8.2
8	6.8	e165	11	640	224	161	54	219	24	19	9.7	15
9	e6.9	e92	11	238	185	268	91	126	24	18	10	11
10	e6.8	e60	12	129	160	145	88	103	26	17	15	10
11	e6.8	e39	12	101	183	117	75	92	26	16	12	9.7
12	e6.9	e32	11	85	265	102	67	93	29	15	10	8.7
13	e7.0	e30	11	76	172	94	62	83	24	15	15	8.4
14	e7.0	e33	10	66	143	86	59	74	23	14	28	8.0
15	e7.6	e36	9.9	73	124	78	56	68	29	14	26	8.0
16	e7.8	e32	9.7	94	112	73	53	63	26	14	22	7.6
17	e8.2	e29	9.7	79	530	71	52	61	24	15	29	8.1
18	e8.9	e26	9.4	70	267	187	48	54	23	14	19	7.5
19	e8.3	e24	9.4	64	175	538	77	51	27	13	16	7.9
20	e8.0	e23	9.5	57	155	349	100	48	25	13	14	8.0
21	e7.8	e21	8.9	51	132	483	74	45	22	12	13	7.8
22	e7.5	e24	9.5	48	115	233	65	41	22	12	12	8.6
23	e7.4	e22	9.6	199	136	168	60	40	49	12	11	8.4
24	e8.2	e20	10	126	191	141	55	39	30	12	11	7.5
25	e10	e19	14	104	136	122	50	43	23	12	11	7.4
26	e11	e18	14	87	118	109	47	36	21	12	10	7.6
27	e13	e17	15	82	108	100	49	36	20	12	10	7.4
28	e12	e16	15	279	101	92	45	35	23	11	9.9	7.7
29	e10	e15	15	297		84	41	33	36	11	9.9	7.2
30	e9.4	e14	17	261		79	39	31	27	11	9.7	7.3
31	e8.5		16	182		75		30		11	9.4	
TOTAL	252.8	1020	367.6	3664	5452	4513	1857	1975	790	461	412.9	254.3
MEAN	8.15	34.0	11.9	118	195	146	61.9	63.7	26.3	14.9	13.3	8.48
MAX	13	165	17	640	532	538	100	219	49	23	29	15
MIN	6.7	10	8.9	15	101	66	39	30	20	11	9.4	7.2
CFSM	.18	.75	.26	2.60	4.28	3.20	1.36	1.40	.58	.33	.29	.19
IN.	.21	.83	.30	3.00	4.46	3.69	1.52	1.61	.65	.38	.34	.21

e Estimated.

01632082 LINVILLE CREEK AT BROADWAY, VA--Continued

STATISTICS	OF	MONTHLY	MEAN	DATA	FOR	WATER	YEARS	1985	_	1998.	BY	WATER	YEAR	(WY)

58

18

8.0

	OCT	NOV	DEC	JAN	FEE	3	MAR	APR	MAY	JUI	JUL	AUG	SEP
MEAN MAX (WY) MIN (WY)	25.1 108 1991 6.66 1989	32.5 144 1986 7.34 1992	35.3 115 1997 7.05 1989	66.5 213 1996 9.75 1989	56.9 195 1998 10.1 1989	5	79.2 206 1994 17.1 1989	52.8 135 1993 11.5 1995	40.2 91.0 1989 12.9 1986	49.6 1996 9.68	68.5 1995 8 8.28	27.2 138 1996 5.79 1986	35.2 275 1996 5.21 1986
SUMMARY	STATIST:	ICS	FOR 1	1997 CALEN	DAR YE	EAR	F	OR 1998 WA	TER YE	AR	WATER Y	EARS 1985	- 1998
ANNUAL	TOTAL			10695.7				21019.6					
ANNUAL	MEAN			29.3				57.6			41.3		
HIGHEST	C ANNUAL 1	MEAN									85.5		1996
LOWEST	ANNUAL MI	EAN									22.6		1992
HIGHEST	C DAILY M	EAN		584	Mar	3		640	Jan	8	e4700	Sep	6 1996
LOWEST	DAILY ME	AN		6.7	Oct	5		6.7	Oct	5	3.2	Sep	17 1986
ANNUAL	SEVEN-DAY	MUMINIM Y		6.8	Oct	5		6.8	Oct	5	3.6	Sep	12 1986
INSTANT	TANEOUS PI	EAK FLOW						2200	Jan	8	17800	Sep	6 1996
INSTANT	TANEOUS PI	EAK STAGE						5.71	Jan	8	13.2	3 Sep	6 1996
INSTANT	TANEOUS LO	OW FLOW						6.4	a0ct	5	2.8	bSep 1	13 1986
ANNUAL	RUNOFF (CFSM)		.64				1.27	'		.9	1	
ANNUAL	RUNOFF (INCHES)		8.74				17.19	1		12.3	5	

138

24

8.2

80

20

7.4

10 PERCENT EXCEEDS 50 PERCENT EXCEEDS

90 PERCENT EXCEEDS

a Also Oct. 7, 8, 1997. b Also Sept. 14, 17, 1986. e Estimated.

01632900 SMITH CREEK NEAR NEW MARKET, VA

LOCATION.--Lat 38°41'36", long 78°38'35", Shenandoah County, Hydrologic Unit 02070006, on left bank 25 ft upstream from bridge on State Highway 620, 3.6 mi north of New Market, and 4.4 mi upstream from mouth.

DRAINAGE AREA. -- 93.2 mi².

PERIOD OF RECORD. -- August 1960 to current year.

REVISED RECORDS.--WSP 2103: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 881.50 ft above sea level. Prior to Aug. 2, 1963, on right bank a short distance downstream, at datum 0.71 ft higher.

REMARKS.--Records good except for period with ice effect, Jan. 1, which is fair. Maximum discharge, $12,400~{\rm ft}^3/{\rm s}$, from rating curve extended above $2,300~{\rm ft}^3/{\rm s}$ on basis of contracted-opening measurement at gage height $16.38~{\rm ft}$. Minimum discharge, $4.5~{\rm ft}^3/{\rm s}$, result of freezeup. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION. -- Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Oct. 1, 1959, reached a stage of 10.7 ft, discharge not determined, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 650 ft^3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Nov. 7	1630	804	5.64	Feb. 12	0730	939	6.86
Jan. 8	1630	*2,660	*9.78	Feb. 18	0130	2,120	9.24
Jan. 28	2000	903	6.73	Mar. 19	0800	1,580	8.36
Feb. 5	0400	1,190	7.51	Mar. 21	0430	852	6.52

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Minimum discharge, 13 ft^3/s , Sept. 17, 18, 24, 25, gage height, 1.28 ft .

	DAILY MEAN VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	19	27	40	e36	298	266	166	112	65	43	25	18
2	17	41	37	39	262	251	160	147	63	41	24	20
3	17	33	35	51	259	252	149	166	61	40	23	19
4	17	27	35	84	399	226	182	155	58	38	22	19
5	17	25	35	87	1000	212	176	258	58	39	22	19
6	16	23	34	76	691	202	154	188	60	38	22	19
7	15	446	34	72	471	190	146	155	58	36	21	18
8	15	538	33	1510	407	268	144	178	55	38	23	22
9	15	193	33	707	374	462	213	173	55	38	24	23
10	16	120	34	350	327	324	237	152	61	36	25	20
11	15	93	35	253	335	261	195	142	58	34	29	19
12	16	78	34	211	689	235	167	155	66	34	23	19
13	15	69	32	187	477	219	154	155	57	33	23	18
14	15	74	32	165	366	211	148	134	56	31	25	17
15	16	79	30	169	306	196	144	124	62	31	27	16
16	16	70	30	231	275	184	138	118	64	30	27	15
17	16	62	29	213	730	176	136	120	72	32	28	14
18	18	57	28	179	1160	229	128	106	58	31	27	15
19	17	53	28	160	515	972	161	98	60	30	24	16
20	16	51	27	148	433	400	307	94	64	29	24	17
21	16	50	27	136	379	702	186	91	55	28	22	16
22	15	54	27	130	322	417	160	85	51	28	21	16
23	15	51	29	366	326	320	148	82	51	27	22	17
24	16	46	29	343	443	275	139	83	53	27	21	15
25	21	43	41	274	396	247	130	91	47	26	20	14
26	23	43	41	220	324	228	125	81	45	26	19	15
27	27	41	39	199	287	214	125	78	42	26	19	15
28	23	40	40	638	269	199	118	77	49	25	19	14
29	21	39	39	579		186	111	74	55	25	20	14
30	19	39	43	477		177	108	70	50	25	19	14
31	19		40	389		169		68		25	19	
TOTAL	539	2605	1050	8679	12520	8870	4755	3810	1709	990	709	513
MEAN	17.4	86.8	33.9	280	447	286	159	123	57.0	31.9	22.9	17.1
MAX	27	538	43	1510	1160	972	307	258	72	43	29	23
MIN	15	23	27	36	259	169	108	68	42	25	19	14
CFSM	.19	.93	.36	3.00	4.80	3.07	1.70	1.32	.61	.34	.25	.18
IN.	.22	1.04	.42	3.46	5.00	3.54	1.90	1.52	.68	.40	.28	.20

e Estimated.

POTOMAC RIVER BASIN

01632900 SMITH CREEK NEAR NEW MARKET, VA--Continued

STATISTICS	OF	V.THTI/OM	MEDN	$D\Delta T\Delta$	FOR	MATER	VEARS	1960	_ 1998	BY WATER	VEVE	(WV)	

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	53.8	58.8	70.5	105	119	158	118	86.1	59.7	36.7	36.3	38.8
MAX	297	324	240	423	447	530	372	238	294	121	139	408
(WY)	1973	1986	1997	1996	1998	1994	1987	1988	1972	1972	1996	1996
MIN	8.56	11.0	8.86	10.1	21.1	26.4	19.4	20.0	18.1	10.0	10.8	9.36
(WY)	1987	1966	1966	1966	1989	1981	1981	1969	1977	1977	1966	1986
SUMMARY	/ STATIST	ICS	FOR I	1997 CALE	NDAR YEAR	F	OR 1998 W	ATER YEAR		WATER YE	ARS 1960	- 1998
ANNUAL	TOTAL			25356			46749					
ANNUAL	MEAN			69.5			128			78.3		
HIGHEST	C ANNUAL N	MEAN								152		1996
LOWEST	ANNUAL MI	EAN								27.8		1981
HIGHEST	DAILY ME	EAN		903	Mar 4		1510	Jan 8		5190	Jan 1	9 1996
LOWEST	DAILY MEA	AN		15	aOct 7		14	bSep 17		6.5	Oct	7 1986

ANNUAL TOTAL	25356		46749		
ANNUAL MEAN	69.5		128	78.3	
HIGHEST ANNUAL MEAN				152	1
LOWEST ANNUAL MEAN				27.8	1
HIGHEST DAILY MEAN	903 Mar	4	1510 Jan 8	5190	Jan 19 1
LOWEST DAILY MEAN	15 aOct	7	14 bSep 17	6.5	Oct 7 1
ANNUAL SEVEN-DAY MINIMUM	15 c0ct	7	14 Sep 24	7.5	dJul 27 1
INSTANTANEOUS PEAK FLOW			2660 Jan 8	12400	Sep 6 1
INSTANTANEOUS PEAK STAGE			9.78 Jan 8	17.62	Sep 6 1
INSTANTANEOUS LOW FLOW			13 fSep 17	g4.5	Feb 9 1
ANNUAL RUNOFF (CFSM)	.75		1.37	.84	
ANNUAL RUNOFF (INCHES)	10.12		18.66	11.41	
10 PERCENT EXCEEDS	127		324	155	
50 PERCENT EXCEEDS	44		54	44	
90 PERCENT EXCEEDS	17		17	15	

a Also Oct. 8, 9, 11, 13, 14, 22, 23, 1997. b Also Sept. 25, 28-30, 1998. c Also Oct. 8, 1997. d Also July 28, 1977. f Also Sept. 18, 24, 25, 1997. g Result of freezeup.

01633000 NORTH FORK SHENANDOAH RIVER AT MOUNT JACKSON, VA

LOCATION.--Lat 38°44'43", long 78°38'21", Shenandoah County, Hydrologic Unit 02070006, on right bank at upstream side of bridge on State Highway 698 at Mount Jackson and 0.4 mi downstream from Mill Creek.

DRAINAGE AREA. -- 506 mi².

PERIOD OF RECORD. -- October 1943 to current year.

REVISED RECORDS.--WSP 1382: 1945, 1948-50(M), 1951-53(P), 1954(M). WSP 2103: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 838.55 ft above sea level. Prior to July 1, 1976, nonrecording gage, and July 1, 1976, to Oct. 23, 1981, water-stage recorder, at site 400 ft upstream at same datum.

REMARKS.--Records good except for period with ice effect, Jan. 1, which is fair. Some diversion during low flow for irrigation at points upstream from station. Virginia Department of Emergency Services gage-height radio transmitter at station. Maximum discharge, 103,000 ft³/s, Sept. 6, 1996, from rating curve extended above 19,000 ft³/s on basis of peak runoff for stations at Cootes Store and near Strasburg. Minimum gage height, 1.97 ft, Sept. 3, 1966. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES OUTSIDE PERIOD OF RECORD.—Flood in October 1942 reached a stage of 20.2 ft, from floodmarks, discharge, about $80,000 \text{ ft}^3/\text{s}$, from rating curve extended above $18,000 \text{ ft}^3/\text{s}$ on basis of peak runoff for flood in October, 1942 for stations at Cootes Store and near Strasburg.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 5,000 ft³/s and maximum (*):

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 8	1400	*13,300	*13.54	Mar. 19	0700	7,150	10.05
Feb. 18	0130	13,300	13.53	Mar. 21	1130	8,860	11.12

Minimum discharge, 37 ft³/s, Sept. 16, 17, 28-30, gage height, 2.27 ft.

		210011		00210 122	DA	AILY MEAN	VALUES	100011 199	. 10 02111			
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	82 72 68 66	76 151 178 156 131	176 162 153 148 144	e185 192 219 544 830	1400 1180 1110 1620 4400	2010 1600 1440 1180 1000	699 798 698 925 1380	447 651 730 724 953	238 223 213 200 198	187 165 158 150 149	66 63 62 59 57	47 47 47 47 47
6 7 8 9 10	60 57 54 51 51	114 1940 3350 1640 929	135 129 124 124 127	725 608 7310 4910 2110	3360 2310 1860 1740 1540	874 782 1150 3870 3170	1110 911 792 1110 1940	1500 1030 2860 2810 1650	198 189 183 178 200	141 133 134 138 124	55 55 56 61 68	45 46 52 63 55
11 12 13 14 15	54 53 54 55 56	625 467 371 348 395	130 129 125 124 120	1330 925 739 602 544	1620 3010 2820 2020 1500	1810 1330 1080 944 827	1720 1300 1020 861 771	1230 1090 1030 910 799	193 214 196 188 222	115 110 107 102 98	86 71 63 78 99	51 49 47 45 43
16 17 18 19 20	56 56 59 58 57	388 349 310 279 251	117 116 115 113 111	744 838 775 672 594	1230 3420 8590 3910 2990	734 669 806 5030 2820	690 644 571 655 1990	698 802 667 563 492	331 318 244 226 250	93 94 91 88 87	91 105 125 96 83	39 38 39 44 45
21 22 23 24 25	55 53 52 55 67	234 239 242 237 226	109 110 113 112 136	508 454 1230 1980 1570	2440 1990 1890 2470 2280	7380 3770 2140 1590 1280	1470 1100 901 777 667	442 395 363 347 357	220 197 193 263 206	81 78 76 75 73	76 71 69 66 61	45 46 45 43 39
26 27 28 29 30 31	77 83 78 69 64 63	217 203 191 180 177	163 187 203 197 220 216	1140 921 2120 2310 2060 1830	2150 1820 1780 	1090 974 899 837 764 698	593 568 520 466 438	324 306 299 280 262 250	181 166 176 208 221	73 74 72 71 68 68	59 55 53 52 51 50	41 42 39 39 37
TOTAL MEAN MAX MIN CFSM IN.	1899 61.3 83 51 .12 .14	14594 486 3350 76 .96 1.07	4388 142 220 109 .28 .32	41519 1339 7310 185 2.65 3.05	68450 2445 8590 1110 4.83 5.03	54548 1760 7380 669 3.48 4.01	28085 936 1990 438 1.85 2.06	25261 815 2860 250 1.61 1.86	6433 214 331 166 .42 .47	3273 106 187 68 .21	2162 69.7 125 50 .14 .16	1352 45.1 63 37 .09

e Estimated.

01633000 NORTH FORK SHENANDOAH RIVER AT MOUNT JACKSON, VA--Continued

STATIST	TICS OF 1	MONTHLY MEAN	DATA	FOR WATER	YEARS 1	944	- 1998,	BY WAT	ER Y	EAR (WY)					
	OCT	NOV	DEC	JAN	FEB	3	MAR	APR		MAY	JUN	JUL	AUG		SEP
MEAN	239	295	384	497	595		851	645		526	308	169	220		217
MAX	1580	2371	1272	2283	2445		2387	2193		1418	1483	834	1403		2804
(WY)	1980	1986	1973	1996	1998		1994	1987		1988	1972	1949	1955		1996
MIN	22.2	26.3	22.7	30.1	62.7	,	119	79.2		84.3	53.8	26.0	19.9		26.2
(WY)	1987	1966	1966	1966	1959		1981	1981		1969	1977	1977	1964		1954
SUMMAR	Y STATIS	FICS	FOR	1997 CAL	ENDAR YE	AR	F	'OR 1998	WAT	ER YEAR		WATER	YEARS 1944	. –	1998
ANNUAL	TOTAL			129761				251964							
ANNUAL	MEAN			356				690				411			
HIGHES'	T ANNUAL	MEAN										935			1996
LOWEST	ANNUAL I	MEAN										136			1981
HIGHES	r daily i	MEAN		5660	Mar	4		8590		Feb 18		32200	Sep	6	1996
LOWEST	DAILY M	EAN		45	aSep	5		37		Sep 30		8.	0 Sep	3	1966
ANNUAL	SEVEN-DA	MUMINIM YA		46	Sep	3		40		Sep 24		11	bSep	2	1966
INSTAN	TANEOUS I	PEAK FLOW						13300		cJan 8		103000	Sep	6	1996
INSTAN	TANEOUS I	PEAK STAGE						13	.54	Jan 8		22.	17 Sep	6	1996
INSTAN	TANEOUS 1	LOW FLOW						37		dSep 16		f7.	0 Sep	3	1966
ANNUAL	RUNOFF	(CFSM)			70			1	.36				81		
ANNUAL	RUNOFF	(INCHES)		9.	54			18	.52			11.	05		
10 PER	CENT EXC	EEDS		705				1910				876			
50 PER	50 PERCENT EXCEEDS			194				214				191			

53

46

56

90 PERCENT EXCEEDS

a Also Sept. 6-8, 1997. b Also Sept. 3, 1966. c Also Feb. 18, 1998. d also Sept. 17, 28-30, 1998. f Observed.

01634500 CEDAR CREEK NEAR WINCHESTER, VA

LOCATION.--Lat 39°04'52", long 78°19'47", Frederick County, Hydrologic Unit 02070006, on left bank 0.2 mi upstream from Fawcett Run, 0.3 mi upstream from bridge on State Highway 628, 1.3 mi downstream from Froman Run, and 11.4 mi southwest of Winchester.

DRAINAGE AREA. -- 103 mi².

PERIOD OF RECORD. -- June 1937 to current year.

REVISED RECORDS. -- WSP 2103: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 647.09 ft above sea level.

REMARKS.--No estimated daily discharges. Records good. Maximum discharge, 22,000 ft³s, from rating curve extended above 15,000 ft³/s. Minimum discharge, 1.5 ft³/s, result of freezeup. Minimum gage height, 1.04 ft, Feb. 19, 1941, result of freezeup. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION. -- Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Mar. 17, 1936, reached a stage of about 25 ft, discharge, about 18,000 ${\rm ft}^3/{\rm s}$, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 1,000 ${\rm ft}^3/{\rm s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Nov. 7	1600	*3,800	*9.60	Mar. 8	1830	1,370	5.42
Jan. 8	1230	2,480	7.43	Mar. 19	0300	2,640	7.70
Jan. 28	1630	2,470	7.41	Mar. 21	0400	3,620	9.32
Feb. 5	1200	2,420	7.33	Apr. 19	2400	1,550	5.77
Feb. 17	2100	2,400	7.29	May 5	2330	1,060	4.79
Feb. 24	1000	1,310	5.31				

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
DAILY MEAN VALUES

Minimum discharge, 8.5 ft³/s, Sept. 16, 17, 27.

69 26

38

MAX MIN

CFSM

TN

1460

29

1400

3 96

51 3.43 1990

201

5.05

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	17 14 13 12 13	73 94 62 42 35	47 41 38 37 37	51 63 104 182 167	269 224 201 253 1990	337 298 322 255 221	157 172 134 220 236	103 180 178 205 431	46 40 39 35 34	47 38 34 33 33	16 14 13 13	10 10 10 10 9.9
6 7 8 9 10	11 10 9.7 9.9	29 1460 674 278 167	35 33 32 31 32	139 124 1400 1090 505	1020 583 432 384 327	194 177 564 746 463	188 165 153 384 462	465 270 479 457 349	35 33 31 30 61	30 28 29 33 29	12 12 12 14 17	9.6 9.9 16 14 12
11 12 13 14 15	10 10 11 11 12	116 89 72 100 126	35 34 31 30 29	316 234 195 157 160	319 485 416 331 265	329 265 225 203 177	321 253 214 190 171	306 444 415 308 239	48 134 213 177 232	25 22 22 21 21	18 15 13 14 18	11 11 9.7 9.6 9.6
16 17 18 19 20	15 12 13 14 15	92 72 62 56 51	28 28 27 27 26	310 296 260 211 179	223 740 1270 625 445	156 140 262 1450 622	154 147 142 347 741	199 212 148 121 102	401 177 109 93 92	22 30 20 18 18	18 22 23 16 14	9.5 9.8 16 14 11
21 22 23 24 25	13 14 14 15 21	50 92 87 70 59	26 26 32 32 64	150 132 433 526 358	361 298 344 1060 580	2330 801 452 337 269	337 256 214 183 156	89 77 70 68 119	67 57 71 159 77	17 16 16 17 16	13 13 13 12 12	11 11 12 11
26 27 28 29 30 31	27 38 26 19 18 18	56 51 47 46 45	69 61 60 54 60 55	263 217 1020 857 514 352	421 350 340 	230 205 183 165 148 134	139 145 120 105 98	73 62 59 52 47 50	60 50 77 71 52	15 14 14 14 14	12 12 11 11 11	12 11 18 12 11
TOTAL MEAN	465.6 15.0	4353 145	1197 38.6	10965 354	14556 520	12660 408	6704 223	6377 206	2801 93.4	724 23.4	437 14.1	341.6 11.4

2330

134

741

98

479

47

2.00

401

30

23

10

18

9.5

12

47 14

g1.5 .97

13.12

213

43

10

POTOMAC RIVER BASIN

01634500 CEDAR CREEK NEAR WINCHESTER, VA--Continued

STATISTICS	OF	MONTHLY	MEAN	DATA	FOR	WATER	YEARS	1938	_	1998.	BY	WATER	YEAR	(WY)

.84

11.39

160

53

13

	OCT	NOV	DEC	JAN	FEB		MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	61.3	70.0	91.9	116	148		208	175	130	85.0	33.1	39.5	39.5
MAX	777	500	320	545	520		708	600	382	664	181	420	523
(WY)	1943	1986	1973	1996	1998		1993	1983	1988	1972	1978	1955	1996
MIN	6.01	8.64	7.95	10.2	21.5		38.2	37.0	24.5	10.5	6.06	4.52	6.95
(WY)	1964	1966	1966	1966	1959		1981	1947	1969	1969	1966	1957	1986
SUMMARY	Y STATIST	ICS	FOR :	1997 CALEN	IDAR YE	AR	F	OR 1998 WA	TER YEAR		WATER YEA	RS 1938	- 1998
ANNUAL	TOTAL			31540.4				61581.2					
ANNUAL	MEAN			86.4				169			99.4		
HIGHEST	r annual i	MEAN									214		1996
LOWEST	ANNUAL M	EAN									28.3		1969
HIGHEST	r daily M	EAN		1460	Nov	7		2330	Mar 21		e13900	Oct 1	5 1942
LOWEST	DAILY ME	AN		9.7	Oct	8		9.5	Sep 16		2.8	aSep	7 1964
ANNUAL	SEVEN-DA	Y MINIMUM		10	b0ct	6		9.9	Sep 1		3.0	cSep	2 1966
INSTANT	TANEOUS P	EAK FLOW						3800	Nov 7		22000	Oct 1	5 1942
INSTANT	TANEOUS P	EAK STAGE						9.60	Nov 7		d27.00	Oct 1	5 1942
INSTANT	TANEOUS L	OW FLOW						8.5	fSep 16		g1.5	Feb	2 1992

1.64

22.24

425

61

12

ANNUAL RUNOFF (CFSM)

10 PERCENT EXCEEDS

50 PERCENT EXCEEDS

90 PERCENT EXCEEDS

ANNUAL RUNOFF (INCHES)

a Also Sept. 3, 4, 7, 8, 1966. b Also Oct. 7, 1997. c Also Sept. 3, 1966. d From floodmarks.

e Estimated. f Also Sept. 17, 27, 1998. g Result of freezeup.

01635500 PASSAGE CREEK NEAR BUCKTON, VA

LOCATION.--Lat 38°57'29", long 78°16'01", Warren County, Hydrologic Unit 02070006, on right bank 350 ft upstream from bridge on State Highway 55, 1.2 mi south of Buckton railroad station, 1.4 mi upstream from mouth, and 4.2 mi west of Riverton.

DRAINAGE AREA. -- 87.8 mi².

PERIOD OF RECORD.--October 1905 to July 1906 (gage heights only), April 1932 to current year. Prior to October 1966 published as "at Buckton."

REVISED RECORDS. -- WSP 2103: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 525.14 ft above sea level. October 1905 to July 1906, nonrecording gage at site 1 mi downstream at different datum. Apr. 4, 1932, to Oct. 7, 1937, nonrecording gage at site 350 ft downstream at different datum.

REMARKS.--No estimated daily discharges. Records good. Occasional diurnal fluctuation during low flow caused by State Fish Hatchery 2 mi upstream from station. At a point 14.2 mi upstream from station on Little Passage Creek, there has been a diversion in some years from Strasburg Reservoir, capacity, 54.6 acre-ft, by town of Strasburg for municipal water supply. There was no diversion during the year. Maximum discharge, 23,000 ft³/s, from rating curve extended above 5,200 ft³/s. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division.

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Nov. 7	2330	2,930	8.73	Mar. 19	1130	1,450	6.78
Jan. 8	2030	*3,270	*9.12	Mar. 21	0630	1,370	6.65
Jan. 28	2030	2,100	7.71	Apr. 9	2130	1,060	6.13
Feb. 5	0830	2,420	8.12	Apr. 20	0500	1,160	6.31
Feb. 17	2230	1,360	6.63	Jun. 15	2230	1,910	7.45

Minimum discharge, 3.0 ft³/s, Sept. 5, 6.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	19 14 12 11	16 71 66 38 28	46 41 36 35 35	43 57 70 162 156	366 293 259 427 2090	209 186 190 162 144	117 114 98 163 190	80 128 133 116 372	28 24 22 20 19	23 19 16 15	5.1 4.9 4.8 4.7 4.5	4.6 4.3 3.6 3.7 3.2
6 7 8 9 10	9.9 9.5 9.0 8.5 8.4	22 1240 1410 399 237	33 31 29 28 32	125 109 1580 1730 660	1140 664 523 474 388	130 119 185 375 274	136 120 113 390 549	380 206 314 309 225	19 19 17 17 23	14 13 13 14 13	4.4 4.3 4.3 4.5 6.9	3.1 3.4 5.0 5.3 5.5
11 12 13 14 15	8.1 7.5 8.1 9.0 9.0	151 113 91 97 114	38 36 32 31 29	360 257 214 170 169	369 664 493 364 284	197 168 150 142 128	307 229 189 169 152	198 249 285 202 160	23 22 39 47 431	11 9.7 9.1 8.9 8.7	17 14 9.2 8.0 9.0	5.0 4.5 4.4 4.0 3.8
16 17 18 19 20	8.5 8.9 9.6 9.9	92 75 66 60 56	27 28 27 26 25	291 314 251 202 171	240 608 874 486 382	116 108 162 1020 554	139 132 143 219 778	134 311 163 121 97	421 117 72 59 56	8.4 8.2 7.8 7.1 6.8	9.0 9.8 10 8.9 7.2	3.8 3.8 15 6.2 5.2
21 22 23 24 25	9.1 8.5 8.4 8.3	54 76 70 60 53	25 24 25 27 42	143 128 362 465 318	328 264 294 586 452	1130 588 394 298 236	310 221 182 155 133	82 70 62 60 83	43 36 56 78 46	6.6 6.6 6.0 5.6 5.5	6.4 5.9 5.6 5.6 5.1	5.0 6.0 6.6 5.9
26 27 28 29 30 31	15 18 19 13 11	51 48 44 42 41	53 49 50 46 52 50	237 200 1080 1180 751 517	342 275 238 	202 181 162 146 133 121	119 116 100 88 82	59 50 47 40 35 31	36 29 28 33 29	5.5 5.3 5.3 5.2 5.1 5.3	4.9 4.7 4.5 4.4 4.1 4.3	5.8 6.5 6.1 5.3 5.0
TOTAL MEAN MAX MIN CFSM IN.	333.1 10.7 19 7.5 .12 .14	4981 166 1410 16 1.89 2.11	1088 35.1 53 24 .40 .46	12472 402 1730 43 4.58 5.28	14167 506 2090 238 5.76 6.00	8310 268 1130 108 3.05 3.52	5953 198 778 82 2.26 2.52	4802 155 380 31 1.76 2.03	1909 63.6 431 17 .72 .81	302.7 9.76 23 5.1 .11 .13	206.0 6.65 17 4.1 .08	155.5 5.18 15 3.1 .06 .07

6 1996

Aug 5 1932

Sep

POTOMAC RIVER BASIN

01635500 PASSAGE CREEK NEAR BUCKTON, VA--Continued

STATISTICS	OF	MONTHLY	MEAN	DATA	FOR	WATER	YEARS	1933 -	1998.	BY	WATER	YEAR	(WY))

.92

12.46

8.1

133

46

	OC.I.	NOV	DEC	JAN	FEB	MAR	APR	MAY	Z JUN	JUL	AUG	SEP
MEAN	39.9	43.8	68.1	100	121	157	136	95.3	51.9	18.3	25.7	27.1
MAX	581	276	235	431	506	573	377	339	609	87.3	437	432
(WY)	1943	1986	1973	1996	1998	1994	1952	1989	1972	1941	1955	1996
MIN	2.85	4.48	4.60	6.25	5.79	20.5	20.9	14.6	6.01	1.87	1.94	2.37
(WY)	1964	1966	1966	1966	1934	1959	1981	1963	1977	1934	1963	1936
SUMMARY	Y STATIST	ics	FOR 3	1997 CALEN	DAR YEA	ıR	FOR 1998	WATER YE	CAR	WATER YE	ARS 1933	- 1998
ANNUAL	TOTAL			29414.9			54679.	3				
ANNUAL	MEAN			80.6			150			73.5		
HIGHEST	r annual n	MEAN								161		1996
LOWEST	ANNUAL M	EAN								20.0		1934
HIGHEST	C DAILY M	EAN		1830	Jun	2	2090	Feb	5	9290	Oct	15 1942
LOWEST	DAILY MEA	AN		4.4	Sep	7	3.	1 Sep	6	.40) Jul	20 1934
ANNUAL	SEVEN-DAY	MINIMUM		5.1	Sep	3	3.	7 Sep	1	.50) Jul	15 1934
INSTANT	TANEOUS PI	EAK FLOW					3270	Jan	8	23000	Sep	6 1996

9.12 Jan 8

5

3.0 aSep

1.71

23.17

5.3

381

47

15.89

b.10

11.37

4.4

158

26

.84

INSTANTANEOUS PEAK STAGE

INSTANTANEOUS LOW FLOW

ANNUAL RUNOFF (INCHES)

ANNUAL RUNOFF (CFSM)

10 PERCENT EXCEEDS 50 PERCENT EXCEEDS

90 PERCENT EXCEEDS

a Also Sept. 6, 1997. b Observed.

01638480 CATOCTIN CREEK AT TAYLORSTOWN, VA

LOCATION.--Lat 39°15'18", long 77°34'36", Loudoun County, Hydrologic Unit 02070008, on left bank at downstream side of bridge on State Highway 663 at Taylorstown and 3.2 mi downstream from Milltown Creek.

DRAINAGE AREA. -- 89.6 mi².

PERIOD OF RECORD. -- August 1971 to current year.

GAGE.--Water-stage recorder. Datum of gage is 247.37 ft above sea level. Prior to Nov. 3, 1983, at site 60 ft upstream at datum 1.78 ft higher.

REMARKS.--Records good except those for period with ice efect, Jan. 1 and period of doubtful gage-height record, July 4, 5, which are fair. Maximum discharge, 23,800 ft³/s, from rating curve extended above 7,400 ft³/s on basis of contracted-opening measurement of peak flow. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 1,200 ft³/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Nov. 7	2000	2,100	7.77	Feb. 24	0245	1,320	6.44
Jan. 8	1200	7,070	13.37	Mar. 19	0400	2,600	8.56
Jan. 23	1630	1,830	7.33	Mar. 21	0400	*7,140	*13.43
Jan. 28	1600	3,970	10.33	Apr. 9	1740	1,870	7.39
Feb. 5	0730	2,770	8.81	May 8	1030	1,330	6.47

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Minimum discharge, 0.92 ft³/s, Sept. 17.

		DISCHAR	JE, IN CO	DIC PEET		Y MEAN VA		DER IJJI.	IO DEFIEM	DER 1990		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	8.1	53	49	e42	280	224	306	101	54	60	19	2.9
2	4.6	120	42	48	245	209	295	198	50	49	14	2.7
3	3.3	79	35	56	226	382	190	167	51	44	11	2.7
4	2.7	32	34	69	663	232	209	130	48	42	9.9	2.5
5	2.1	20	35	69	2050	194	196	118	45	e34	9.2	2.0
6	1.9	16	31	63	589	174	160	154	45	e28	7.6	1.6
7	1.6	518	29	62	385	161	146	116	42	26	6.7	1.6
8	1.7	904	27	3730	309	313	141	648	39	34	6.7	1.9
9	1.9	269	27	857	258	737	598	524	38	41	6.7	2.0
10	2.6	156	30	436	227	390	413	318	46	33	7.9	4.0
11	2.4	105	40	344	209	272	247	277	53	26	11	3.5
12	2.6	79	36	295	262	232	198	361	80	23	11	2.8
13	2.8	64	32	269	194	209	172	346	186	21	8.2	2.1
14	3.0	92	30	236	170	198	161	245	297	21	6.9	1.6
15	4.0	110	29	286	154	177	152	203	121	20	8.3	1.3
16	5.7	75	27	675	144	163	142	178	121	21	11	1.2
17	4.8	61	26	334	295	152	145	159	223	21	12	1.1
18	4.0	52	26	328	584	263	148	137	104	20	15	1.2
19	4.3	47	24	251	310	1330	196	122	82	17	12	1.2
20	4.3	44	24	215	250	518	438	109	90	16	8.1	2.9
21	4.1	42	24	184	227	4160	209	101	67	17	6.6	2.8
22	3.7	106	24	169	195	650	172	92	60	18	6.4	2.5
23	3.8	81	29	831	317	411	156	86	78	17	5.9	3.1
24	3.8	61	31	475	984	332	142	86	66	16	5.4	3.1
25	6.4	51	86	306	388	281	126	99	58	14	4.6	2.7
26	12	47	75	249	295	244	118	82	47	13	4.4	2.6
27	22	44	56	210	256	218	124	74	42	13	10	2.3
28	17	40	66	2420	231	196	108	73	186	12	16	1.9
29	10	39	57	840		178	99	67	111	12	6.9	1.6
30	6.7	39	61	433		163	95	62	75	11	4.2	1.3
31	5.0		55	337		150		58		21	3.4	
TOTAL	162.9	3446	1197	15119	10697	13513	6002	5491	2605	761	276.0	66.7
MEAN	5.25	115	38.6	488	382	436	200	177	86.8	24.5	8.90	2.22
MAX	22	904	86	3730	2050	4160	598	648	297	60	19	4.0
MIN	1.6	16	24	42	144	150	95	58	38	11	3.4	1.1
CFSM	.06	1.28	.43	5.44	4.26	4.86	2.23	1.98	.97		.10	.02
IN.	.07	1.43	.50	6.28	4.44	5.61	2.49	2.28	1.08	.32	.11	.03

e Estimated.

Jun 22 1972 dSep 3 1991

POTOMAC RIVER BASIN

01638480 CATOCTIN CREEK AT TAYLORSTOWN, VA--Continued

STATISTICS	OF	MONTHLY	MEAN	DATA	FOR	WATER	YEARS	1971	-	1998,	BY	WATER	YEAR	(WY)	
------------	----	---------	------	------	-----	-------	-------	------	---	-------	----	-------	------	------	--

	OG.I.	NOV	DEC	JAN	FEB		MAR	APR	MAY	JUN	JUL	AUG		SEP
MEAN	68.6	63.8	119	143	153		196	165	126	94.9	49.5	33.0		46.8
MAX	414	148	358	488	382		580	476	445	706	284	186		281
(WY)	1977	1997	1997	1998	1998		1993	1983	1989	1972	1987	1984		1979
MIN	2.07	5.16	10.1	10.2	40.4		43.7	48.6	31.4	7.53	2.80	2.02		1.05
(WY)	1987	1992	1981	1981	1992		1981	1985	1977	1986	1986	1991		1986
SUMMARY	STATIST	ics	FOR 1	1997 CALEN	DAR YE	AR	F	OR 1998 WAT	TER YEAR	1	WATER YE	ARS 197	1 -	1998
ANNUAL	TOTAL			23920.9				59336.6						
ANNUAL	MEAN			65.5				163			104			
HIGHEST	' ANNUAL I	MEAN									196			1972
LOWEST	ANNUAL MI	EAN									34.6			1981
HIGHEST	DAILY M	EAN		904	Nov	8		4160	Mar 21		e9530	Jun	22	1972
LOWEST	DAILY ME	AN		1.4	aSep	2		1.1	Sep 17		.18	Sep	3	1991
ANNUAL	SEVEN-DAY	Y MINIMUM		1.5	bSep	1		1.4	Sep 13		.27	Sep	21	1986
INSTANT	ANEOUS PI	EAK FLOW						7140	Mar 21		23800	Jun	22	1972

ANNUAL MEAN	65.5	103		T04
HIGHEST ANNUAL MEAN				196
LOWEST ANNUAL MEAN				34.6
HIGHEST DAILY MEAN	904 Nov	8 4160	Mar 21	e9530
LOWEST DAILY MEAN	1.4 aSep	2 1.1	Sep 17	.18
ANNUAL SEVEN-DAY MINIMUM	1.5 bSep	1 1.4	Sep 13	.27
INSTANTANEOUS PEAK FLOW		7140	Mar 21	23800
INSTANTANEOUS PEAK STAGE		13.43	Mar 21	c23.83
INSTANTANEOUS LOW FLOW		.92	Sep 17	.15
ANNUAL RUNOFF (CFSM)	.73	1.81		1.16
ANNUAL RUNOFF (INCHES)	9.93	24.64		15.80
10 PERCENT EXCEEDS	146	333		214
50 PERCENT EXCEEDS	39	60		50
90 PERCENT EXCEEDS	2.7	3.0		7.9

a Also Sept. 4, 5, 1997.
b Also Sept. 2, 1997.
c From floodmarks, site and datum then in use.
d Also Sept. 4, 1991.
e Estimated.

01644000 GOOSE CREEK NEAR LEESBURG, VA

LOCATION.--Lat 39°01'10", long 77°34'40", Loudoun County, Hydrologic Unit 02070008, on left bank 400 ft upstream from bridge on State Highway 621 at Evergreen Mills, 1.4 mi downstream from Little River, 6.7 mi south of Leesburg, and 10.9 mi upstream from mouth.

DRAINAGE AREA. -- 332 mi².

PERIOD OF RECORD.--July 1909 to April 1911, September 1911 to December 1912, January 1930 to current year.

REVISED RECORDS.--WSP 851: 1935-37. WSP 951: 1933(M), 1937. WSP 1302: 1934-35(M). WSP 2103: Drainage area. WDR VA-72-1: 1937(M), 1943(M), 1951(M), 1956(M). WDR VA-79-1: 1978.

GAGE.--Water-stage recorder. Datum of gage is 248.93 ft above sea level. July 12, 1909, to Dec. 31, 1912, nonrecording gage at site 1,000 ft downstream at different datum. Jan. 21, 1930, to Nov. 28, 1938, nonrecording gage at site 400 ft downstream at datum 4.20 ft lower than present datum.

REMARKS.--Records good except for period of doubtful gage-height record, Jan. 6, 7, which is fair. National Weather Service gage-height telemeter at station. Maximum discharge, $78,100 \text{ ft}^3/\text{s}$, from rating curve extended above $11,000 \text{ ft}^3/\text{s}$ on basis of slope-area measurement of peak flow. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION. -- Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in May or June 1889 reached a stage of about 29 ft, discharge, about $45,000~{\rm ft}^3/{\rm s}$, site and datum in use 1930-38, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 4,000 ft³/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Nov. 7	2330	6,210	9.68	Feb. 5	0930	8,390	12.26
Jan. 9	0100	8,090	11.95	Feb. 18	0300	4,960	8.04
Jan. 23	2000	4,530	7.40	Mar. 19	0900	4,750	7.73
Jan. 29	0100	10,300	14.02	Mar. 21	1330	*16,500	*17.43

Minimum discharge, 3.4 ft³/s, Sept. 14, 16, 17.

		DISCHARGE,	IN CU	BIC FEET		D, WATER Y MEAN VA		BER 1997 '	TO SEPTEME	BER 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	37	134	184	158	1120	879	677	350	195	249	31	8.4
2	20	512	163	186	940	794	876	697	178	192	28	8.0
3	13	408	141	198	832	985	578	606	211	161	25	7.5
4	10	167	138	235	2270	749	662	543	180	147	23	6.8
5	9.0	113	139	278	7470	654	690	476	168	144	21	6.3
6	8.1	87	132	e240	2970	595	541	491	163	133	19	5.9
7	8.1	1930	120	e225	1880	558	490	417	155	121	18	5.4
8	6.8	3340	114	3300	1470	916	471	2040	143	126	17	8.0
9	6.2	1180	112	3740	1160	2310	954	1950	137	142	18	13
10	6.0	729	123	1380	988	1540	1590	1210	180	136	21	6.8
10	0.0	129	123	1300	900	1340	1390	1210	100	130	21	0.0
11	5.9	502	148	955	884	1090	871	1020	240	112	29	5.3
12	6.3	392	138	736	1210	906	711	1070	445	93	26	4.3
13	6.5	322	126	645	850	791	625	1050	702	85	28	3.7
14	6.4	412	119	535	728	734	567	793	979	79	23	3.5
15	8.7	453	113	638	661	659	536	684	447	74	22	3.7
16	15	332	108	1930	609	591	497	596	1070	72	48	3.4
17	10	272	107	1050	1400	552	492	535	1440	72	41	3.6
18	22	236	105	998	3260	848	476	463	501	71	49	12
19	23	219	102	779	1870	3190	500	415	362	63	38	19
20	25	204	99	679	1400	1800	1410	378	316	57	27	9.6
21	23	199	98	581	1170	11800	769	348	254	52	22	6.3
22	19	378	98	526	948	3500	649	323	230	47	19	5.6
23	16	317	115	2170	1180	2080	580	304	319	43	18	5.0
24	17	253	123	2040	3100	1520	520	302	706	45	16	4.4
25	26	219	241	1380	1670	1210	455	336	301	45	14	4.1
26	44	205	268	1060	1280	1030	420	300	224	47	12	4.5
27	65	196	214	879	1100	910	422	266	188	44	27	5.5
28	71	177	242	6260	969	815	385	269	526	37	19	5.2
29	54	170	218	5500		729	346	244	461	33	12	4.8
30	40	168	230	2030		673	327	221	311	31	9.8	4.6
	32	108		1450		609	327	207	311			
31	32		218	1450		609		207		31	9.1	
TOTAL	660.0	14226	4596	42761	45389	46017	19087	18904	11732	2784	729.9	194.0
MEAN	21.3	474	148	1379	1621	1484	636	610	391	89.8	23.5	6.47
MAX	71	3340	268	6260	7470	11800	1590	2040	1440	249	49	19
MIN	5.9	87	98	158	609	552	327	207	137	31	9.1	3.4
CFSM	.06	1.43	.45	4.15	4.88	4.47	1.92	1.84	1.18	. 27	.07	.02
IN.	.07	1.59	.51	4.79	5.09	5.16	2.14	2.12	1.31	.31	.08	.02

e Estimated.

01644000 GOOSE CREEK NEAR LEESBURG, VA--Continued

STATIST	TICS OF M	ONTHLY MEAN	DATA	FOR WATER	YEARS 1909	- 1913,	1930 -	1998, BY	WATER YEAR	(WY)		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	197	223	334	421	521	599	519	372	263	141	157	134
MAX	2265	1155	1316	1499	1621	1892	1766	1322	2887	1207	1188	1054
(WY)	1943	1933	1993	1996	1998	1993	1983	1989	1972	1956	1937	1945
MIN	2.12	3.83	14.8	25.8	26.3	83.6	141	85.5	38.7	9.61	1.86	1.38
(WY)	1931	1931	1966	1966	1931	1931	1981	1969	1986	1966	1930	1985
SUMMAR	Y STATIST	ICS	FOR	R 1997 CAL	ENDAR YEAR	F	OR 1998	WATER YEA	ıR	WATER Y	EARS 1910	
											1930	- 1998
ANNUAL	ΤΟΤΔΙ.			94421.	4		207079.	9				
ANNUAL				259	=		567			326		
	r annual	MEAN		233			307			664		1972
	ANNUAL M									55.2	?	1931
	r Daily M			3650	Mar 4		11800	Mar 2	1	e53600		22 1972
	DAILY ME			3.			3.			.4		27 1941
ANNUAL	SEVEN-DA	Y MINIMUM		5.	-		3.	_		.4	_	19 1985
	TANEOUS P				5		16500	Mar 2		78100		22 1972
INSTAN	TANEOUS P	EAK STAGE					17.	43 Mar 2	:1	b30.5		22 1972
INSTAN	TANEOUS L	OW FLOW					3.	4 cSep 1	.4	(d)	ı	(f)
ANNUAL	RUNOFF (CFSM)			78		1.	71		. 9		
ANNUAL	RUNOFF (INCHES)		10.			23.	20		13.3	33	
10 PERG	CENT EXCE	EDS		553			1380			704		

235

8.9

161

18

140

9.4

50 PERCENT EXCEEDS

90 PERCENT EXCEEDS

a Also Sept. 28-30, 1941. b From high-water mark in gage house. c Also Sept. 16, 17, 1998. d Not determined. e Estimated. f Probably occurred Sept. 27-30, 1941.

01646000 DIFFICULT RUN NEAR GREAT FALLS, VA

LOCATION.--Lat 38°58'33", long 77°14'46", Fairfax County, Hydrologic Unit 02070008, on right bank 250 ft downstream from bridge on State Highway 193, 300 ft downstream from Rocky Run, 0.7 mi upstream from mouth, and 1.5 mi southeast of Great Falls.

DRAINAGE AREA. -- 57.9 mi².

PERIOD OF RECORD.--October 1934 to current year. Monthly discharge only October to December 1934, published in WSP 1302.

REVISED RECORDS.--WSP 951: 1936(M), 1937-38, 1939-40(M). WSP 2103: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 151.30 ft above sea level.

REMARKS.--Records good except those for periods of doubtful gage-height record, Dec. 16-21, and June 8, 9, which are fair. Maximum discharge, 32,200 ft³/s, from rating curve extended above 1,600 ft³/s on basis of contracted-opening measurement at gage height 13.18 ft and slope-area measurement at gage height 21.40 ft. Minimum gage height, 1.65 ft, Sept. 9, 10, 1966. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 1,000 ${\rm ft}^3/{\rm s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Nov. 8	0100	1,540	8.16	Feb. 18	0330	1,000	7.02
Jan. 23	2030	1,320	7.71	Feb. 23	2400	1,160	7.38
Jan. 28	1900	2,060	9.08	Mar. 19	0700	1,260	7.59
Feb. 5	0430	2,180	9.29	Mar. 21	0630	*3,030	*10.51

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Minimum discharge, 4.7 ft³/s, Sept. 29, 30.

		DISCH	ARGE, IN (COBIC FEE.		JND, WATER ILY MEAN		TOBER 199	/ TO SEPTI	EMBER 199	18	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	15	126	39	44	73	84	117	108	40	48	26	6.1
2	13	122	39	43	67	93	360	216	38	35	18	8.2
3	13	85	30	45	68	387	108	230	50	33	16	7.3
4	13	39	32	44	676	121	168	195	36	32	15	6.3
5	13	29	33	41	1480	94	112	118	36	32	13	6.0
6	12	26	31	41	224	85	89	215	36	29	12	5.5
7	12	600	30	52	126	80	84	103	33	28	12	5.4
8	11	721	30	95	99	184	82	402	e31	91	12	28
9	12	261	32	63	93	499	373	144	e30	51	12	10
10	12	92	45	50	86	155	217	107	56	34	175	5.9
11	11	57	53	44	71	100	112	104	44	29	83	5.7
12	11	45	36	42	131	89	93	227	231	27	29	5.3
13	12	42	32	44	75	82	86	155	196	26	19	6.4
14	12	197	31	40	67	81	84	93	114	25	17	5.3
15	20	99	31	112	63	76	82	79	185	25	16	5.3
16	17	54	e30	217	61	74	78	71	265	25	15	5.0
17	16	48	e30	73	333	72	135	67	83	24	15	7.5
18	173	51	e29	65	484	227	124	63	54	33	19	45
19	35	47	e29	55	136	753	131	59	48	23	13	12
20	22	42	e28	51	102	212	247	57	102	22	12	7.7
21	18	48	e28	47	90	1510	101	54	49	24	11	7.2
22	16	122	35	45	78	275	86	51	45	37	11	65
23	19	58	72	634	325	151	82	50	50	22	10	19
24	19	47	44	290	880	120	78	49	154	23	10	8.2
25	155	43	139	120	185	106	73	64	53	19	9.4	6.4
26	49	43	60	75	116	100	70	49	42	21	8.3	7.8
27	149	40	57	66	99	96	82	47	38	20	8.3	6.9
28	38	38	77	1380	91	92	69	47	109	18	8.6	7.3
29	25	36	54	419		87	67	44	59	18	7.3	5.6
30	22	33	60	115		84	66	42	45	17	6.9	7.5
31	21		56	76		82		40		58	6.3	
TOTAL	986	3291	1352	4528	6379	6251	3656	3350	2352	949	646.1	334.8
MEAN	31.8	110	43.6	146	228	202	122	108	78.4	30.6	20.8	11.2
MAX	173	721	139	1380	1480	1510	373	402	265	91	175	65
MIN	11	26	28	40	61	72	66	40	30	17	6.3	5.0
CFSM	.55	1.89	.75	2.52	3.93	3.48	2.10	1.87	1.35	.53	.36	.19
IN.	.63	2.11	. 87	2.91	4.10	4.02	2.35	2.15	1.51	.61	.42	.22
TIN.	.03	۷.11	.07	4.71	4.10	4.02	4.33	2.13	1.01	.01	. 42	. 44

e Estimated.

POTOMAC RIVER BASIN

01646000 DIFFICULT RUN NEAR GREAT FALLS, VA--Continued

STATISTICS	OF	MONTHLY	MEAN	DATA	FOR	WATER	YEARS	1935	_	1998.	BY	WATER	YEAR	(WY)

	OC.I.	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	40.4	51.2	61.0	75.3	83.1	90.6	82.5	72.1	67.9	41.3	38.2	36.4
MAX	317	116	165	194	228	227	224	203	1210	115	143	245
(WY)	1980	1973	1997	1996	1998	1993	1973	1989	1972	1975	1955	1975
MIN	4.69	7.75	11.4	16.5	32.4	33.2	31.5	21.8	10.0	4.52	1.88	5.57
(WY)	1942	1942	1966	1966	1942	1981	1985	1955	1986	1955	1966	1986
SUMMAR	Y STATIST	ICS	FOR :	1997 CALEN	DAR YEAR	F	OR 1998 W <i>I</i>	ATER YEAR		WATER YE	ARS 1935	- 1998
ANNUAL	TOTAL			25582.4			34074.9					
ANNUAL	MEAN			70.1			93.4			61.5		
HIGHES	T ANNUAL I	MEAN								184		1972
LOWEST	ANNUAL M	EAN								28.4		1966
HIGHES	T DAILY M	EAN		1140	May 26		1510	Mar 21		e25000	Jun :	22 1972
LOWEST	DAILY ME	AN		8.2	Aug 16		5.0	Sep 16		.10	aSep	7 1966

HIGHEST ANNUAL MEAN					184	1972
LOWEST ANNUAL MEAN					28.4	1966
HIGHEST DAILY MEAN	1140 May	26	1510	Mar 21	e25000	Jun 22 1972
LOWEST DAILY MEAN	8.2 Aug	, 16	5.0	Sep 16	.10	aSep 7 1966
ANNUAL SEVEN-DAY MINIMUM	8.9 Aug	f 10	5.6	Sep 10	.16	Sep 3 1966
INSTANTANEOUS PEAK FLOW			3030	Mar 21	32200	Jun 22 1972
INSTANTANEOUS PEAK STAGE			10.51	Mar 21	b21.40	Jun 22 1972
INSTANTANEOUS LOW FLOW			4.7	cSep 29	.05	dSep 9 1966
ANNUAL RUNOFF (CFSM)	1.21		1.61		1.06	
ANNUAL RUNOFF (INCHES)	16.44		21.89		14.44	
10 PERCENT EXCEEDS	126		189		105	
50 PERCENT EXCEEDS	51		49		38	
90 PERCENT EXCEEDS	14		11		13	

a Also Sept. 8, 9, 1966. b From floodmarks. c Also Sept. 30, 1998. d Also Sept. 10, 1966. e Estimated.

01654000 ACCOTINK CREEK NEAR ANNANDALE, VA

LOCATION.--Lat 38°48'46", long 77°13'43", Fairfax County, Hydrologic Unit 02070010, on left bank 800 ft upstream from bridge on State Highway 620, 0.2 mi upstream from Long Branch, and 2.3 mi southwest of Annandale.

DRAINAGE AREA. -- 23.5 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- March 1947 to current year (fragmentary prior to October 1947).

REVISED RECORDS. -- WSP 1502: 1952. WSP 2103: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 191.24 ft above sea level (levels by Stone and Webster Engineering Corporation). Prior to May 12, 1949, nonrecording gage at site 800 ft downstream at datum 0.33 ft lower.

May 12, 1949, to June 4, 1970, water-stage recorder at site 800 ft downstream at datum 0.33 ft lower.

REMARKS.--No estimated daily discharges. Records good. Maximum discharge, 12,000 ft³/s, from rating curve extended above 6,600 ft³/s on basis of contracted-opening and flow-over-road measurement of peak flow. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION. -- Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 1,400 ${\rm ft}^3/{\rm s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Nov. 7	2000	1,590	8.20	Feb. 17	2300	1,850	8.63
Jan. 23	1715	1,910	8.74	Mar. 19	0500	1,400	7.85
Jan. 28	1530	1,920	8.75	Mar. 21	0515	*2,670	*9.73
Feb. 5	0330	1,680	8.35	Jun. 15	2300	2,050	8.96

Minimum discharge, 0.40 ft³/s, Sept. 29, 30.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 1.7 70 76 88 10 8.7 15 19 11 2.0 5.2 . 85 2 5 9 109 200 8 3 8 4 1 2 29 8 1 14 83 3 1 81 3 1.2 8 5 5.7 8.9 13 206 2.0 153 12 7.6 2 8 .78 .80 4 1.2 4.8 6.4 8.1 699 31 98 70 7.4 7.4 2.6 7 7 5 1 2 3.9 7.8 7.7 676 23 25 65 7.1 2.4 .70 6 1.1 3.4 5.9 7.7 63 19 2.0 113 10 6.4 2.3 . 62 7.2 7 1.1 607 5.4 36 31 19 18 39 6.3 2.3 1.8 8 .99 181 5.2 41 22 123 17 181 6.8 74 2.2 23 114 2.2 9 .92 6.7 18 293 266 53 10 15 2.2 18 10 1.1 16 28 11 16 38 46 34 34 7.7 59 1.3 10 8.6 23 24 24 13 6.0 12 .88 11 1.1 15 43 12 1.1 7.7 7.1 8.2 63 21 20 145 145 5.5 3.6 .65 13 1.1 9.9 6.2 11 17 19 18 50 119 5.0 2.7 .56 14 1.5 125 8.1 15 19 18 21 4.8 .53 15 3.9 23 5.6 109 13 17 17 20 485 4.7 2.2 .52 16 2.5 10 5.6 13 16 16 18 82 5.0 2.1 . 69 7.7 1.5 17 37 5.6 16 363 16 88 16 21 11 13 18 131 7.2 5.6 18 291 123 29 15 13 12 7.8 1.8 19 4.5 6.8 5.3 37 385 87 4.7 2.2 11 14 11 1.3 20 2.5 11 27 116 62 13 63 4.2 1.7 .78 6.6 5.3 21 25 9.3 784 9.3 1.5 5.2 21 20 13 11 5.5 1.5 22 1.5 9.4 8.9 17 9.5 71 89 17 12 34 89 1.4 23 67 1.4 11 40 650 261 35 16 12 35 1.4 2.6 8.2 9.7 2.4 1.6 67 326 2.8 16 12 153 16 1.4 1.1 25 104 95 42 4.4 7.8 44 24 15 22 14 1.4 1.1 7.7 26 19 26 80 12 2.3 14 11 11 3.9 1.2 1.9 .95 2.7 34 7.0 26 30 2.2 21 21 11 9.1 3.8 1.7 .63 5 8 2.8 6.7 31 985 2.0 20 14 11 89 3.3 1 5 29 3.7 7.0 12 70 ---19 13 10 15 3.2 1.3 . 59 2.8 30 3.2 7.4 29 2.7 ___ 18 13 9.8 15 1.1 7.2 31 3.1 15 18 ___ 18 ___ 9.2 41 1.0 ___ TOTAL 437.71 1428.3 438.5 2352.3 3166 2689 1227 1476.0 1505.5 351.2 148.5 156.44 11.3 MEAN 14.1 47.6 14.1 75.9 113 86.7 40.9 47.6 50.2 4.79 5.21 MAX 131 607 95 985 699 784 266 200 485 74 59 89 .92 7.7 9.2 2.8 3.4 5.2 13 16 13 6.8 1.0 .52 CFSM 2.03 3.23 4.81 3.69 1.74 2.03 2.14 .22 .60 .60 .48 .20 .69 2.26 .69 3.72 5.01 4.26 1.94 2.34 2.38 .56 .24 . 25

Jun 22 1972 Jun 22 1972 fOct 9 1986

POTOMAC RIVER BASIN

01654000 ACCOTINK CREEK NEAR ANNANDALE, VA--Continued

STATISTICS	OF	MONTHLY	MEAN	DATA	FOR	WATER	YEARS	1948	_	1998.	BY	WATER	YEAR	(WY)

	OC.I.	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	,
MEAN	18.4	24.8	29.1	33.5	36.9	42.9	35.6	33.4	25.1	20.3	21.7	20.8	3
MAX	76.6	70.4	73.8	87.0	113	114	94.5	125	212	74.5	123	120)
(WY)	1980	1994	1997	1996	1998	1993	1983	1989	1972	1969	1967	1996	5
MIN	2.03	3.25	5.48	4.53	12.1	10.6	8.40	8.46	2.83	1.81	1.94	.45	5
(WY)	1955	1955	1966	1981	1978	1981	1985	1986	1986	1955	1957	1954	Ł
SUMMARY	STATIST	ICS	FOR 1	1997 CALENI	DAR YEAR	F	OR 1998 WA	TER YEAR		WATER YEA	ARS 1948	- 1998	}
ANNUAL '	TOTAL			9561.84			15376.45						
ANNUAL I	MEAN			26.2			42.1			28.5			
HIGHEST	ANNUAL I	MEAN								49.4		1972	2
LOWEST A	ANNUAL MI	EAN								14.3		1954	ŀ
HIGHEST	DAILY M	EAN		757	May 26		985	Jan 28		e3300	Jun :	22 1972	2
LOWEST I	DAILY MEA	AN		.90	Aug 13		.52	Sep 15		.02	aOct 1	10 1986	ŝ
ANNUAL S	SEVEN-DA	Y MINIMUM		1.0	bAug 8		.73	Sep 10		.11	Oct :	14 1988	3

ANNUAL MEAN	20.2	42.1	28.5	
HIGHEST ANNUAL MEAN			49.4	
LOWEST ANNUAL MEAN			14.3	
HIGHEST DAILY MEAN	757 May 26	985 Jan 28	e3300	
LOWEST DAILY MEAN	.90 Aug 13	.52 Sep 15	.02	è
ANNUAL SEVEN-DAY MINIMUM	1.0 bAug 8	.73 Sep 10	.11	
INSTANTANEOUS PEAK FLOW		2670 Mar 21	12000	
INSTANTANEOUS PEAK STAGE		9.73 Mar 21	c15.96	
INSTANTANEOUS LOW FLOW		.40 dSep 29	.02	
ANNUAL RUNOFF (CFSM)	1.11	1.79	1.21	
ANNUAL RUNOFF (INCHES)	15.14	24.34	16.47	
10 PERCENT EXCEEDS	54	89	51	
50 PERCENT EXCEEDS	12	12	12	
90 PERCENT EXCEEDS	1.4	1.4	3.6	

a Also Oct. 11, 12, 1986. b Also Aug. 9, 1997. c From high-water mark in gage house. d Also Sept. 30, 1998. e Estimated. f Also Oct. 10-13, 1986, and Oct. 18, 1988.

01654000 ACCOTINK CREEK NEAR ANNANDALE, VA--Continued (National water-quality assessment station)

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- April 1993 to August 1995, September 1997 to current year.

PH

DIS-

REMARKS.--These data are a part of the National Water-Quality Assessment (NAWQA) program of the Potomac River Basin.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

BARO-

DATE	TIME	CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
OCT 1997 30	1030	3.2	138	7.0	22.0	8.0	763	9.8	11	3.2	9.9	2.6
NOV 24	1345	8.1	169	7.8	4.0	7.0	763	10.8	13	4.2	11	3.3
DEC 17	1145	5.7	252	7.3	12.0	2.5	755	13.1	17	6.7	17	2.1
JAN 1998 22	1200	8.9	377	7.2	4.0	2.5	766	12.6	18	6.6	41	2.3
MAR 05 31 APR	1300 1330	23 18	200 246	7.1 7.1	8.0 26.5	6.5 19.5	762 760	12.1 10.9	15 17	5.3 7.1	15 16	1.8 1.8
15 28 MAY	1500 1215	17 13	238 238	7.9 7.4	27.0 22.0	17.5 14.0	756 768	10.5 9.9	11	6.2	8.2	6.3
14 JUN	1400	24	205	7.3	26.0	17.0	763	8.6	17	5.4	14	2.3
02 11 24	1145 1445 0945	8.1 11 47	 170 96	7.1 6.5	20.0 27.0	16.5 23.0	 762 761	8.2 7.0	 13 	4.6	11	2.2
JUL 15 29 AUG	1830 1300	4.8 3.4	236 219	7.5 7.1	23.0 28.5	24.0 25.0	 757	8.2 7.5				
12 26	1500 1715	3.2 1.2	131 203	6.7 7.1	27.5 28.5	26.0 27.0	761 757	6.8 7.3	9.8	3.1	7.5	2.8
SEP 23	1415	2.3	113	6.7	19.5	21.0	763	7.2	8.3	2.6	6.7	3.0
DATE	SULF DIS SOL (MG AS S	- DIS- VED SOLV /L (MG/ O4) AS (E, RIDI - DIS VED SOLV /L (MG, CL) AS I	E, DIS S- SOL VED (MG /L AS F) SIO	VED DIS /L FIE MG/L 2) HCC	TE BONA TER WAT IT DIS LD FIE LAS MG/L 03 CC	TE LINI TER WAT IT TOT LD FIE AS MG/L 3 CAC	TTY RESIDIS AT 1 IT DEGLED DI LAS SOL	DUE GE 80 NITR 6. C DI 5. SOL VED (MG 6/L) AS	N, GE ITE NO2+ S- DI VED SOL /L (MG N) AS	N, GE NO3 AMMC S- DI VED SOL //L (MG N) AS	IS- LVED E/L N)
OCT 1997 30	7.	9 18	<.:	10 7.	5 2	26 0	2	21 8	35 <.0	10 .4	97 <.0)15
NOV 24	9.	3 22	<	10 10	4	10 0	3	33 10	06 <.0	10 .3	80 <.0	120
DEC 17 JAN 1998	9.	4 41	<	10 14	5	0 0	4	1 15	52 <.0	10 .8	96 <.0	120
22 MAR	11	80	<	10 13	4	18 0	4	10 20	.0	15 1.1	8 <.0	120
05 31 APR	12 9.	32 6 41	<			10 0 51 0		33 13 12 14		12 1.1 10 .7)20)22
15 28	12_	_ 15 		16 4. 		15 O		37 14 		40 1.0		L09
MAY 14 JUN	10	26	<			19 0		10 12		17 1.0)57
02 11 24	8.	4 21		13 11	3	19 0	3	32 11		31 1.0	4 .0)92
JUL 15 29	-								0	15 .8	18 .0)63
AUG 12 26	6.	6 15	.:	11 6.	6 2	19 0	2	24 8	36 .0	13 .5	98 .0)70
SEP 23	7.	6 13	.:	10 4.	5 -			7	70 .0	20 .7	62 .1	102

< Actual value is known to be less than the value shown.

POTOMAC RIVER BASIN

01654000 ACCOTINK CREEK NEAR ANNANDALE, VA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DATE	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660)	ACETO- CHLOR, WATER FLIRD REC (UG/L) (49260)	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)
OCT 1997 30	.29	<.20	.037	<.010	<.010	120	48	<.003	<.002	<.002	.004
NOV 24	.31	.22	.012	<.010	.024	370	100	<.003	<.002	<.002	.006
DEC 17	.12	.10	.030	<.010	<.010	200	116	<.003	<.002	<.002	.005
JAN 1998 22	.14	<.10	.012	<.010	<.010	160	156				
MAR 05	.18	.16	.012	.012	.016	130	106				
31 APR	.15	.12	.016	<.010	.011	190	54				
15 28 MAY	1.7	1.1	.343	.097	.072	720 	157 	<.003 <.003	<.002 .0089	<.002 <.002	E.004 .032
14 JUN	.37	.26	.024	<.010	.014	190	87	<.003	<.002	<.002	.023
02 11 24	 .41 	.34	.027	.012	.017	150 	 59 	<.003 <.003 <.003	<.002 <.002 <.002	<.002 <.002 <.002	.015 .055 .013
JUL 15 29 AUG	.21	.14	<.010	<.010	.017			<.003 <.003	<.002 <.002	<.002 <.002	.014
12 26 SEP	.43	.40	.025	.019	<.010	27 	84	<.003 <.003	<.002 <.002	<.002 <.002	.005
23	.57	.40	.101	.028	.030	52	53	<.003	<.002	<.002	<.001
DATE	ALPHA BHC DIS- SOLVED (UG/L) (34253)	BEN- FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	BUTYL- ATE, WATER, DISS, REC (UG/L) (04028)	CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	CARBO- FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674)	CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)	CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)	DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	P,P' DDE DISSOLV (UG/L) (34653)	DI- ELDRIN DIS- SOLVED (UG/L) (39381)
DATE OCT 1997 30	BHC DIS- SOLVED (UG/L)	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L)	ATE, WATER, DISS, REC (UG/L)	BARYL WATER FLTRD 0.7 U GF, REC (UG/L)	FURAN WATER FLTRD 0.7 U GF, REC (UG/L)	PYRIFOS DIS- SOLVED (UG/L)	ZINE, WATER, DISS, REC (UG/L)	WATER FLTRD 0.7 U GF, REC (UG/L)	ATRA- ZINE, WATER, DISS, REC (UG/L)	DDE DISSOLV (UG/L)	ELDRIN DIS- SOLVED (UG/L)
OCT 1997 30 NOV 24	BHC DIS- SOLVED (UG/L) (34253)	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	ATE, WATER, DISS, REC (UG/L) (04028)	BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674)	PYRIFOS DIS- SOLVED (UG/L) (38933)	ZINE, WATER, DISS, REC (UG/L) (04041)	WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	DDE DISSOLV (UG/L) (34653)	DIS- SOLVED (UG/L) (39381)
OCT 1997 30 NOV 24 DEC 17	BHC DIS- SOLVED (UG/L) (34253)	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	ATE, WATER, DISS, REC (UG/L) (04028)	BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674)	PYRIFOS DIS- SOLVED (UG/L) (38933)	ZINE, WATER, DISS, REC (UG/L) (04041)	WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	DDE DISSOLV (UG/L) (34653)	ELDRIN DIS- SOLVED (UG/L) (39381)
OCT 1997 30 NOV 24 DEC 17 JAN 1998 22	BHC DIS- SOLVED (UG/L) (34253) <.002	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.002	ATE, WATER, DISS, REC (UG/L) (04028) <.002	BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) E.0277	FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) < .003 < .003	PYRIFOS DIS- SOLVED (UG/L) (38933) .0067	ZINE, WATER, DISS, REC (UG/L) (04041) <.004	WATER FLTRD 0.7 U GF, REC (UG/L) (82682) E.0012	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) <.002	DDE DISSOLV (UG/L) (34653) <.006	ELDRIN DIS- SOLVED (UG/L) (39381) <.001
OCT 1997 30 NOV 24 DEC 17 JAN 1998 22 MAR 05	BHC DIS- DIS- SOLVED (UG/L) (34253) <.002 <.002 <.002	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.002 <.002 <.002	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002	BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) E.0277 E.0134 <.003	FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) < .003 < .003 < .003	PYRIFOS DIS- SOLVED (UG/L) (38933) .0067 <.004 .0052	ZINE, WATER, DISS, REC (UG/L) (04041) <.004 <.004	WATER FLTRD 0.7 U GF, REC (UG/L) (82682) E.0012 .0101 .0236	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) <.002 <.002 E.0052	DDE DISSOLV (UG/L) (34653) <.006 <.006 <.006	ELDRIN DIS- SOLVED (UG/L) (39381) <.001 <.001
OCT 1997 30 NOV 24 DEC 17 JAN 1998 22 MAR 05 31	BHC DIS- SOLVED (UG/L) (34253) <.002 <.002 <.002	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.002 <.002 <.002	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002	BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) E.0277 E.0134 <.003	FURAN WATER FLIRED 0.7 U GF, REC (UG/L) (82674) <- 0.003 <003 <003	PYRIFOS DIS- SOLVED (UG/L) (38933) .0067 <.004 .0052	ZINE, WATER, DISS, REC (UG/L) (04041) <.004 <.004	WATER FLTRD 0.7 U GF, REC (UG/L) (82682) E.0012 .0101 .0236	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) <.002 <.002 E.0052	DDE DISSOLV (UG/L) (34653) <.006 <.006	ELDRIN DIS- SOLVED (UG/L) (39381) <.001 <.001
OCT 1997 30 NOV 24 DEC 17 JAN 1998 22 MAR 05 31 APR 15 28	BHC DIS- DIS- SOLVED (UG/L) (34253) <.002 <.002 <.002	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.002 <.002 <.002	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002	BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) E.0277 E.0134 <.003	FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) < .003 < .003 < .003	PYRIFOS DIS- SOLVED (UG/L) (38933) .0067 <.004 .0052	ZINE, WATER, DISS, REC (UG/L) (04041) <.004 <.004	WATER FLTRD 0.7 U GF, REC (UG/L) (82682) E.0012 .0101 .0236	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) <.002 <.002 E.0052	DDE DISSOLV (UG/L) (34653) <.006 <.006	ELDRIN DIS- SOLVED (UG/L) (39381) <.001 <.001
OCT 1997 30 NOV 24 DEC 17 JAN 1998 22 MAR 05 31 APR 15 28 MAY	BHC DIS- DIS- SOLVED (UG/L) (34253) <.002 <.002 <.002 <.002	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.002 <.002 <.002	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002	BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) E.0277 E.0134 <.003	FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) < .003 < .003 < .003 < .003	PYRIFOS DIS- SOLVED (UG/L) (38933) .0067 <.004 .0052 E.0036	ZINE, WATER, DISS, REC (UG/L) (04041) <.004 <.004 <.004	WATER FLTRD 0.7 U GF, REC (UG/L) (82682) E.0012 .0101 .0236 E.0010	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) <.002 <.002 E.0052	DDE DISSOLV (UG/L) (34653) <.006 <.006 	ELDRIN DIS- SOLVED (UG/L) (39381) <.001 <.001 <.001
OCT 1997 30 NOV 24 DEC 17 JAN 1998 22 MAR 05 31 APR 15 28 MAY 14 JUN 02 11 24	BHC DIS- SOLVED (UG/L) (34253) <.002 <.002 <.002 <.002 <.002 <.002	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.002 <.002 <.002 <.002 .0046	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 <.002 <.002 <.002	BARYL WATER FLITED 0.7 U GF, REC (UG/L) (82680) E.0277 E.0134 <.003	FURAN WATER FLIRED 0.7 U GF, REC (UG/L) (82674) <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003	PYRIFOS DIS- SOLVED (UG/L) (38933) .0067 <.004 .0052 E.0036 .0050	ZINE, WATER, DISS, REC (UG/L) (04041) <.004 <.004 <.004 .009	WATER FLTRD 0.7 U GF, REC (UG/L) (82682) E.0012 .0101 .0236 E.0010 E.0016	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) <.002 <.002 E.0052	DDE DISSOLV (UG/L) (34653) <.006 <.006 <.006 <.006	ELDRIN DIS- SOLVED (UG/L) (39381) <.001 <.001 <.001 <.001 <.001
OCT 1997 30 NOV 24 DEC 17 JAN 1998 22 MAR 05 31 APR 15 28 MAY 14 JUN 02 11 24 JUL 15 29	BHC DIS- DIS- SOLVED (UG/L) (34253) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.002 <.002 	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002	BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) E.0277 E.0134 <.003 <.003 E.0271 E.0174 <.003 E.132	FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003	PYRIFOS DIS- SOLVED (UG/L) (38933) .0067 <.004 .0052 E.0036 .0050 .0211 <.004 .0157	ZINE, WATER, DISS, REC (UG/L) (04041) <.004 <.004 <.004 .0093 <.004 <.004 <.004	WATER FLTRD 0.7 U GF, REC (UG/L) (82682) E.0012 .0101 .0236 E.0010 E.0016 E.0019	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) <.002 <.002 E.0052 E.0037 E.0048 E.0042 E.0045 E.0045	DDE DISSOLV (UG/L) (34653) <.006 <.006 <.006 <.006 <.006 <.006 <.006	ELDRIN DIS- SOLVED (UG/L) (39381) <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001
OCT 1997 30 NOV 24 DEC 17 JAN 1998 22 MAR 05 31 APR 15 28 MAY 14 JUN 02 11 24 JUL 15	BHC DIS- DIS- SOLVED (UG/L) (34253) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.002 <.002 <.002 <.002 .0046 .0046 <.002 <.002 <.007 <.002	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002	BARYL WATER FLITED 0.7 U GF, REC (UG/L) (82680) E.0277 E.0134 <.003 <.003 E.0271 E.0174 <.003 E.132 E1.18 E.0096	FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003	PYRIFOS DIS- SOLVED (UG/L) (38933) .0067 <.004 .0052 E.0036 .0050 .0211 <.004 .0157 <.004 <.004	ZINE, WATER, DISS, REC (UG/L) (04041) <.004 <.004 <.004 .0093 <.004 <.004 <.004 <.004 <.004	WATER FLTRD 0.7 U GF, REC (UG/L) (82682) E.0012 .0101 .0236 	ATRA-ZINE, WATER, DISS, REC (UG/L) (04040) <.002 <.002 E.0052 E.0037 E.0048 E.0042 E.0045 E.0124 E.0067	DDE DISSOLV (UG/L) (34653) <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006	ELDRIN DIS- SOLVED (UG/L) (39381) <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001

 $[\]mbox{<}$ Actual value is known to be less than the value shown. $\mbox{\ensuremath{\texttt{E}}}$ Estimated.

POTOMAC RIVER BASIN

01654000 ACCOTINK CREEK NEAR ANNANDALE, VA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DATE	DISUL- FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	DI- AZINON, DIS- SOLVED (UG/L) (39572)	EPTC WATER FLTRD 0.7 U GF, REC (UG/L) (82668)	ETHO- PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672)	ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663)	FONOFOS WATER DISS REC (UG/L) (04095)	LINDANE DIS- SOLVED (UG/L) (39341)	LIN- URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666)	METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667)	MOL- INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671)	METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)
OCT 1997 30	<.017	.050	<.002	<.003	<.004	E.0032	<.004	<.002	<.006	<.004	<.001
NOV 24	<.017	.068	<.002	<.003	<.004	<.003	<.004	<.002	<.006	<.004	<.001
DEC 17	<.017	.012	<.002	<.003	<.004	<.003	<.004	<.002	<.006	<.004	<.001
JAN 1998 22											
MAR 05 31 APR											
15 28	<.017 <.017	.029	<.002 <.002	<.003 <.003	<.004 <.004	<.003	<.004 <.004	<.002 <.002	<.006 <.006	<.004 <.004	<.001 <.001
MAY 14 JUN	<.017	.035	<.002	<.003	<.004	<.003	<.004	<.002	<.006	<.004	<.001
02 11 24 JUL	<.017 <.017 <.017	E.003 .126 .462	<.002 <.002 <.002	<.003 <.003 <.003	<.004 <.004 <.004	<.003 <.003 <.003	<.004 <.004 <.004	<.002 <.002 <.002	<.006 <.006 <.006	<.004 <.004 <.004	<.001 <.001 <.001
15 29 AUG	<.017 <.017	.024	<.002 <.002	<.003 <.003	<.004 <.004	<.003 <.003	<.004 .059	<.002 <.002	<.006 <.006	<.004 <.004	<.001 <.001
12 26 SEP	<.017 <.017	.167 .045	<.002 <.002	<.003 <.003	<.004 <.004	<.003 <.003	<.004 <.004	<.002 <.002	<.006 <.006	<.004 <.004	<.001 <.001
23	<.017	.102	<.002	<.003	<.004	<.003	<.004	<.002	<.006	<.004	<.001
DATE	MALA- THION, DIS- SOLVED (UG/L) (39532)	METO- LACHLOR WATER DISSOLV (UG/L) (39415)	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	PRO- PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	PRO- PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	PRON- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	PARA- THION, DIS- SOLVED (UG/L) (39542)	PRO- METON, WATER, DISS, REC (UG/L) (04037)
OCT 1997 30	<.005	.005	<.004	<.004	<.004	<.005	<.013	<.003	<.004	<.004	E.0172
NOV 24	<.010	.006	<.004	<.004	<.004	<.005	<.013	<.003	<.004	<.004	E.0172
DEC 17	<.005	.004	<.004	<.004	<.004	<.005	<.013	<.003	<.004	<.004	E.0124
JAN 1998 22 MAR											
05 31											
APR 15 28	<.005 .010	.011	<.004 <.070	<.004 <.004	.0300	<.005 <.005	<.013 <.013	<.003 <.003	<.004 <.004	<.004 <.004	E.0067
MAY 14 JUN	<.005	.044	<.004	<.004	.0374	<.005	<.013	<.003	<.004	<.004	.0181
02 11 24	<.005 .017 <.005	.009 .042 .025	<.004 <.004 <.004	<.004 <.004 <.004	<.004 .0498 .0512	<.005 <.005 <.005	<.013 <.013 <.013	<.003 <.003 <.003	<.004 <.004 <.004	<.004 <.004 <.004	E.0123 .0502 .0543
JUL 15 29 AUG	<.005 <.005	.009 .012	<.004 <.004	<.004 <.004	<.004 <.004	<.005 <.005	<.013 <.013	<.003 <.003	<.004 <.004	<.004 <.004	E.0159 .0267
12 26 SEP	<.005 <.005	.007	<.004 <.004	<.004 <.004	<.004 <.004	<.005 <.005	<.013 <.013	<.003 <.003	<.004 <.004	<.004 <.004	.0628 .0319
23	<.005	E.003	<.004	<.004	<.004	<.005	<.013	<.003	<.004	<.004	.0304

 $[\]mbox{<}$ Actual value is known to be less than the value shown. $\mbox{\ensuremath{\texttt{E}}}$ Estimated.

POTOMAC RIVER BASIN

01654000 ACCOTINK CREEK NEAR ANNANDALE, VA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

			NAPROP-	TER-	TRIAL-	TRI-	THIO-	TER-	TEBU-		
	PHORATE	PROP-	AMIDE	BACIL	LATE	FLUR-	BENCARB	BUFOS	THIURON	SI-	
	WATER	CHLOR,	WATER	WATER	WATER	ALIN	WATER	WATER	WATER	MAZINE,	SEDI-
	FLTRD	WATER,	FLTRD	FLTRD	FLTRD	WAT FLT	FLTRD	FLTRD	FLTRD	WATER,	MENT,
	0.7 U	DISS,	0.7 U	DISS,	SUS-						
DATE	GF, REC	REC	GF, REC	GF, REC	GF, REC	GF, REC	GF, REC	GF, REC	GF, REC	REC	PENDED
	(UG/L)	(MG/L)									
	(82664)	(04024)	(82684)	(82665)	(82678)	(82661)	(82681)	(82675)	(82670)	(04035)	(80154)
OCT 1997											
30	<.002	<.007	<.003	<.007	<.001	<.002	<.002	<.013	<.010	.0078	4
NOV	1.002	V.007	V.003	1.007	V.001	1.002	1.002	V.013	V.010	.0070	-
24	<.002	<.007	< .003	< .007	<.001	< .002	<.002	<.013	<.010	.0122	4
DEC	1.002									.0122	-
17	<.002	< .007	< .003	< .007	<.001	< .002	< .002	<.013	E.0041	.0152	1
JAN 1998											
22											1
MAR											
05											3
31											2
APR											
15	< .002	<.007	< .003	< .007	<.001	E.0021	< .002	<.013	<.010	.0100	8
28	< .002	<.007	< .003	<.007	<.001	.0059	<.002	<.013	<.010	.0184	
MAY											
14	<.002	<.007	< .003	< .007	<.001	.0053	< .002	<.013	<.010	.0243	11
JUN											
02	<.002	<.007	<.003	<.007	<.001	<.002	<.002	<.013	<.010	.0557	
11	<.002	<.007	<.003	<.007	<.001	< .002	< .002	<.013	<.010	.0326	15
24	<.002	<.007	<.003	<.007	<.001	.0075	<.002	<.013	<.010	.0158	
JUL											_
15	<.002	<.007	<.003	<.007	<.001	<.002	<.002	<.013	<.010	.0236	7
29	<.002	<.007	<.003	<.007	<.001	<.002	<.002	<.013	<.010	.0168	
AUG	000	0.05	000	005	0.01	000	000	010	010	010	1.0
12	<.002	<.007	<.003	<.007	<.001	<.002	<.002	<.013	<.010	<.013	13
26	<.002	<.007	<.003	<.007	<.001	<.002	<.002	<.013	<.010	.0101	
SEP	. 000	. 007	- 003	. 007	- 001	- 000	- 000	. 012	D 0075	. 005	26
23	<.002	<.007	<.003	<.007	<.001	<.002	<.002	<.013	E.0075	<.005	26

 $[\]mbox{<}$ Actual value is known to be less than the value shown. \mbox{E} Estimated.

01656000 CEDAR RUN NEAR CATLETT, VA

LOCATION.--Lat 38°38'12", long 77°37'31", Fauquier County, Hydrologic Unit 02070010, on right bank 100 ft downstream from bridge on State Highway 806, 0.9 mi downstream from Licking Run, and 1.4 mi southeast of Catlett.

DRAINAGE AREA. -- 93.4 mi².

PERIOD OF RECORD.--July 1950 to December 1986, January 1986 to September 1989 (annual maximum only), October 1989 to current year.

REVISED RECORDS.--WSP 2103: Drainage area. WDR VA-79-1: 1973-77(P). WDR VA-95-1: 1972-94 (M).

GAGE.--Water-stage recorder. Datum of gage is 199.15 ft above sea level. July 1950 to December 1986, water-stage recorder at same site and datum.

REMARKS.--Records good except those for period with ice effect, Jan. 1, and period with backwater, Aug. 30 to Sept. 18, which are fair. Maximum discharge, 32,500 ft³/s, from rating curve extended above 7,000 ft³/s, on basis of contracted-opening measurement of peak flow. No flow at times in many years. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Oct 15, 1942, reached a stage of about 22 ft, discharge not determined, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 1,800 ${\rm ft}^3/{\rm s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Nov. 7	1700	2,800	10.22	Feb. 18	0630	3,890	11.68
Jan. 23	1730	2,540	9.83	Mar. 19	0730	2,060	9.01
Jan. 28	1900	3,970	11.78	Mar. 21	0800	*6,060	*13.98
Feb. 5	0430	4.340	12.21				

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Minimum daily discharge, 0.12 ft^3/s , Sept. 15, 16.

					D	AILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	4.1 2.8 3.2 2.3 2.0	126 96 46 25 18	34 28 22 22 27	e52 53 67 71 63	162 135 125 1560 3060	129 132 234 130 108	113 336 138 171 166	68 260 341 316 204	41 27 21 17 17	33 26 16 13	3.4 2.8 2.2 1.8 1.6	e.67 e.78 e.92 e.62 e.40
6 7 8 9 10	2.6 2.1 1.3 1.6 2.2	13 1560 937 294 151	26 22 20 18 24	57 91 258 195 127	845 518 272 191 158	94 86 561 937 367	117 95 85 374 412	199 139 1290 631 315	15 13 11 11 47	11 8.2 9.3 14	1.9 1.6 1.4 1.5 2.0	e.32 e.29 e.50 e.20 e.16
11 12 13 14 15	2.6 2.7 2.8 2.4 3.3	98 74 77 252 205	44 37 31 27 23	93 75 71 60 142	147 238 157 126 109	194 147 126 116 101	198 140 113 99 96	249 518 367 203 149	46 51 110 134 294	8.1 6.0 4.7 4.1 4.1	2.0 2.6 2.1 1.8 1.8	e.15 e.15 e.14 e.14 e.12
16 17 18 19 20	1.9 2.4 63 32 15	141 93 64 49 39	24 25 25 22 19	442 192 165 121 102	99 826 2030 552 279	89 83 189 1260 526	81 107 112 118 368	113 94 74 61 52	730 232 109 72 57	4.1 3.9 4.2 3.3 2.7	2.3 2.0 2.3 2.5 1.9	e.12 e7.1 e30 6.9 2.4
21 22 23 24 25	7.8 4.2 3.2 2.2	37 107 73 66 47	16 17 48 41 224	76 66 1310 783 330	207 158 497 777 304	3710 870 482 250 189	160 117 101 88 70	46 39 34 34 74	42 69 115 205 63	2.6 3.0 2.2 31 9.9	1.4 1.2 1.2 1.0	1.3 .75 .76 1.3
26 27 28 29 30 31	19 46 20 10 7.1 4.9	40 36 29 28 28	132 107 141 99 105 97	196 180 2780 1270 455 222	195 157 138 	159 140 121 108 97 86	60 58 50 44 42	51 39 37 32 27 24	42 32 44 50 40	5.3 5.2 3.8 3.5 3.0	.73 .80 .82 .85 e.70 e.60	.76 .70 1.0 .74 .90
TOTAL MEAN MAX MIN CFSM IN.	290.7 9.38 63 1.3 .10	4849 162 1560 13 1.73 1.93	1547 49.9 224 16 .53 .62	10165 328 2780 52 3.51 4.05	14022 501 3060 99 5.36 5.58	11821 381 3710 83 4.08 4.71	4229 141 412 42 1.51 1.68	6080 196 1290 24 2.10 2.42	2757 91.9 730 11 .98 1.10	271.0 8.74 33 2.2 .09	51.63 1.67 3.4 .60 .02	61.59 2.05 30 .12 .02

e Estimated.

01656000 CEDAR RUN NEAR CATLETT, VA--Continued

STATISTICS OF MONTHLY	MEAN DATA F	OR WATER YEARS	1951 - 1987	. 1990 - 1998	. BY WATER YEAR (WY)

	OC.I.	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	46.8	64.7	111	149	171	178	125	75.1	72.1	30.4	45.5	38.8
MAX	450	248	379	467	501	531	544	210	917	323	407	388
(WY)	1980	1973	1993	1978	1998	1993	1983	1971	1972	1956	1955	1975
MIN	.40	3.15	3.53	4.64	28.0	22.3	19.6	9.41	2.90	.74	.58	.37
(WY)	1987	1966	1966	1981	1954	1981	1985	1956	1954	1963	1966	1954
SUMMARY	Y STATIST	ICS	FOR :	1997 CALEI	NDAR YEAR	F	OR 1998 W	ATER YEAR		WATER YE		- 1986 - 1998
ANNUAL	TOTAL			24124.07	7		56144.9	2				
ANNUAL	MEAN			66.1			154			92.1		
	T ANNUAL I ANNUAL M									171 27.6		1972 1954
	C DAILY M			1560	Nov 7		3710	Mar 21		e18500	Jun 2	22 1972

ANNUAL MEAN	66.1	154	92.1	
HIGHEST ANNUAL MEAN			171 1972	
LOWEST ANNUAL MEAN			27.6 1954	
HIGHEST DAILY MEAN	1560 Nov 7	3710 Mar 21	e18500 Jun 22 1972	
LOWEST DAILY MEAN	.70 aJul 22	e.12 bSep 15	.00 (c)	
ANNUAL SEVEN-DAY MINIMUM	1.1 Aug 9	e.14 Sep 10	.00 (d)	
INSTANTANEOUS PEAK FLOW		6060 Mar 21	32500 Jun 22 1972	
INSTANTANEOUS PEAK STAGE		13.98 Mar 21	f27.66 Jun 22 1972	
INSTANTANEOUS LOW FLOW		(g) (h)	.00 (j)	
ANNUAL RUNOFF (CFSM)	.71	1.65	.99	
ANNUAL RUNOFF (INCHES)	9.61	22.36	13.39	
10 PERCENT EXCEEDS	151	322	193	
50 PERCENT EXCEEDS	28	47	28	
90 PERCENT EXCEEDS	1.5	1.3	1.9	

Not determined.

h Probably occurred Sept. 16, 1998.

j Many days in 1954, 1957, 1959, 1963-64, 1966, 1983, 1991, and 1993.

Also Aug. 12, 1997. Also Sept. 16, 1998. Many days in 1954, 1957, 1959, 1963-64, 1966, 1983, and 1993. Many days in 1954, 1957, 1959, 1963-64, 1966, and 1983. Estimated.

a b c d e f

From floodmarks.

01666500 ROBINSON RIVER NEAR LOCUST DALE, VA

LOCATION.--Lat 38°19'30", long 78°05'45", Madison County, Hydrologic Unit 02080103, on right bank 100 ft upstream from bridge on State Highway 614, 1.1 mi upstream from Great Run, 1.7 mi upstream from mouth, 2.0 mi southeast of Locust Dale, and 3.4 mi downstream from Crooked Run.

DRAINAGE AREA. -- 179 mi².

PERIOD OF RECORD.--July 1943 to current year. Prior to October 1965, published as Robertson River near Locust Dale.

REVISED RECORDS.--WSP 1171: 1948(M). WSP 2103: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 283.70 ft above sea level.

REMARKS.--Records good except those for period with ice effect, Jan. 1, and periods of doubtful gage-height record, Jan. 8 to Feb. 4, Feb. 7-16, Feb. 21 to Mar. 11, Apr. 17-19, and May 3-7, which are fair. Maximum discharge, 25,400 ft³/s, from rating curve extended above 9,100 ft³/s on basis of contracted-opening measurement at gage height 20.17 ft. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Oct. 15, 1942, reached a stage of 23.9 ft, from floodmarks, discharge, about $44,000 \text{ ft}^3/\text{s}$.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 1,700 ${\rm ft}^3/{\rm s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Nov. 7	1630	5,840	14.36	Mar. 8	1930	Unknown	a15.94
Jan. 8	1630	Unknown	a16.95	Mar. 9	0900	Unknown	a15.36
Jan. 23	1430	Unknown	a11.99	Mar. 19	0500	2,300	9.07
Jan. 28	1700	Unknown	a17.81	Mar. 21	0430	6,580	14.91
Feb. 4	2000	Unknown	a17.64	May 5	0430	1,980	8.61
Feb. 17	2230	*11,600	*19.03	May 8	1100	8,270	16.72
Feb 24	0300	IInknown	a14 N9	=			

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

AUG

53

48

45

43

SEP

32

31

30 29

Minimum discharge, 17 ft³/s, Sept. 30.

					DA	ILLY MEAN	VALUES				
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	
1	93	144	135	e140	e530	e510	376	292	194	125	
2	80	377	126	147	e500	e540	371	467	183	110	
3	73	301	122	151	e450	e790	336	e375	177	104	
4	69	217	124	169	e2500	e650	442	e400	168	101	

5	65	177	123	181	5020	e460	413	e1070	172	100	41	27
6 7 8 9 10	61 57 55 53	154 2840 1580 653 433	118 115 112 112 118	185 230 e2400 e1500 e950	2280 e1200 e820 e750 e670	e435 e420 e720 e1600 e1100	361 351 319 579 688	e730 e570 5570 1330 848	168 158 152 150 184	93 89 96 116 127	40 38 38 77 116	25 25 44 40 31
11 12 13 14 15	51 49 50 50 51	333 276 239 283 273	131 123 118 116 111	e660 e450 e400 e340 e380	e610 e780 e650 e570 e500	e730 579 493 440 403	526 455 411 385 363	683 723 628 521 462	171 201 175 175 214	108 98 94 91 87	89 104 70 67 87	29 29 26 24 23
16 17 18 19 20	51 55 97 71 61	230 209 193 182 172	110 110 108 106 104	e800 e620 e410 e360 e325	e450 5350 3700 1170 835	373 351 441 1270 829	338 e374 e335 e411 741	420 403 365 340 320	214 207 161 146 152	86 96 122 90 86	71 110 199 96 75	22 22 26 27 27
21 22 23 24 25	56 54 52 52 86	167 192 171 157 148	103 106 127 119 216	e295 e265 e1150 e900 e730	e710 e670 e790 e1150 e730	3770 1070 776 650 565	481 420 386 358 329	303 280 270 264 328	134 127 247 291 154	81 76 72 71 68	67 62 58 54 50	26 26 37 30 25
26 27 28 29 30 31	96 178 111 89 80 76	145 140 136 134 132	190 175 185 169 177 166	e630 e450 e3700 e2050 e870 e670	e640 e570 e530 	510 471 443 408 391 366	311 297 278 263 254	258 248 246 225 209 202	131 120 121 216 149	65 63 71 67 58 54	46 43 41 38 37 34	27 27 24 20 18
TOTAL MEAN MAX MIN CFSM IN.	2175 70.2 178 49 .39 .45	10788 360 2840 132 2.01 2.24	4075 131 216 103 .73 .85	22508 726 3700 140 4.06 4.68	35125 1254 5350 450 7.01 7.30	22554 728 3770 351 4.06 4.69	11952 398 741 254 2.23 2.48	19350 624 5570 202 3.49 4.02	5212 174 291 120 .97 1.08	2765 89.2 127 54 .50 .57	2037 65.7 199 34 .37 .42	829 27.6 44 18 .15

e Estimated.

a May have been lower during period of estimated record, backwater from debris.

01666500 ROBINSON RIVER NEAR LOCUST DALE, VA--Continued

STATIST	TICS OF M	ONTHLY MEAN	DATA	FOR WATER	YEARS 1	944	- 1998,	BY WATER	YEAR (WY)					
	OCT	NOV	DEC	JAN	FEB	3	MAR	APR	MAY	JUN	JUL	AUG		SEP
MEAN	173	219	235	276	310		351	311	254	216	130	140		158
MAX	783	1350	624	752	1254		980	989	625	1154	522	1063		1119
(WY)	1991	1986	1973	1978	1998		1993	1983	1989	1995	1949	1955		1996
MIN	18.5	35.1	32.0	47.5	105		105	89.3	70.9	35.7	21.3	12.2		8.05
(WY)	1964	1966	1966	1966	1977		1981	1981	1977	1977	1944	1963		1954
SUMMAR	Y STATIST	ICS	FOR	1997 CAL	ENDAR YE	AR	F	OR 1998 WA	TER YEAR		WATER YE	ARS 1944	1 -	1998
ANNUAL	TOTAL			72613				139370						
ANNUAL	MEAN			199				382			231			
HIGHES	T ANNUAL	MEAN									445			1973
LOWEST	ANNUAL M	EAN									95.6			1981
HIGHES	T DAILY M	EAN		2840	Nov	7		5570	May 8		14700	Jun	22	1972
LOWEST	DAILY ME	AN		21	aSep	5		18	Sep 30		1.8	bSep	13	1954
ANNUAL	SEVEN-DA	Y MINIMUM		23	Sep	2		24	Sep 13		3.0	Sep	7	1966
INSTAN	TANEOUS P	EAK FLOW						11600	Feb 17		25400	Jun	27	1995
INSTAN	TANEOUS P	EAK STAGE						c19.03	Feb 17		c23.92	Sep	6	1996
INSTAN	TANEOUS L	OW FLOW						17	Sep 30		1.2	dSep	7	1954
ANNUAL	RUNOFF (CFSM)		1.	11			2.13			1.29			
ANNUAL	RUNOFF (INCHES)		15.	09			28.96			17.50			
10 PER	CENT EXCE	EDS		346				745			434			
50 PER	CENT EXCE	EDS		154				175			150			
90 PER	CENT EXCE	EDS		48				41			41			

a Also Sept. 6, 7, 1997. b Also Sept. 27, 1954. c Backwater from debris. d Also Sept. 13, 1954.

01667500 RAPIDAN RIVER NEAR CULPEPER, VA

LOCATION.--Lat 38°21'01", long 77°58'31", Culpeper County, Hydrologic Unit 02080103, on left bank 0.7 mi upstream from Cedar Run and bridge on U.S. Highway 522, 8.5 mi south of Culpeper, and at mile 29.6.

DRAINAGE AREA. -- 472 mi².

PERIOD OF RECORD.--October 1930 to current year. Monthly discharge only for some periods, published in WSP 1302.

REVISED RECORDS.--WSP 741: 1931. WSP 801: 1934(M), 1936(M). WSP 1081: 1943-46. WSP 1171: 1932(M), 1933-35. WSP 2103: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 241.36 ft above sea level.

REMARKS.--Records good except those for period with ice effect, Jan. 1, which is fair. Prior to 1977, diurnal fluctuation at low flow caused by mill at Rapidan, and since July 1986, by powerplant at same site. National Weather Service gage-height telemeter at station. Maximum discharge, $59,300~{\rm ft}^3/{\rm s}$, from rating curve extended above $43,000~{\rm ft}^3/{\rm s}$ on basis of slope-area measurement at gage height $30.26~{\rm ft}$. Several measure- ments of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of $4,500~{\rm ft}^3/{\rm s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Nov. 7	2115	10,200	10.96	Mar. 8	2345	4,550	6.06
Jan. 9	0115	10,000	10.84	Mar. 9	1615	5,640	7.10
Jan. 23	1845	6,400	7.79	Mar. 19	0830	7,140	8.45
Jan. 28	2345	13,700	13.65	Mar. 21	1030	14,200	14.02
Feb. 5	0445	15,300	14.82	May 5	1045	7,250	8.54
Feb. 18	0600	*18,700	*17.15	Mav 8	1815	16,600	15.73

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Minimum discharge, 32 ft³/s, Sept. 30.

	DAILY MEAN VALUES													
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP		
1	220	218	364	e375	1490	1330	944	746	522	343	101	64		
2	175	690	337	388	1270	1310	996	1360	488	290	91	60		
3	159	747	312	409	1140	1560	854	1210	472	267	83	59		
4	150	480	316	450	6440	1240	1110	1060	443	254	75	58		
5	143	391	320	487	12400	1150	1200	4130	455	251	70	56		
6	132	339	297	500	4240	1090	943	1990	449	232	66	51		
7	121	5030	282	672	3320	1040	889	1600	425	218	63	48		
8	114	5630	274	4480	2250	1870	825	12700	406	224	63	61		
9	111	2210	272	5660	1810	4410	1280	5220	394	261	71	96		
10	110	1470	283	2160	1530	2680	1960	2410	488	274	189	80		
11	105	1090	335	1560	1400	1920	1470	2000	489	227	178	68		
12	98	872	311	1230	2020	1620	1240	1990	522	197	222	62		
13	95	737	294	1050	1640	1430	1100	1850	502	190	154	58		
14	95	911	280	888	1470	1310	1020	1500	568	180	117	52		
15	97	897	270	966	1310	1190	965	1320	648	173	133	46		
16	102	710	262	2140	1200	1090	890	1200	718	168	134	43		
17	108	615	260	1370	6550	1030	1040	1140	842	180	146	40		
18	239	559	257	1110	12800	1160	948	1030	532	277	415	40		
19	196	516	250	964	3510	4170	962	929	450	196	256	54		
20	145	482	247	885	2460	2240	2210	865	486	171	163	62		
21	122	459	247	794	2070	11100	1410	802	419	158	131	56		
22	114	602	246	713	1770	3310	1190	740	379	144	119	52		
23	106	534	318	3160	2040	2210	1090	705	504	134	109	59		
24	99	465	304	2640	2910	1840	1030	703	846	127	102	69		
25	152	415	615	1960	1860	1580	921	781	463	126	95	53		
26 27 28 29 30 31	234 447 305 217 186 173	399 384 360 354 346	595 489 546 485 500 482	1430 1270 8940 6770 2400 1820	1600 1460 1370 	1400 1280 1190 1100 1040 983	876 846 813 743 723	692 653 680 616 574 543	372 326 309 497 448	121 112 120 120 109 106	88 82 81 77 74 69	51 54 49 44 36		
TOTAL MEAN MAX MIN CFSM IN.	4870 157 447 95 .33 .38	28912 964 5630 218 2.04 2.28	10650 344 615 246 .73 .84	59641 1924 8940 375 4.08 4.70	85330 3048 12800 1140 6.46 6.73	61873 1996 11100 983 4.23 4.88	32488 1083 2210 723 2.29 2.56	53739 1734 12700 543 3.67 4.24	14862 495 846 309 1.05 1.17	5950 192 343 106 .41 .47	3817 123 415 63 .26	1681 56.0 96 36 .12 .13		

e Estimated.

01667500 RAPIDAN RIVER NEAR CULPEPER, VA--Continued

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1931 - 1998, BY WATER YEAR (WY) OCT NOV DEC JAN FEB APR JUN JUL AUG SEP 752 427 474 558 678 853 786 585 493 308 337 361 MEAN 2690 1653 1924 2236 1734 2901 2908 MAX 3163 3048 2615 1206 2323 1993 1986 1949 1998 1998 1998 1995 1955 1996 (WY) 1943 1937 1949 179 MIN 8.10 29.4 62.4 93.6 91.5 210 166 86.2 68.0 22.5 14.0 (WY) 1931 1931 1931 1966 1931 1931 1981 1956 1977 1957 1957 1954 SUMMARY STATISTICS FOR 1997 CALENDAR YEAR FOR 1998 WATER YEAR WATER YEARS 1931 - 1998 ANNUAL TOTAL 195629 363813 ANNUAL MEAN 536 997 550 HIGHEST ANNUAL MEAN 1099 1973 LOWEST ANNUAL MEAN 151 1931 HIGHEST DAILY MEAN 6590 Jul 12800 Feb 18 e43500 Jun 28 1995 LOWEST DAILY MEAN 41 Sep 6 36 Sep 30 2.2 Oct 4 1954 ANNUAL SEVEN-DAY MINIMUM Sep 48 Sep 13 4.5 Oct 2 1954 INSTANTANEOUS PEAK FLOW 18700 Feb 18 59300 Jun 28 1995 INSTANTANEOUS PEAK STAGE 17.15 Feb 18 a30.40 Jun 28 1995 INSTANTANEOUS LOW FLOW 32 Sep 30 2.1 bOct 4 1954 ANNUAL RUNOFF (CFSM) 2.11 1.14 1.16 ANNUAL RUNOFF (INCHES) 15.42 28.67 15.82 10 PERCENT EXCEEDS 941 2030 1080 50 PERCENT EXCEEDS 388 487 345 90 PERCENT EXCEEDS 108 76 86

a From high-water mark in gage house. b Also Oct. 5, 11, 1954. e Estimated.

01668500 CAT POINT CREEK NEAR MONTROSS, VA

LOCATION.--Lat 38°02'23", long 76°49'38", Richmond County, Hydrologic Unit 02080104, on right bank 200 ft upstream from bridge on State Highway 637, 1.7 mi west of Farmers Fork, 3.8 mi south of Montross, and 11.4 mi upstream from mouth.

DRAINAGE AREA. -- 45.6 mi².

PERIOD OF RECORD. -- September 1943 to current year.

REVISED RECORDS.--WSP 1382: 1944(M), 1945, 1946-51(M), 1952(P), 1953-54(M). WSP 2103: Drainage area. WDR VA-94-1: 1979(P), 1985(M), 1992(M).

GAGE.--Water-stage recorder. Datum of gage is 3.04 ft above sea level. Prior to Aug. 19, 1953, nonrecording gage near right bank at downstream side of highway bridge at same datum.

REMARKS.--No estimated daily discharges. Records good. Prior to 1980, slight diurnal fluctuation at low flow caused by gristmill upstream from station. Maximum discharge, 6,820 ${\rm ft}^3/{\rm s}$, from rating curve extended above 1,400 ${\rm ft}^3/{\rm s}$. No flow at times in 1943, 1957, 1959-60, 1966, and 1977. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood in September 1935 exceeded 9.3 ft.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 250 ${\rm ft}^3/{\rm s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Nov. 9 Jan. 24	2000 1200	254 488	5.23 5.87	Feb. 5 Mar. 20	0500 0100	*2,620 439	*8.80 5.92
Jan. 29	0100	1,360	7.42	Mar. 21	1800	598	6.25

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES

Minimum discharge, 0.63 ft³/s, Oct. 10, 13.

.74

.85

2 54

2.93

4 81

5.01

3 12

3.59

2 22

2.47

1 33

1.53

1 03

1.15

1 23

1.37

.08

.09

CESM

TN.

					DA	TILL MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.7	16	32	41	127	95	94	66	33	27	10	3.1
2	1.6	29	30	33	106	94	99	91	30	22	9.5	2.7
3	1.5	31	26	30	95	116	90	88	29	20	8.4	2.4
4	1.3	25	32	27	370	105	120	77	27	18	7.6	2.2
5	1.2	20	37	25	1890	91	169	73	26	19	6.9	2.0
6	1.0	17	35	23	595	86	109	80	26	17	6.1	1.8
7	.87	53	29	23	315	83	92	70	24	15	5.7	1.5
8	.82	197	24	33	213	98	88	79	23	23	5.6	1.6
9	.68	239	23	46	163	184	128	86	23	70	5.4	1.9
10	.64	186	25	38	139	186	156	78	61	57	7.9	1.8
11	.69	77	35	29	127	118	111	72	79	33	27	1.5
12	.74	39	33	23	137	99	94	80	71	22	30	1.4
13	.68	28	28	24	120	93	87	88	59	17	16	1.3
14	.75	51	23	28	104	89	84	77	56	15	9.1	1.1
15	.94	61	20	37	97	86	85	65	62	14	6.3	.99
16	1.2	45	18	71	93	83	82	58	82	14	5.1	1.1
17	1.4	31	17	62	111	82	145	52	86	14	4.3	.91
18	2.5	24	16	47	149	114	165	47	68	15	4.7	1.1
19	5.5	22	15	38	116	249	115	42	52	18	5.0	1.5
20	9.2	20	15	35	100	315	137	40	44	21	4.4	1.7
21	8.1	20	15	30	96	447	112	38	37	21	3.6	1.9
22	4.7	88	18	27	89	335	92	37	33	18	3.1	2.8
23	3.2	108	44	95	103	204	85	36	31	15	2.8	4.9
24	2.6	66	44	411	200	157	81	37	80	13	2.6	4.5
25	2.9	43	53	234	166	138	76	44	88	12	2.4	3.8
26	6.5	36	52	122	118	126	72	53	55	11	3.3	3.4
27	16	31	50	90	104	119	69	52	36	10	5.3	3.1
28	14	27	75	550	98	112	67	51	30	9.6	10	2.8
29	9.5	24	66	843		106	64	46	33	9.0	7.7	2.5
30	6.5	26	64	300		100	63	41	31	8.3	5.1	2.5
31	5.7		53	174		95		36		8.6	3.7	
TOTAL	114.61	1680	1047	3589	6141	4405	3031	1880	1415	606.5	234.6	65.80
MEAN	3.70	56.0	33.8	116	219	142	101	60.6	47.2	19.6	7.57	2.19
MAX	16	239	75	843	1890	447	169	91	88	70	30	4.9
MIN	.64	16	15	23	89	82	63	36	23	8.3	2.4	.91

.43

. 49

.17

.19

0.5

.05

01668500 CAT POINT CREEK NEAR MONTROSS, VA--Continued

STATISTICS O	Ŧ(MONTHLY	MEAN	DATA	FOR	WATER	YEARS	1944	- 199	8.	RΥ	WATER	YEAR	(WY)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	26.3	37.5	47.1	59.5	65.8	78.0	68.9	51.2	35.6	28.1	28.4	24.5
MAX	134	119	126	175	219	211	164	149	232	128	153	210
(WY)	1980	1980	1984	1978	1998	1994	1983	1990	1972	1995	1969	1979
MIN	1.47	6.70	11.6	12.9	24.1	23.2	20.7	11.1	4.59	1.13	.89	.41
(WY)	1955	1992	1955	1955	1955	1945	1985	1955	1945	1957	1963	1954
SUMMARY	STATIST:	ICS	FOR :	1997 CALENI	AR YEAR	F	OR 1998 WA'	TER YEAR		WATER YE	ARS 1944	- 1998
ANNUAL	TOTAL			13751.01			24209.51					
ANNUAL	MEAN			37.7			66.3			45.8		
HIGHEST	ANNUAL N	MEAN								89.4		1958
LOWEST	ANNUAL MI	EAN								18.7		1954
HIGHEST	DAILY M	EAN		239	Nov 9		1890	Feb 5		2390	Sep	6 1979
LOWEST	DAILY MEA	AN		.57	Sep 27		.64	Oct 10		.00		(a)
ANNUAL	SEVEN-DAY	Y MINIMUM		.67	Sep 22		.71	Oct 8		.00	bAug	8 1957
INSTANT	CANEOUS PI	EAK FLOW					2620	Feb 5		6820	Aug	20 1969
INSTANT	CANEOUS PI	EAK STAGE					8.80	Feb 5		c10.86	Sep	6 1992

.63 dOct 10

1.45

19.75

2.4

127

33

.00

1.00

13.64

4.6

97

30

(f)

.83

11.22

1.4

78

30

INSTANTANEOUS LOW FLOW

ANNUAL RUNOFF (INCHES)

ANNUAL RUNOFF (CFSM)

10 PERCENT EXCEEDS

50 PERCENT EXCEEDS

90 PERCENT EXCEEDS

a Many days in 1943 (partial year), 1957, 1959, 1966, and 1977. b Also Aug. 9, 10, 1957, and Aug. 31 to Sept. 7, 1966. c Result of Chandlers Millpond dam washout. d Also Oct. 13, 1997. f At times in 1943 (partial year), 1957, 1959-60, 1966, and 1977.

01669000 PISCATAWAY CREEK NEAR TAPPAHANNOCK, VA

LOCATION.--Lat 37°52'37", long 76°54'03", Essex County, Hydrologic Unit 02080104, on right bank at upstream side of bridge on State Highway 691, 0.6 mi south of Hensley Fork, 2.3 mi downstream from Sturgeon Swamp, and 4.2 mi southwest of Tappahannock.

DRAINAGE AREA. -- 28.0 mi².

PERIOD OF RECORD. -- July 1951 to current year.

REVISED RECORDS.--WSP 2103: Drainage area. WDR VA-79-1: 1970-76(P), 1978(P).

GAGE.--Water-stage recorder. Datum of gage is 2.50 ft above sea level.

REMARKS.--No estimated daily discharges. Records good. Maximum discharge, 2,380 ft^3/s , from rating curve extended above 1,400 ft^3/s . Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 250 ${\rm ft}^3/{\rm s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 29	0300	331	3.97	Mar. 19	2100	357	4.06
Feb. 5	0330	*805	*5.36	Mar. 21	1400	455	4.41
Mar. 9	2230	254	3.68				

DISCHARGE. IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Minimum dicharge, $1.6 \text{ ft}^3/\text{s}$, Sept. 18, 19.

		DISCH	ARGE, IN (CUBIC FEET		OND, WATER ILY MEAN		TOBER 1997	TO SEPT	EMBER 199	8	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	3.4	14	24	21	60	64	81	63	26	14	6.1	3.1
2	2.8	21	24	19	54	66	84	89	24	12	4.9	3.0
3	2.6	24	20	18	50	88	76	76	22	10	4.4	2.7
4	2.5	19	21	17	226	71	110	69	20	9.9	3.5	2.9
5	2.4	15	22	16	631	61	139	74	20	9.7	3.4	2.6
6	2.1	12	20	15	268	58	90	67	21	8.5	3.1	2.4
7	2.0	51	17	15	192	56	75	59	19	7.8	2.9	2.2
8	2.0	106	16	22	151	75	71	88	18	8.7	3.0	3.4
9	2.0	102	15	28	120	188	109	105	18	10	3.8	2.9
10	2.0	74	16	22	104	166	143	76	40	12	4.4	2.9
10	2.0	/1	10	22	104	100	143	70	40	12	7.7	2.9
11	2.0	37	18	17	96	97	92	67	49	10	7.0	2.9
12	1.9	23	19	17	103	81	74	69	36	8.2	7.4	2.5
13	2.0	20	17	16	92	74	67	74	32	7.3	5.6	2.4
14	2.1	35	15	16	82	74	65	65	30	6.7	4.7	2.2
15	2.9	39	14	22	74	66	66	57	36	6.3	4.0	2.0
	2.,,	3,			, -			3,	30	0.5	1.0	2.0
16	4.2	28	13	37	70	62	61	51	46	6.2	3.3	1.9
17	5.9	20	14	32	101	62	118	45	43	6.3	3.3	1.7
18	10	17	13	26	141	118	145	41	33	5.9	3.4	1.7
19	17	16	12	22	89	255	101	37	33	5.2	3.3	1.9
20	20	15	12	23	76	236	133	35	34	5.9	2.6	2.1
21	16	15	12	19	74	377	103	35	26	5.5	2.5	1.8
22	10	50	14	17	66	237	85	35	21	5.0	2.5	3.2
23	6.8	54	21	54	91	164	79	33	20	4.4	2.4	5.3
24	5.9	34	22	144	152	136	75	34	21	4.2	2.4	8.6
25	9.6	25	24	78	98	120	69	36	21	4.1	2.1	6.2
26	12	20	23	47	76	111	69	34	19	4.4	2.0	4.1
27	20	18	24	43	69	107	65	38	16	4.1	2.6	3.5
28	20	16	36	175	66	98	62	53	15	4.1	5.3	2.7
29	14	16	33	264		95	61	42	16	3.8	5.1	2.4
30	9.8	18	33	120		88	60	33	17	4.4	4.6	2.7
31	8.6		28	75		83		29		6.4	3.7	
TOTAL	224.5	954	612	1457	3472	3634	2628	1709	792	221.0	119.3	89.9
MEAN	7.24	31.8	19.7	47.0	124	117	87.6	55.1	26.4	7.13	3.85	3.00
MAX	20	106	36	264	631	377	145	105	49	14	7.4	8.6
MIN	1.9	12	12	15	50	56	60	29	15	3.8	2.0	1.7
CFSM	.26	1.14	.71	1.68	4.43	4.19	3.13	1.97	.94	.25	.14	.11
	.30	1.27	.81	1.94	4.61	4.83	3.49	2.27	1.05	. 29	.16	.12
IN.	.30	1.2/	.81	1.94	4.01	4.83	3.49	2.21	1.05	. 29	.10	. 12

15.24

5.2

64

23

RAPPAHANNOCK RIVER BASIN

01669000 PISCATAWAY CREEK NEAR TAPPAHANNOCK, VA--Continued

STATIST	ICS OF N	MONTHLY MEAN	I DATA	FOR WATER	YEARS 1952	- 1998,	BY WATER	YEAR (WY)				
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	19.4	27.3	31.0	38.3	45.4	53.8	49.3	37.5	25.4	18.0	17.4	15.2
MAX	63.4	74.1	74.7	88.4	124	118	109	87.0	111	105	88.0	70.4
(WY)	1980	1980	1997	1978	1998	1994	1958	1958	1972	1975	1955	1979
MIN	1.30	6.30	9.20	7.93	14.0	13.5	13.4	7.41	4.20	2.01	1.00	.28
(WY)	1955	1955	1966	1955	1955	1981	1985	1955	1986	1954	1954	1954
SUMMARY	STATIST	rics	FOF	R 1997 CAL	ENDAR YEAR	F	OR 1998 W <i>I</i>	ATER YEAR		WATER YE	ARS 1952	- 1998
ANNUAL	TOTAL			10434.	7		15912.7					
ANNUAL	MEAN			28.	б		43.6			31.4		
HIGHEST	ANNUAL	MEAN								56.8		1958
LOWEST	ANNUAL N	MEAN .								12.1		1954
HIGHEST	DAILY N	MEAN .		129	Jul 24		631	Feb 5		1080	Aug	13 1955
LOWEST	DAILY ME	EAN		1.	7 Sep 24		1.7	aSep 17		.02	Oct	1 1954
ANNUAL	SEVEN-DA	AY MINIMUM		2.	0 Oct 7		1.9	Sep 15		.13	Sep	25 1954
INSTANT	ANEOUS E	PEAK FLOW					805	Feb 5		2380	Aug	20 1969
INSTANT	ANEOUS E	PEAK STAGE					5.36	Feb 5		b7.52	. Aug	20 1969
INSTANT	ANEOUS I	LOW FLOW					1.6	cSep 18		.01	Oct	2 1954
ANNUAL	RUNOFF ((CFSM)		1.	02		1.56	5		1.12		

21.14

2.7

102

21

13.86

3.2

59

20

ANNUAL RUNOFF (INCHES)

10 PERCENT EXCEEDS 50 PERCENT EXCEEDS

90 PERCENT EXCEEDS

a Also Sept. 18, 1998.
b From high-water mark in well.
c Also Sept. 19, 1998.

PIANKATANK RIVER BASIN

01669520 DRAGON SWAMP AT MASCOT, VA

LOCATION.--Lat 37°38'01", long 76°41'48", King and Queen County, Hydrologic Unit 02080102, on right bank at up stream side of bridge on State Highway 603, 0.8 mi east of Mascot, 2.1 mi downstream from Church Swamp, and 3.3 mi west of Warner.

DRAINAGE AREA. -- 108 mi².

PERIOD OF RECORD. -- August 1981 to current year.

GAGE.--Water-stage recorder. Datum of gage is 21.60 ft above sea level.

REMARKS.--Records good except for period with backwater from beaver dam, Oct. 1-9, which is fair. Maximum discharge, 2,800 ft³/s, from rating curve extended above 2,150 ft³/s. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION. -- Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 600 ft^3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 30	2000	922	7.10	Mar. 21	1200	1,450	7.60
Feb. 6	0900	*2,800	*9.39	May 11	1400	752	6.46
Mar. 11	0700	854	6.64				

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Minimum discharge, zero flow, Aug. 25-26.

DAILY MEAN VALUES										
DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL	AUG SEP									
1 e.98 41 86 138 557 269 240 161 111 73 1	6 .47									
	4 .30									
	2 .34									
	0 .86									
	86 .80									
6 e.51 51 71 77 2690 221 301 172 61 31	79 .74									
7 e.44 127 66 72 1840 222 302 176 54 24	74 .61									
8 e.44 277 61 84 1040 273 296 241 46 21	67 .76									
9 el.0 335 59 106 721 464 292 374 43 22	59 .86									
10 2.8 381 60 104 548 666 309 472 80 22	59 .74									
11 2.9 321 68 93 431 826 287 725 91 20	61 .69									
12 3.3 246 67 82 411 649 256 702 106 17	56 .57									
13 3.9 191 64 81 378 433 244 587 124 15	44 .36									
14 4.6 208 60 89 313 322 244 441 139 12	35 .14									
	26 .06									
16 9.5 177 53 240 256 247 221 283 173 8.8	22 .06									
	44 .05									
	48 .08									
	22 .10									
	28 .17									
21 26 71 42 164 339 1410 256 164 199 5.5	08 .34									
	05 .76									
	04 2.9									
	02 2.3									
	01 1.6									
26 29 95 76 355 409 411 235 103 86 2.2	01 1.4									
	20 1.2									
	3 1.2									
	2 1.0									
	66 3.9									
	59									
TOTAL 439.90 4053 2333 7227 17019 14688 7535 7665 3463 514.8 17	46 25.36									
	56 .85									
MAX 36 381 165 849 2690 1410 309 725 214 73	56 .85 .6 3.9									
	6 3.9									
MIN .44 41 42 72 256 221 168 103 43 1.4										

e Estimated.

PIANKATANK RIVER BASIN

01669520 DRAGON SWAMP AT MASCOT, VA--Continued

STAT	STICS OF M	MONTHLY MEAN	DATA	FOR WATER	YEARS 1982	- 1998,	BY WATER	YEAR (WY)				
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	62.6	91.5	119	161	204	244	194	136	80.0	49.9	54.6	40.8
MAX	293	290	331	340	608	567	450	247	166	106	200	170
(WY)	1997	1986	1997	1993	1998	1994	1983	1998	1984	1996	1992	1985
MIN	7.97	22.3	39.5	45.9	76.5	58.8	31.2	28.5	6.23	3.15	.56	.79
(WY)	1982	1982	1989	1989	1991	1985	1985	1985	1986	1993	1998	1997
(WY)	1982	1982	1989	1989	1991	1985	1985	1985	1986	1993	1998	1997

SUMMARY STATISTICS	FOR 1997 CALENDAR YEAR	FOR 1998 WATER YEAR	WATER YEARS 1982 - 1998
ANNUAL TOTAL	41273.00	64980.52	
ANNUAL MEAN	113	178	119
HIGHEST ANNUAL MEAN			178 1998
LOWEST ANNUAL MEAN			56.4 1985
HIGHEST DAILY MEAN	388 Feb 18	2690 Feb 6	2690 Feb 6 1998
LOWEST DAILY MEAN	.30 Sep 24	.01 aAug 25	.01 aAug 25 1998
ANNUAL SEVEN-DAY MINIMUM	.33 Sep 19	.06 Aug 21	e.05 Sep 13 1991
INSTANTANEOUS PEAK FLOW		2800 Feb 6	2800 Feb 6 1998
INSTANTANEOUS PEAK STAGE		9.39 Feb 6	9.39 Feb 6 1998
INSTANTANEOUS LOW FLOW		.00 aAug 25	.00 aAug 25 1998
ANNUAL RUNOFF (CFSM)	1.05	1.65	1.11
ANNUAL RUNOFF (INCHES)	14.22	22.38	15.02
10 PERCENT EXCEEDS	238	384	265
50 PERCENT EXCEEDS	85	91	83
90 PERCENT EXCEEDS	1.3	.60	7.4

a Also Aug. 26, 1998. e Estimated.

01671020 NORTH ANNA RIVER AT HART CORNER, NEAR DOSWELL, VA

LOCATION.--Lat 37°51'00", long 77°25'41", Hanover County, Hydrologic Unit 02080106, on right bank at downstream side of bridge on State Highway 30, 0.3 mi west of Hart Corner, 2.1 mi east of Doswell, and 5.4 mi upstream from confluence with South Anna River.

DRAINAGE AREA. -- 463 mi².

PERIOD OF RECORD. -- October 1979 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 43 ft above sea level, from topographic map.

REMARKS.--Records good except for period of doubtful gage-height record, Dec. 30 to Feb. 6, which is fair. Flow regulated since January 1972 by Lake Anna, capacity, 373,000 acre-ft, 27.7 mi upstream. At a point 0.8 mi upstream from station, there is diversion for municipal water supply by Hanover County Department of Public Utilities since June 1975. Maximum discharge, 12,000 ft³/s, from rating curve extended above 10,100 ft³/s. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION. -- Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in August 1969 reached a stage of 28.02 ft, from floodmark, discharge not determined.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 9,350 ft^3/s , Feb. 6, gage height, 20.13 ft ; minimum, 43 ft^3/s , Oct. 12-13, Sept. 28, 29.

		2100		00210 11		DA	ILY MEAN	VALUES	3	0000	10 0211		,,,		
DAY	OCT	NOV	DEC	JAI	1	FEB	MAR	A	PR	MAY	JUN	JU	L	AUG	SEP
1	52	74	272	363	3	1790	881	4	42	372	209	25	8	48	45
2	46	79	273	302		1510	1240		80	835	201	25		47	46
3	45	80	258	276		1400	1520		30	762	243	13		47	45
4	45	80	268	276		1670	922		62	454	251	7		47	45
5	45	80	279	273		e6390	675		70	566	250	7		47	45
6	45	74	275	269	9	e9070	566	9	27	693	218	7	0	46	44
7	45	284	268	269	9	6680	652	5	97	265	101	6	7	46	44
8	44	2380	261	e275	5	3860	1110	5	38	1580	92	7.	1	47	50
9	45	3200	261	e635	5	2760	3450	9	18	3260	88	7	6	50	59
10	45	2130	266	e606	5	1680	3480	17	00	2260	128	7	6	58	45
11	44	1310	282	e472	2	1500	2340	7	87	940	131	7		65	46
12	43		276	e418		1580	1060		36	860	129	6		51	46
13	43		271	e384		1550	769		92	1240	264	6		84	45
14	44		265	e322		1300	734		80	1110	304	6		119	45
15	49	703	261	e323	L	456	707	4	38	712	373	6	3	57	45
16	54		261	e800		1060	683		97	630	558	6		54	44
17	51	600	255	e1500		993	672		80	393	506	6		53	44
18	75	365	257	e1000		4640	802		10	368	723	6		83	45
19	100	285	255	e703		5900	3030		20	355	590	6		107	45
20	99	264	255	e628	3	3510	3890	15	80	349	657	6	0	55	45
21	82	268	254	e432		1890	5580		70	349	503	5		57	45
22	66	357	257			1530	8240		64	319	352	5		51	48
23	60	694				1670	5490		12	265	456	5		47	49
24	58	470	174			3450	2710		87	266	424	5		48	47
25	61	391	378	e3400)	2760	1510	6	52	280	484	5	6	47	46
26	72		409	2040		1700	1250		35	276	416	5		48	47
27	105	276	379	1360		1410	582		17	348	326	6		48	50
28	111	271	389	e3120		782	502		71	332	271	6		52	44
29	95			e6690			480		62	216	269	6		49	44
30	82		e516	e6920			464		54	222	268	5		46	44
31	72		e562	e3420)		444	_		216		5.	1	45	
TOTAL	1923	18239	9187	43069	9	74491	56435	269	36	21093	9785	240	8	1749	1382
MEAN	62.0	608	296	1389	9	2660	1820	8	98	680	326	77.	7	56.4	46.1
MAX	111	3200	562	6920)	9070	8240	33	10	3260	723	25	8	119	59
MIN	43	74	172	269	9	456	444	2	97	216	88	5	1	45	44
(†)	181	169	170	16'		120	132		40	147	166	17		189	181
MEAN‡	67.8	614		139		2665	1825		03	685	332	83.		62.5	52.0
CFSM‡	.15	1.33	.65	3.03		5.76	3.94		95	1.48	.72	.1		.13	.11
IN.‡	.17	1.48	.75	3.4	/	5.99	4.54	2.	18	1.71	.80	. 2	T	.16	.13
CAL YR		TOTAL	141089	MEAN	387	MAX	3200	MIN	42	MEAN‡	393	CFSM‡	.85	IN.‡	11.53
WTR YR	1998	TOTAL	266697	MEAN	731	MAX	9070	MIN	43	MEAN‡	736	CFSM‡	1.59	IN.‡	21.58

Total diversion, equivalent in cubic feet per second, per month; provided by Hanover County Department of Public Utilities.

[‡] Adjusted for diversion.
e Estimated.

YORK RIVER BASIN

01671020 NORTH ANNA RIVER AT HART CORNER, NEAR DOSWELL, VA--Continued

STATIST	FICS OF M	ONTHLY MEAN	DATA	FOR WATER	YEARS 1980	- 1998,	BY WATER	R YEAR (WY)	[REGUL	ATED, UNAD	JUSTED]	
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	228	352	417	593	747	870	688	469	256	173	170	150
MAX	1428	1561	1320	1389	2660	2345	1887	1217	795	591	614	1185
(WY)	1980	1986	1997	1998	1998	1994	1983	1990	1995	1984	1984	1996
MIN	43.7	46.7	75.2	71.9	122	90.5	108	110	51.1	66.3	56.4	46.1
(WY)	1992	1992	1981	1981	1981	1981	1981	1991	1991	1980	1998	1998
SUMMARY	Y STATIST	ICS	FOR	R 1997 CAL	ENDAR YEAR	F	OR 1998 V	NATER YEAR		WATER YE	EARS 1980	- 1998
ANNUAL	TOTAL			141089			266697					
ANNUAL	MEAN			387			731			424		
HIGHEST	r annual i	MEAN								731		1998
LOWEST	ANNUAL M	EAN								85.7		1981
HIGHEST	r DAILY M	EAN		3200	Nov 9		e9070	Feb 6		10900	Mar 3	30 1994
LOWEST	DAILY ME	AN		42	aSep 22		43	b0ct 12		36	Oct	8 1991
ANNUAL	SEVEN-DA	Y MINIMUM		43	cSep 21		44	Oct 8		39	Oct	4 1991
INSTANT	TANEOUS P	EAK FLOW					9350	Feb 6		12000	Mar 2	29 1994
INSTANT	FANEOUS P	EAK STAGE					20.1	13 Feb 6		21.80	Mar 2	29 1994
INSTANT	FANEOUS L	OW FLOW					43	dOct 12		£36	Oct	8 1991
ANNUAL	RUNOFF (CFSM)		- 1	83		1.5	58		.92	1	
ANNUAL	RUNOFF (INCHES)		11.	34		21.4	13		12.46	j	
10 PERG	CENT EXCE	EDS		829			1730			900		
50 PERG	CENT EXCE	EDS		261			276			181		
90 PERG	CENT EXCE	EDS		49			46			58		

Also Sept. 23, 1997. Also Oct. 13, 1997. Also Sept. 22, 1997. Also Oct. 13, 1997 and Sept. 28, 29, 1998. Estimated. Observed.

01671100 LITTLE RIVER NEAR DOSWELL, VA

LOCATION.--Lat 37°52'21", long 77°30'48", Hanover County, Hydrologic Unit 02080106, on left bank at downstream side of bridge on State Highway 685, 0.8 mi southwest of Verdon, 2.9 mi west of Doswell, and 9.6 mi upstream from mouth.

DRAINAGE AREA. -- 107 mi².

PERIOD OF RECORD. -- October 1961 to current year.

REVISED RECORDS. -- WDR VA-70-1: 1969.

GAGE.--Water-stage recorder. Datum of gage is 132.30 ft above sea level (levels by La Prade Bros., Engineers).

REMARKS.--Records good except for period of doubtful gage-height record, Nov. 16-18, which is fair. Maximum discharge, $12,000 \, \mathrm{ft}^3/\mathrm{s}$, from rating curve extended above $7,600 \, \mathrm{ft}^3/\mathrm{s}$ on basis of contracted-opening measurement of peak flow. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 650 ft^3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Nov. 9	0630	1,010	4.95	Mar. 10	0630	1,290	5.31
Jan. 24	2030	1,560	5.59	Mar. 22	0530	2,690	6.59
Jan. 29	1130	2,780	6.63	Apr. 5	1900	970	4.91
Feb. 5	2200	*3,380	*7.08	Apr. 18	2030	847	4.73
Feb. 19	0730	1,690	5.74	May 9	0630	1,050	5.02
Feb 25	0600	1.070	5 04	=			

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Minimum discharge, 1.1 ft³/s, Sept. 27-30.

					DA:	ILY MEAN V	/ALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	6.3	32	56	99	205	197	141	93	60	33	6.7	3.4
2	6.6	35	56	89	146	218	196	158	53	29	7.2	3.2
3	9.3	34	55	82	109	352	286	272	46	27	6.7	4.4
4	10	31	60	78	392	312	352	225	40	25	6.0	5.1
5	9.3	29	65	73	2460	226	820	411	38	24	6.0	4.4
6	8.0	26	63	71	2490	187	661	181	35	22	5.9	4.1
7	7.1	110	60	69	1220	166	289	133	33	20	5.7	4.3
8	6.7	610	55	80	696	208	206	492	30	19	5.9	5.9
9	6.6	951	52	101	366	716	189	1010	29	19	5.6	5.4
10	6.4	632	53	94	247	1160	190	722	47	20	5.9	4.1
11	6.5	302	65	86	198	552	184	357	56	19	10	3.1
12	6.1	160	69	76	227	270	164	233	60	17	7.5	3.1
13	6.0	109	70	76	280	204	144	238	59	16	6.9	2.6
14	5.7	105	65	78	232	180	132	226	72	14	7.1	2.3
15	7.7	113	59	87	180	165	129	181	95	13	7.1	2.0
16	8.2	e102	55	187	156	152	126	144	139	12	7.0	2.0
17	7.8	e87	52	241	292	145	260	120	157	12	6.3	1.9
18	27	e70	50	192	954	192	710	102	109	12	5.9	1.9
19	49	65	48	147	1510	772	596	89	79	11	5.9	2.1
20	61	59	48	131	686	1470	352	78	80	10	5.3	2.2
21	57	56	47	115	336	1630	289	70	64	9.8	5.3	1.7
22	45	90	48	104	256	2290	218	64	72	9.2	5.3	1.6
23	32	106	60	303	268	958	169	60	143	8.6	5.2	2.0
24	24	104	66	1170	688	425	146	60	130	8.3	4.8	1.8
25	23	86	97	1120	971	303	132	60	185	8.3	4.4	1.2
26	24	73	130	465	474	231	121	58	121	8.2	4.4	1.2
27	48	63	135	254	261	194	108	66	70	7.8	4.6	1.2
28	64	56	133	836	210	179	98	90	51	7.3	4.6	1.1
29	60	52	129	2430		167	93	93	41	7.1	4.5	1.1
30	46	51	125	1400		156	87	83	37	6.3	4.1	1.1
31	36		112	473		146		70		6.3	3.9	
TOTAL	720.3	4399	2238	10807	16510	14523	7588	6239	2231	461.2	181.7	81.5
MEAN	23.2	147	72.2	349	590	468	253	201	74.4	14.9	5.86	2.72
MAX	64	951	135	2430	2490	2290	820	1010	185	33	10	5.9
MIN	5.7	26	47	69	109	145	87	58	29	6.3	3.9	1.1
CFSM	.22	1.37	.67	3.26	5.51	4.38	2.36	1.88	.70	.14	.05	.03
IN.	.25	1.53	.78	3.76	5.74	5.05	2.64	2.17	.78	.16	.06	.03

e Estimated.

01671100 LITTLE RIVER NEAR DOSWELL, VA--Continued

STATISTICS	OF	MONTHLY	MEAN	DATA	FOR	WATER	YEARS	1962	_	1998.	BY	WATER	YEAR	(WY)

.87

11.87

8.1

177

63

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	56.4	76.8	105	152	170	199	149	103	67.3	40.6	50.5	36.9
MAX	264	340	278	491	590	583	391	311	533	288	653	404
(WY)	1980	1973	1997	1978	1998	1994	1993	1990	1972	1975	1969	1975
MIN	1.03	3.25	18.2	20.5	46.6	33.0	44.2	22.0	5.45	2.78	1.35	.70
(WY)	1969	1992	1966	1981	1968	1981	1968	1969	1991	1968	1977	1968
SUMMARY	STATIST	ICS	FOR I	1997 CALEN	idar year	F	OR 1998 WA	ATER YEAR		WATER YEA	ARS 1962	- 1998
ANNUAL	TOTAL			34135.9			65979.7					
ANNUAL	MEAN			93.5			181			100		
HIGHEST	' ANNUAL I	MEAN								181		1998
LOWEST	ANNUAL MI	EAN								29.8		1981
HIGHEST	DAILY M	EAN		951	Nov 9		2490	Feb 6		9800	Aug :	21 1969
LOWEST	DAILY ME	AN		4.9	aSep 7		1.1	bSep 28		.10	Sep :	26 1968
ANNUAL	SEVEN-DAY	Y MINIMUM		5.3	Sep 3		1.2	Sep 24		.21	Sep :	30 1968
INSTANT	'ANEOUS PI	EAK FLOW					3380	Feb 5		12000	Aug :	21 1969
INSTANT	ANEOUS PI	EAK STAGE					7.08	Feb 5		11.09	Aug :	21 1969

1.1 cSep 27

1.69

22.94

5.2

417

69

.10

12.71

6.7

197

53

dSep 25 1968

INSTANTANEOUS LOW FLOW

ANNUAL RUNOFF (INCHES)

ANNUAL RUNOFF (CFSM)

10 PERCENT EXCEEDS 50 PERCENT EXCEEDS

90 PERCENT EXCEEDS

a Also Sept. 8, 1997. b Also Sept. 29, 30, 1998. c Also Sept. 28-30, 1998. d Also Sept. 26, 1968.

01673550 TOTOPOTOMOY CREEK NEAR STUDLEY, VA

LOCATION.--Lat 37°39'44", long 77°15'29", Hanover County, Hydrologic Unit 02080106, on right bank at downstream side of bridge on State Highway 606, 2.0 mi southeast of Studley, 2.4 mi downstream from Hawes millrace, and 4.1 mi upstream from mouth.

DRAINAGE AREA. -- 26.2 mi².

PERIOD OF RECORD. -- October 1977 to current year.

GAGE.--Water-stage recorder. Datum of gage is 38.36 ft above sea level.

REMARKS.--Records good except those for periods of doubtful gage-height record, July 13-23, Aug. 3-6, 16-24, and Sept. 3-30, which are fair. Maximum discharge, 802 ft³/s, from rating curve extended above 783 ft³/s. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 160 ${\rm ft}^3/{\rm s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 24	1430	359	6.78	Mar. 20	0300	452	7.37
Jan. 29	0030	*585	*7.83	Mar. 22	0100	364	6.82
Feb. 5	0730	*585	*7.83	Apr. 18	0930	202	5.34
Feb. 18	1430	267	5.98	Jul. 10	0230	247	5.79
Mar. 10	0130	434	7.28	Jul. 11	0300	378	6.93

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Minimum discharge, 0.08 ft³/s, Oct. 8.

		DISCHARGE	, III	CODIC PER	I PER SEC					FMDFK 133		
						DAY	OCT	NOV	DEC	JAN	FEB	MAR
				APR	MAY	JUN	JUL	AUG	SEP			
1	3.3	8.8	19	19	51	50	49	29	15	15	8.5	3.0
2	2.1	13	25	16	42	49	50	51	14	12	8.6	3.0
3	1.6	13	18	15	37	60	47	64	12	11	e6.5	e2.9
4	1.8	11	17	15	168	55	84	41	11	8.9	e5.2	e4.5
5	1.2	9.2	16	13	521	46	134	53	11	8.4	e4.8	e3.5
6	.81	8.4	15	13	303	41	74	45	11	7.7	e3.9	e3.0
7	1.4	41	14	13	154	40	57	31	11	7.1	4.0	e2.1
8	.79	104	12	24	98	51	52	54	10	7.5	4.1	e4.2
9	.31	68	12	54	71	260	67	66	10	9.9	6.0	e4.6
10	.71	51	14	29	58	299	78	51	18	189	6.5	e4.0
11	.67	28	16	20	54	96	58	38	22	257	10	e3.1
12	1.5	19	17	17	54	67	46	37	19	43	8.1	e2.4
13	.85			17	53	58	43	39	19			
		15	15							e20	6.4	e2.1
14	.98	22	13	19	44	54	42	36	18	e18	5.5	e1.8
15	4.0	34	12	23	40	51	43	30	32	e16	4.7	e1.6
16	4.1	25	12	40	38	47	41	27	74	e18	e4.3	e1.3
17	5.3	17	11	35	91	46	95	25	62	e16	e4.0	e1.1
18	8.6	14	11	24	225	93	166	22	26	e13	e3.6	e1.1
19	12	13	11	22	105	274	71	20	17	e13	e3.2	e1.3
20	14	13	11	21	66	351	79	18	16	e12	e3.2	e1.4
20	11	13	11	21	00	331	,,	10	10	CIZ	65.0	C1.4
21	12	13	10	19	58	289	63	18	18	e11	e2.7	e1.4
22	9.2	66	12	17	51	260	48	17	20	e10	e2.5	e3.0
23	6.7	86	18	77	75	121	43	17	103	e9.5	e2.3	e2.7
24	5.7	29	19	282	145	88	40	18	63	9.3	e2.0	e2.3
25	8.9	20	21	131	104	74	35	20	27	8.4	1.9	e2.0
23	0.5	20	21	131	104	71	33	20	27	0.1	1.7	62.0
26	12	17	24	49	68	66	32	19	19	7.9	1.8	e1.7
27	21	15	24	40	57	63	30	20	15	7.7	3.5	e1.6
28	22	14	36	289	53	60	29	27	16	10	6.4	e1.5
29	15	13	32	448		56	28	26	25	9.9	10	e1.4
30	10	14	26	147		53	28	21	19	7.5	6.1	e5.8
31	7.9		23	69		51		18		7.4	3.8	
31	7.5		23	0,5		31		10		,	3.0	
TOTAL	196.42	814.4	536	2017	2884	3269	1752	998	753	801.1	153.9	75.4
MEAN	6.34		17.3	65.1	103	105	58.4	32.2	25.1	25.8	4.96	2.51
MAX	22	104	36	448	521	351	166	66	103	257	10	5.8
MIN	.31	8.4	10	13	37	40	28	17	10	7.1	1.8	1.1
CFSM	.24	1.04	.66	2.48	3.93	4.02	2.23	1.23	.96	.99	.19	.10
IN.	.28	1.16	.76	2.86	4.09	4.64	2.49	1.42	1.07	1.14	.22	.11

e Estimated.

YORK RIVER BASIN

01673550 TOTOPOTOMOY CREEK NEAR STUDLEY, VA--Continued

STATISTICS	OF	MONTHLY	MEAN	DATA	FOR	WATER	YEARS	1978	- 1	998.	BY	WATER	YEAR	(WY)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	14.4	23.6	26.0	36.9	39.5	51.6	42.7	30.2	18.2	12.6	13.7	9.68
MAX	54.0	80.8	56.0	114	103	127	106	68.4	43.2	25.8	49.7	44.4
(WY)	1980	1986	1997	1978	1998	1984	1984	1978	1979	1998	1985	1979
MIN	2.93	6.44	10.5	10.3	15.5	12.7	12.3	8.46	4.95	5.73	.92	1.18
(WY)	1982	1982	1981	1981	1991	1981	1985	1985	1986	1995	1995	1997
CIIMMAD	Y STATIST	TOS	FOR	1007 CALE	NDAR YEAR	T.	OR 1998 W	ATED VEAD		MATTED VI	EARS 1978	1000
SUMMAR	I SIAIISI.	ICS	FOR .	1997 CALEI	NDAR ILAR	r	OK 1996 W	ALEK IEAK		WAIER II	EARS 19/0	- 1996
ANNUAL	TOTAL			7279.1	1		14250.2	2				
ANNUAL	MEAN			19.9			39.0			26.5		
HIGHES	T ANNUAL I	MEAN								45.1		1984
LOWEST	ANNUAL M	EAN								11.8		1981
HITCHEC	יא עזדע אי	C A M		104	Morr 0		E 2.1	Fob F		612	Moss	20 1004

ANNUAL TOTAL	1213.11	17230.22			
ANNUAL MEAN	19.9	39.0		26.5	
HIGHEST ANNUAL MEAN				45.1	1984
LOWEST ANNUAL MEAN				11.8	1981
HIGHEST DAILY MEAN	104 Nov	8 521	Feb 5	612	Mar 29 1984
LOWEST DAILY MEAN	.25 Sep	7 .31	Oct 9	e.03	Aug 31 1995
ANNUAL SEVEN-DAY MINIMUM	.32 Sep	3 .83	Oct 8	e.09	Aug 25 1995
INSTANTANEOUS PEAK FLOW		585	aJan 29	802	Aug 19 1985
INSTANTANEOUS PEAK STAGE		7.83	aJan 29	8.77	Feb 25 1979
INSTANTANEOUS LOW FLOW		.08	Oct 8	(b)	Sep 1 1995
ANNUAL RUNOFF (CFSM)	.76	1.49		1.01	
ANNUAL RUNOFF (INCHES)	10.34	20.23		13.75	
10 PERCENT EXCEEDS	39	77		52	
50 PERCENT EXCEEDS	16	18		17	
90 PERCENT EXCEEDS	1.4	2.7		4.3	

a Also Feb. 5, 1998. b Minimum discharge observed, 0.025 ${\rm ft}^3/{\rm s.}$ e Estimated.

01673800 PO RIVER NEAR SPOTSYLVANIA, VA

LOCATION.--Lat 38°10'17", long 77°35'42", Spotsylvania County, Hydrologic Unit 02080105, on right bank at upstream side of bridge on State Highway 208, 1.6 mi north of Snell, 2.0 mi south of Spotsylvania, 4.8 mi downstream from Gladys Run, and 4.9 mi upstream from U.S. Highway 1.

DRAINAGE AREA. -- 77.4 mi².

PERIOD OF RECORD. -- October 1962 to current year.

REVISED RECORDS. -- WSP 2103: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 183.76 ft above sea level. Prior to Sept. 30, 1964, nonrecording gage at same site and datum.

REMARKS.--Records good except those for periods of doubtful gage-height record, July 17 to Aug. 5, and Aug. 23 to Sept. 30, which are fair. Maximum discharge, 10,900 $\mathrm{ft^3/s}$, from rating curve extended above 3,400 $\mathrm{ft^3/s}$. Several measurements of water temperature were made during the year.

COOPERATION. -- Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES FOR CURRENT YEAR.—Peak discharges equal to or greater than base discharge of 900 ft^3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Nov. 8	2000	1,550	9.22	Feb. 24	2000	1,100	7.95
Jan. 24	1730	1,530	9.19	Mar. 10	0230	944	7.43
Jan. 29	1200	2,730	11.55	Mar. 20	0630	1,070	7.86
Feb. 5	1730	3,850	13.17	Mar. 21	2330	*4,070	*13.44
Feb. 18	1700	3,010	12.00	Jun. 23	2330	1,410	8.88

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Minimum discharge, 0.50 ft³/s, Oct. 14.

		Dibeini	KOL, IN C	JDIC IDDI		ILY MEAN V		JDBR 1997	IO DELLE	IIDDIC 1990		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	7.7	16	39	60	129	118	81	74	26	40	e4.3	e1.8
2	5.2	29	40	49	104	128	79	186	24	34	e4.6	e1.7
3	3.2	35	34	47	91	223	72	116	22	28	e4.0	e1.6
4	2.4	24	39	48	521	165	195	86	21	24	e3.4	e1.6
5	2.0	18	51	46	3040	121	353	75	20	22	e3.2	e1.5
6	1.8	15	45	43	2320	104	150	68	20	20	3.3	e1.4
7	1.6	226	37	48	803	94	110	61	19	18	3.0	e1.4
8	1.3	1080	32	70	467	164	95	229	18	20	2.9	e1.8
9	1.4	608	31	92	333	707	182	436	18	34	3.1	e1.4
10	1.4	158	32	68	181	715	364	189	25	34	4.0	e1.3
11	1.1	86	45	52	140	204	183	119	30	26	9.6	e1.1
12	1.0	58	48	45	209	139	123	166	32	20	5.7	e.98
13	.86	46	40	44	182	116	100	293	39	16	4.1	e.90
14	.72	69	36	47	124	106	91	146	44	13	3.8	e.82
15	1.0	110	33	57	103	97	87	93	41	12	4.2	e.77
16	1.3	68	31	226	91	86	80	70	56	10	4.1	e.70
17	2.2	49	30	188	302	82	341	57	98	e8.5	4.4	e.72
18	36	39	30	106	2330	138	576	49	63	e7.5	5.3	e1.2
19	58	35	28	87	1330	555	186	45	39	e7.0	4.7	e1.7
20	27	33	28	80	256	860	279	41	32	e6.8	3.9	e1.4
21	15	33	27	71	237	2250	191	38	29	e6.1	3.5	e1.4
22	10	91	27	61	174	2420	125	36	30	e6.4	3.3	e1.5
23	7.4	125	37	334	278	457	103	34	383	e7.8	e3.1	e1.5
24	5.6	78	46	1190	906	215	91	33	514	e6.4	e3.0	e1.4
25	8.5	58	100	519	567	158	79	33	120	e5.7	e2.7	e1.3
26	15	48	127	184	195	133	72	33	64	e5.3	e2.6	e1.2
27	49	42	77	131	144	120	66	33	45	e5.0	e2.5	e1.1
28	48	37	88	881	124	110	62	39	38	e4.7	e2.3	e1.0
29	26	34	82	2420		100	58	38	49	e4.4	e2.2	e.90
30	17	32	74	727		92	55	33	50	e4.2	e2.1	e.82
31	13		72	187		85		29		e4.0	e2.0	
TOTAL	371.68	3380	1486	8208	15681	11062	4629	2978	2009	460.8	114.9	37.91
MEAN	12.0	113	47.9	265	560	357	154	96.1	67.0	14.9	3.71	1.26
MAX	58	1080	127	2420	3040	2420	576	436	514	40	9.6	1.8
MIN	.72	15	27	43	91	82	55	29	18	4.0	2.0	.70
CFSM	.15	1.46	.62	3.42	7.24	4.61	1.99	1.24	.87	.19	.05	.02
IN.	.18	1.62	.71	3.94	7.54	5.32	2.22	1.43	.97	.22	.06	.02

e Estimated.

YORK RIVER BASIN

01673800 PO RIVER NEAR SPOTSYLVANIA, VA--Continued

STATIS	TICS OF M	ONTHLY MEAN	DATA	FOR WATER	YEARS 1963	- 1998,	BY WATER	YEAR (WY)				
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	44.7	66.7	87.8	121	140	157	115	78.8	52.3	29.4	25.2	25.8
MAX	275	278	210	326	560	566	397	221	490	145	207	268
(WY)	1980	1994	1997	1978	1998	1994	1983	1972	1972	1984	1969	1975
MIN	.24	.85	11.1	10.4	37.3	25.2	27.1	19.1	4.62	1.68	. 25	.26
(WY)	1992	1992	1966	1981	1968	1981	1981	1986	1986	1963	1963	1991
MIN	.24	.85	11.1	10.4	37.3	25.2	27.1	19.1	4.62	1.68	. 25	.26

SUMMARY STATISTICS	FOR 1997 CALENDAR YEAR	FOR 1998 WATER YEAR	WATER YEARS 1963 - 1998
ANNUAL TOTAL	24839.28	50418.29	
ANNUAL MEAN	68.1	138	78.4
HIGHEST ANNUAL MEAN			164 1972
LOWEST ANNUAL MEAN			18.7 1981
HIGHEST DAILY MEAN	1080 Nov 8	3040 Feb 5	8160 Jun 22 1972
LOWEST DAILY MEAN	.72 Oct 14	e.70 Sep 16	.04 Sep 23 1991
ANNUAL SEVEN-DAY MINIMUM	1.1 Oct 10	e.86 Sep 11	.06 Oct 6 1986
INSTANTANEOUS PEAK FLOW		4070 Mar 21	10900 Jun 22 1972
INSTANTANEOUS PEAK STAGE		13.44 Mar 21	19.03 Jun 22 1972
INSTANTANEOUS LOW FLOW		.50 Oct 14	.03 Sep 23 1991
ANNUAL RUNOFF (CFSM)	.88	1.78	1.01
ANNUAL RUNOFF (INCHES)	11.94	24.23	13.76
10 PERCENT EXCEEDS	141	265	152
50 PERCENT EXCEEDS	37	41	36
90 PERCENT EXCEEDS	3.2	1.7	2.9

e Estimated.

01674000 MATTAPONI RIVER NEAR BOWLING GREEN, VA

LOCATION.--Lat 38°03'42", long 77°23'10", Caroline County, Hydrologic Unit 02080105, on right bank 0.1 mi upstream from bridge on State Highway 605, 2.2 mi northwest of Bowling Green, 2.4 mi upstream from South River, and 7.1 mi downstream from confluence of Matta and Poni Rivers.

DRAINAGE AREA. -- 257 mi².

PERIOD OF RECORD. -- September 1942 to current year.

REVISED RECORDS.--WSP 1382: 1943, 1945(M), 1948(M), 1949, 1953(M). WSP 2103: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 85.14 ft above sea level. Prior to Aug. 17, 1978, gage located on left bank at same datum.

REMARKS.--Records good except those for periods of doubtful gage-height record, Feb. 12, 13, and July 15, 16, 27, 28, which are fair. Some diurnal fluctuation from gristmill upstream on Po River. Maximum discharge, 13,400 ${\rm ft}^3/{\rm s}$, from rating curve extended above 8,100 ${\rm ft}^3/{\rm s}$. No flow at times in September and October 1954 and September 1966. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in August 1928 reached a stage of 19.5 ft based on relative difference in stage between this flood and flood of Oct. 17, 1942, at Milford 4 mi downstream, discharge, 15,000 $\rm ft^3/s$, from rating curve extended above 8,100 $\rm ft^3/s$.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 2,000 ft³/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 25	1400	2,740	10.70	Feb. 25	1700	2,690	10.57
Jan. 30	0300	5,340	13.42	Mar. 10	1900	2,690	10.57
Feb. 6	1300	*6,550	*14.45	Mar. 22	1800	5,550	13.60
Feb. 19	1700	4,950	13.05	Apr. 19	0700	2,210	9.94

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Minimum discharge, 1.3 ft³/s, Sept. 17.

					D.	AILY MEAN	VALUES				-	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	4.0 3.3 4.1 3.9 3.4	22 28 36 42 35	118 119 113 115 137	235 200 176 156 145	1250 763 554 621 2750	621 578 651 792 807	383 406 375 415 623	239 340 468 489 467	108 93 84 76 71	103 81 65 54 47	13 13 12 11	4.2 3.9 3.7 3.5 3.2
6 7 8 9 10	3.1 2.8 2.6 2.4 2.4	28 79 338 781 1630	148 135 114 103 98	136 131 158 216 222	6310 5110 3090 1990 1340	622 510 505 823 2310	1010 839 558 510 638	379 306 420 673 1360	69 74 70 65 86	42 37 47 95 90	10 10 9.7 9.8 11	2.9 2.7 2.7 2.6 2.3
11 12 13 14 15	2.3 2.2 2.1 2.2 2.7	895 408 211 198 261	118 130 131 116 103	204 172 153 151 159	956 e730 e640 768 615	2210 1260 805 608 513	929 868 603 474 420	1080 680 563 669 638	109 114 112 141 173	70 50 39 33 e32	12 12 11 11	2.1 1.8 1.8 1.7
16 17 18 19 20	3.3 3.2 15 47 64	268 240 186 148 124	95 91 87 84 82	262 379 473 408 310	492 480 869 4190 3440	456 409 427 658 1720	385 495 1070 2030 1280	456 339 273 228 198	196 252 297 231 164	e29 25 23 21 21	9.7 9.3 9.2 8.6 8.1	1.5 1.6 2.5 3.0 2.8
21 22 23 24 25	42 25 15 11	112 161 218 265 257	82 81 98 112 165	264 234 336 891 2570	1510 976 825 1060 2450	3060 5130 4440 2090 1140	1020 884 626 479 400	176 160 146 135 141	118 95 98 233 439	19 19 26 23 20	7.2 7.2 7.0 6.8 6.2	2.5 2.8 2.7 2.6 2.2
26 27 28 29 30 31	13 35 53 55 39 27	210 169 141 125 114	252 291 293 280 278 262	2010 1010 878 3390 4990 2870	2060 1150 777 	812 644 553 496 448 411	346 309 278 257 240	140 137 160 162 145 123	492 226 119 98 112	18 e17 e17 16 15	6.0 6.1 6.3 5.8 5.7 4.7	2.1 2.3 2.1 2.2 1.7
TOTAL MEAN MAX MIN CFSM IN.	501.0 16.2 64 2.1 .06	7730 258 1630 22 1.00	4431 143 293 81 .56 .64	23889 771 4990 131 3.00 3.46	47766 1706 6310 480 6.64 6.91	36509 1178 5130 409 4.58 5.28	19150 638 2030 240 2.48 2.77	11890 384 1360 123 1.49 1.72	4615 154 492 65 .60	1208 39.0 103 14 .15	280.4 9.05 13 4.7 .04	75.3 2.51 4.2 1.5 .01

e Estimated.

YORK RIVER BASIN

01674000 MATTAPONI RIVER NEAR BOWLING GREEN, VA--Continued

STATISTICS	OF	MONTHLY	MEAN	DATA	FOR	WATER	YEARS	1943	-	1998,	BY	WATER	YEAR	(WY)	
------------	----	---------	------	------	-----	-------	-------	------	---	-------	----	-------	------	------	--

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	126	172	272	368	417	486	385	257	141	105	116	81.1
MAX	860	721	1041	1174	1706	1540	1164	707	1111	853	939	714
(WY)	1943	1973	1949	1978	1998	1994	1983	1972	1972	1945	1955	1975
MIN	1.44	6.04	33.1	34.7	113	79.8	104	56.5	17.5	9.24	1.18	.43
(WY)	1992	1992	1966	1981	1968	1981	1968	1955	1977	1977	1977	1954
						_						
SUMMARY	Y STATIST	ICS	FOR :	1997 CALEN	DAR YEAR	F	OR 1998 WA	TER YEAR		WATER YE.	ARS 1943	- 1998
ANNUAL	TOTAL			75607.2			158044.7					
ANNUAL	MEAN			207			433			243		
HIGHEST	r annual i	MEAN								516		1972
LOWEST	ANNUAL M	EAN								61.0		1981
HIGHEST	r daily M	EAN		1630	Nov 10		6310	Feb 6		12200	Jun	23 1972
LOWEST	DAILY ME	AN		2.1	Oct 13		1.5	Sep 16		.00		(a)
ANNUAL	SEVEN-DA	MINIMUM		2.3	Oct 8		1.7	Sep 11		.00		(b)
INSTAN	TANEOUS P	EAK FLOW					6550	Feb 6		13400	Jun	23 1972
INSTANT	TANEOUS P	EAK STAGE					14.45	Feb 6		c18.95	Jun	23 1972
INSTANT	TANEOUS LO	OW FLOW					1.3	Sep 17		.00		(a)
ANNUAL	RUNOFF (CFSM)		.81			1.68			.95		

12.85

548

127

12

22.88

3.2

1010

141

10.94

5.8

486

118

10 PERCENT EXCEEDS 50 PERCENT EXCEEDS

90 PERCENT EXCEEDS

ANNUAL RUNOFF (INCHES)

a Many days in September and October 1954, and September 1966. b Many days in September and October 1954. c From floodmark in well.

02015700 BULLPASTURE RIVER AT WILLIAMSVILLE, VA

LOCATION.--Lat 38°11'43", long 79°34'14", Bath County, Hydrologic Unit 02080201, on left bank 15 ft downstream from bridge on State Highway 614 at Williamsville and 0.62 mi upstream from mouth.

DRAINAGE AREA. -- 110 mi².

PERIOD OF RECORD. -- August 1960 to current year.

REVISED RECORDS.--WSP 2104: Drainage area. WRD VA-62-1: 1961. WRD VA-96-1: 1985(M).

GAGE.--Water-stage recorder. Datum of gage is 1,610.14 ft above sea level. Prior to July 12, 1974, at site 700 ft upstream at datum 11.84 ft higher.

REMARKS.--No estimated daily discharges. Records good. Maximum discharge, 22,900 ft³/s, from rating curve extended above 3,300 ft³/s on basis of slope-area measurement of peak flow. Minimum discharge, 19 ft³/s, result of freezeup. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location by the Virginia Department of Environmental Quality - Water Division.

COOPERATION. -- Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 2,000 ft³/s and maximum (*):

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 8 Feb. 17 Mar. 9	0730 1800 1300	*7,460 2,310 2,610	*8.18 5.19 5.44	Mar. 21 Apr. 19	0030 2000	2,570 2,430	5.41 5.29

Minimum discharge, 36 ft³/s, Sept. 27.

		DISCIN	ARGE, IN	CODIC FEE		AILY MEAN		TOBER 199	, 10 PEFT	SHEEK IJJ	3	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	43	114	66	63	203	464	234	181	80	77	46	39
2	41	168	62	74	184	377	221	236	77	66	44	39
3	41	105	61	78	189	307	184	221	73	59	43	39
4	40	83	64	94	218	249	558	233	70	59	42	39
5	40	70	66	170	221	212	454	356	70	58	42	38
6	40	63	62	272	227	181	345	341	70	54	41	39
7	39	362	59	411	221	165	272	286	68	53	41	39
8	39	430	58	3800	206	503	249	445	67	63	42	48
9	38	239	57	1330	209	1680	853	377	66	59	43	43
10	38	142	66	653	221	1020	705	307	73	53	45	40
11	38	111	93	402	262	556	454	262	68	51	57	39
12	38	91	85	296	504	377	337	242	70	49	46	39
13	39	83	78	255	567	303	275	212	71	49	44	39
14	39	105	73	206	445	262	246	184	71	49	45	38
15	39	122	66	210	341	224	218	160	123	49	101	38
16	39	103	64	372	286	189	192	151	101	48	62	38
17	39	91	63	307	1210	170	203	155	89	51	55	38
18	39	81	61	255	1320	341	168	133	75	49	54	38
19	39	77	58	209	957	1220	1110	122	126	49	48	38
20	40	73	57	178	855	1080	1110	114	120	47	44	40
21	39	70	56	148	729	2080	642	109	88	49	43	39
22	38	88	57	139	541	1070	450	105	78	47	42	39
23	38	86	58	604	516	653	372	103	73	46	42	39
24	41	78	59	598	441	450	318	111	68	46	41	38
25	52	74	88	423	397	333	262	107	63	45	41	38
26	49	73	88	311	360	282	227	94	62	45	40	38
27	64	73	83	259	360	249	206	100	67	45	40	38
28	49	67	81	239	419	221	181	103	74	46	40	39
29	45	67	77	236		198	163	91	153	45	40	38
30	43	66	78	255		173	155	86	88	44	40	38
31	42		75	242		160		81		44	39	
TOTAL	1288	3455	2119	13089	12609	15749	11364	5808	2442	1594	1433	1172
MEAN	41.5	115	68.4	422	450	508	379	187	81.4	51.4	46.2	39.1
MAX	64	430	93	3800	1320	2080	1110	445	153	77	101	48
MIN	38	63	56	63	184	160	155	81	62	44	39	38
CFSM	.38	1.05	.62	3.84	4.09	4.62	3.44	1.70	.74	.47	.42	.36
IN.	.44	1.17	.72	4.43	4.26	5.33	3.84	1.96	.83	.54	.48	.40

02015700 BULLPASTURE RIVER AT WILLIAMSVILLE, VA--Continued

STATIST	rics of MC	ONTHLY MEAN	DATA	FOR WATER	YEARS 1	960	- 1998,	BY WATER	R YEAR (V	VY)			
	OCT	NOV	DEC	JAN	FEB		MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	85.1	123	164	202	227		317	226	192	119	66.4	65.5	67.9
MAX	295	784	543	631	498		655	663	448	376	245	272	432
(WY)	1977	1986	1974	1996	1982		1993	1987	1996	1982	1972	1969	1996
MIN	30.1	35.9	31.9	34.7	63.8		62.2	74.9	65.4	41.4	32.9	27.7	28.5
(WY)	1989	1992	1966	1981	1963		1981	1981	1977	1964	1966	1964	1968
SUMMAR	Y STATISTI	ics	FOR	1997 CALI	ENDAR YE	AR	F	OR 1998 V	WATER YEA	AR.	WATER YE	ARS 1960	- 1998
ANNUAL	TOTAL			45973				72122					
ANNUAL	MEAN			126				198			154		
HIGHEST	r annual N	MEAN .									248		1996
LOWEST	ANNUAL ME	EAN									71.2		1981
HIGHEST	C DAILY ME	EAN		1620	Mar	3		3800	Jan	8	e8700	Nov	4 1985
LOWEST	DAILY MEA	AN		37	Sep	6		38	a0ct	9	23	bSep	8 1964
ANNUAL	SEVEN-DAY	MINIMUM		38	Sep	2		38	cSep 1	L3	24	Sep	5 1964
INSTAN	CANEOUS PE	EAK FLOW						7460	Jan	8	22900	Nov	4 1985
INSTANT	CANEOUS PE	EAK STAGE						8.3	18 Jan	8	d12.79	Nov	4 1985
INSTAN	CANEOUS LO	OW FLOW						36	Sep 2	27	f19	Jan	4 1981
ANNUAL	RUNOFF (CFSM)		1.3	15			1.8	80		1.40		
ANNUAL	RUNOFF ()	INCHES)		15.	55			24.3	39		19.08		

10 PERCENT EXCEEDS 50 PERCENT EXCEEDS

90 PERCENT EXCEEDS

a Also Oct. 10-12, 22, 23, 1997 and Sept. 5, 14-19, 24-27, 29, 30, 1998. b Also Sept. 9, 1964. c Also Sept. 24, 1998. d From floodmarks. e Estimated. f Result of freezeup.

02017500 JOHNS CREEK AT NEW CASTLE, VA

LOCATION.--Lat 37°30'22", long 80°06'25", Craig County, Hydrologic Unit 02080201, on right bank 20 ft downstream from bridge on State Highway 615 at New Castle and 1,700 ft upstream from mouth.

DRAINAGE AREA. -- 104 mi².

PERIOD OF RECORD. -- April 1926 to current year.

REVISED RECORDS.--WSP 972: 1935-36(M), 1940(M). WSP 1203: 1928, 1935. WSP 1303: 1927(M), 1928, 1929-34(M), 1935. WSP 2104: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,254.30 ft above sea level. Prior to June 7, 1937, nonrecording gage at same site and datum.

REMARKS.--Records good except those for period with ice effect, Dec. 31 to Jan. 1, and periods of doubtful gage-height record, July 26 to Aug. 4, and Sept. 5-8, 11, 14, 15, 18, 22, 28, 29, which are fair. Maximum discharge, 8,000 ft³/s, from rating curve extended above 3,200 ft³/s on basis of slope-area measurement of peak flow. Minimum discharge, 6.0 ft³/s, result of freezeup. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 2,100 ${\rm ft}^3/{\rm s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 8 Mar. 21	1300 0330	2,540 2,760	8.80 9.02	Apr. 19	2300	*3,100	*9.30

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Minimum discharge, 8.8 ft³/s, Oct. 14.

					Di	AILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	9.7	17	22	e30	368	258	153	245	85	31	e14	11
2	9.4	26	22	36	303	242	136	327	71	28	e14	11
3	9.6	27	21	39	313	220	119	263	66	26	e14	11
4	9.7	22	21	48	1240	191	312	362	70	25	e13	11
5	9.5	20	21	89	1190	164	403	469	70	28	13	e10
6	9.4	18	21	112	1030	142	328	374	71	24	13	e10
7	9.2	17	20	137	771	123	278	329	65	22	13	e9.8
8	9.0	17	19	1400	575	157	243	496	59	22	20	e12
9	9.2	17	19	607	477	451	466	426	56	22	25	11
10	9.2	16	21	423	406	430	482	360	58	22	22	11
11	11	16	23	340	397	348	389	561	57	21	25	e10
12	9.8	16	23	294	471	299	334	449	72	20	17	11
13	9.1	16	23	257	448	260	292	367	74	19	15	10
14	9.0	18	22	203	384	230	258	305	80	19	14	e9.5
15	9.7	21	22	230	326	191	223	249	85	19	14	e9.3
16	9.3	20	22	407	290	164	219	206	80	18	20	10
17	9.5	18	23	344	977	144	952	169	78	17	50	9.7
18	9.9	18	21	280	990	150	588	136	68	17	37	e9.4
19	10	17	20	237	650	820	1240	112	71	17	27	9.8
20	10	17	20	202	559	1220	1600	94	76	16	22	11
21	9.9	18	19	168	472	2170	820	82	66	16	18	11
22	9.9	25	24	145	397	1010	629	72	60	16	16	e14
23	10	28	31	337	432	686	528	87	52	17	15	12
24	11	27	32	371	444	555	457	106	46	17	14	11
25	13	24	38	325	369	461	384	111	51	16	14	11
26	16	22	40	264	324	404	326	110	40	e16	13	11
27	19	22	42	232	297	357	277	151	35	e16	13	10
28	17	20	42	711	275	304	227	184	33	e15	13	e9.7
29	13	20	38	737		255	185	153	37	e15	12	e9.1
30	13	20	40	618		209	160	127	35	e14	12	9.8
31	13		e33	465		173		105		e14	12	
TOTAL	336.0	600	805	10088	15175	12788	13008	7587	1867	605	554	316.1
MEAN	10.8	20.0	26.0	325	542	413	434	245	62.2	19.5	17.9	10.5
MAX	19	28	42	1400	1240	2170	1600	561	85	31	50	14
MIN	9.0	16	19	30	275	123	119	72	33	14	12	9.1
CFSM	.10	.19	.25	3.13	5.21	3.97	4.17	2.35	.60	.19	.17	.10
IN.	.12	.21	.29	3.61	5.43	4.57	4.65	2.71	.67	.22	.20	.11

e Estimated.

Jun 21 1972

Dec 6 1946

JAMES RIVER BASIN

02017500 JOHNS CREEK AT NEW CASTLE, VA--Continued

STATISTICS	OF	MONTHLY	MEAN	DATA	FOR	WATER	YEARS	1927	_	1998.	BY	WATER	YEAR	(WY)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	57.5	89.1	134	191	228	279	225	160	90.2	40.6	43.4	40.3
MAX	396	445	514	546	542	730	820	398	471	291	364	353
(WY)	1930	1986	1949	1996	1998	1955	1987	1989	1972	1941	1940	1989
MIN	9.81	14.0	15.7	16.2	18.0	51.9	47.8	33.5	20.2	8.90	9.39	9.07
(WY)	1992	1931	1940	1956	1934	1988	1995	1930	1970	1930	1930	1930
SUMMARY STATISTICS			FOR I	1997 CALEN	DAR YEAR	F	OR 1998 W <i>i</i>	ATER YEAR		WATER YE	ARS 1927	- 1998
ANNUAL	TOTAL			35627.9			63729.1					
ANNUAL	MEAN			97.6			175			131		
HIGHEST	C ANNUAL N	MEAN								235		1973
LOWEST	ANNUAL M	EAN								66.1		1981
HIGHEST	DAILY M	EAN		1050	Mar 4		2170	Mar 21		6040	Jun 2	1 1972
LOWEST	DAILY MEA	AN		8.4	aSep 21		9.0	bOct 8		6.6	Oct	1 1968
ANNUAL	SEVEN-DAY	Y MINIMUM		8.8	Sep 3		9.3	Oct 4		7.1	Sep 2	7 1968
INSTANT	TANEOUS PI	EAK FLOW			-		3100	Apr 19		8000	-	3 1935

INSTANTANEOUS PEAK FLOW 3100 Apr 19 8000 INSTANTANEOUS PEAK STAGE 9.30 Apr 19 12.48 INSTANTANEOUS LOW FLOW 8.8 Oct 14 c6.0 ANNUAL RUNOFF (CFSM) .94 1.68 1.26 ANNUAL RUNOFF (INCHES) 12.74 22.80 17.11 10 PERCENT EXCEEDS 217 463 303 50 PERCENT EXCEEDS 39 37 60 90 PERCENT EXCEEDS 10 13 9.8

a Also Sept. 22, 1997. b Also Oct. 14, 1998. c Result of freezeup.

02018500 CATAWBA CREEK NEAR CATAWBA, VA

LOCATION.--Lat 37°28'05", long 80°00'20", Botetourt County, Hydrologic Unit 02080201, on right bank 80 ft upstream from bridge on State Highway 779, 1.0 mi downstream from Little Catawba Creek, 1.9 mi west of Haymakertown, and 8.2 mi northeast of Catawba.

DRAINAGE AREA. -- 34.3 mi².

PERIOD OF RECORD. -- September 1943 to current year.

REVISED RECORDS.--WSP 1303: 1944-45(M). WSP 2104: Drainage area. WDR VA-72-1: 1954, 1955(P), 1957-58(P), 1959, 1960-62(P), 1963, 1964(M), 1965-67(P), 1968(M), 1969, 1970(M), 1971.

GAGE.--Water-stage recorder. Datum of gage is 1,299.96 ft above sea level. Prior to Aug. 1, 1953, nonrecording gage at site 80 ft downstream at same datum.

REMARKS.--Records good except those for period of doubtful gage-height record, Oct. 21 to Dec. 2, and period with ice effect, Jan. 1, 2, which are fair. At a point 5.3 mi upstream from station, there has been transmountain diversion through a tunnel into Roanoke River Basin for municipal water supply of city of Roanoke since December 1974. From October 1953 to October 1976, monthly means adjusted for pumpage by Citadel Cement Corporation.

Maximum discharge, 21,200 ft³/s, from rating curve extended above 1,700 ft³/s on basis of slope-area measurements at gage heights 10.35 ft and 19.19 ft. Minimum discharge, 0.28 ft³/s, Aug. 21, 1987, gage height, 0.99 ft, cause unknown. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in August 1940 reached a stage of 13.26 ft, from information by observer.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,590 ft³/s, Mar. 20, gage height, 6.98 ft; minimum, 1.5 ft³/s, Sept. 29.

		_	10011111027	111 0021	.0 1221	D D	DAILY ME	AN VALU	ES		. 10 52		1,,,,	
DAY	OCT	NC	V DEC	2 a	ΓAN	FEB	MAR	AP	R	MAY	JUN	JUI	L AU	G SEP
1 2 3 4 5	5.7 5.4 5.2 5.1 5.0		2 4.8	5 e5	1.9 5.9 5.3 7.3	38 51 105 820 585	72 66 60 55 51	4 4 7	0 6 3 6 8	61 91 83 91 99	23 22 21 17 11	8.2 7.1 8.5 9.2	2 4. 7 4. 5 4.	3.8 3.9 1 4.1
6 7 8 9 10	4.7 4.3 4.2 4.2 4.6	e6. e6.	1 4.3 2 4.2 4 4.3	3 644 3 45	5	442 283 192 153 128	47 45 69 231 151	6 5 6	8 1 5 3 0	78 69 70 62 57	14 13 12 12 13	8.0 8.2 8.2 7.4	1 4. 7 8. 2 8.	4.0 4.2 5 3.9
11 12 13 14 15	4.3 4.5 4.3 4.3	e5. e5. e6.	6 4.5 5 4.4 0 4.4	7 20 1 19 1 18)) 3	123 133 129 108 86	103 83 72 65 58	5 4 4	6 1 8 6 4	75 65 60 55 49	13 13 12 11 12	7.0 6.9 6.4 6.4	7. 5 6. 4 5.	3.0 5 3.7 3 3.4
16 17 18 19 20	4.3 4.4 4.5 4.3 3.9	e5. e5.	4 4.2 3 4.2 2 4.1	2 30 2 23 L 21) 3 -	80 967 423 221 163	54 50 54 202 739	5 39 18 25 31	5 3	44 40 36 34 32	11 11 10 9.6 9.5	6.3 5.9 6.2 5.6	8. 2 6. 5 5.	3.8 5 3.9 3 5.0
21 22 23 24 25	e4.9 e4.8 e4.7 e5.0 e5.5	e6. e7. e6. e5.	4 4.9 5 5.0 5 5.1) 18) 32 L 32	3 2 2	125 102 165 160 124	754 287 180 133 106		0	30 27 31 32 30	9.8 8.9 9.5 8.7 9.0	5.2 5.2 5.2	0 4. 3 4. 2 4.	2 3.7 2 2.9 3.2
26 27 28 29 30 31	e6.0 e6.5 e5.4 e5.0 e4.7 e6.0	e4. e4.	7 5.6 6 5.4 7 5.4 9 5.1	5 22 1 85 1 69 L 61	2	104 91 80 	92 83 76 65 56 52	6 5 4	8 0 4 9 6	30 41 36 31 28 26	8.4 7.9 8.8 9.1 7.8	5.2 5.3 5.2 6.2 5.3	1 3. 3. 5 3. 2 3. 1 3. 1	7 2.3 7 2.2 6 2.1 8 2.4
TOTAL MEAN MAX MIN (†) MEAN‡ CFSM‡ IN.‡	150.1 4.84 6.5 3.9 0 4.84 .14	6.0 1 4. 7.4 7.4	9 4.67 2 5.6 6 4.1 0 0 2 4.67 2 .14	7 46 5 6 L 4 D 14 7 94 1 2.	4 5.2 544 1.9 1.5 76	6181 221 967 38 59.3 223 6.50 6.77	4211 136 754 45 0 136 3.96 4.57	291 97. 39 4 97. 2.8 3.1	2 7 3 0 2 3	1593 51.4 99 26 0 51.4 1.50 1.73	358.0 11.9 23 7.8 193 18.4 .54	203.9 6.58 9.2 5.0 3.8 6.7	3 5.4 2 9. 3 3. 3 5.4 5 .1	1 3.46 4 5.0 5 2.1 0 0 1 3.46 5 .10
CAL YR WTR YR	1997 1998	TOTAL TOTAL	10017.7 17644.5	MEAN MEAN	27.4 48.3	MAX MAX	703 967	MIN MIN	3.9 2.1	MEAN‡ MEAN‡	29.4 53.3	CFSM‡ CFSM‡		N.‡ 11.63 N.‡ 21.08

Total diversion, equivalent in cubic feet per second, per month, provided by city of Roanoke.

Adjusted for diversion.

e Estimated.

02018500 CATAWBA CREEK NEAR CATAWBA, VA--Continued

STATIS'	TICS OF MO	ONTHLY MEA	N DATA F	OR WATER Y	EARS 1944	- 1952,	BY WATER	YEAR (WY)	[UNREG	ULATED]		
MEAN MAX (WY) MIN (WY)	OCT 23.7 106 1948 5.00 1952	NOV 27.4 93.2 1948 5.89 1944	DEC 40.1 134 1949 7.70 1944	JAN 52.2 104 1947 15.1 1951	FEB 65.6 104 1948 20.0 1947	MAR 69.0 103 1951 35.1 1950	APR 67.0 152 1951 23.1 1945	MAY 47.1 114 1950 21.5 1945	JUN 33.3 108 1949 7.93 1944	JUL 24.4 107 1949 4.95 1944	AUG 20.0 46.5 1949 3.91 1944	SEP 22.9 62.2 1945 5.94 1951
SUMMAR	Z OMAMICMI	raa		ANDER ADAR	g 1044	1050						
ANNUAL HIGHES' LOWEST HIGHES' LOWEST ANNUAL INSTAN' INSTAN' INSTAN' ANNUAL ANNUAL ANNUAL 10 PER 90 PER 90 PER 10 10 10 10 10 10 10 10 10 10 10 10 10	MEAN I ANNUAL M ANNUAL ME I DAILY ME DAILY ME TANEOUS PE TANEOUS PE TANEOUS L RUNOFF (1 CENT EXCER CENT EXCER	MEAN EAN EAN EAN AN AN EAK FLOW EAK STAGE OW FLOW CISSM) CINCHES EDS EDS		40.9 75.5 22.3 1540 a2.2 a2.4 3300 c5.80 a2.2 1.19 16.21 84 21 6.1	Jun 29 bSep 9 Sep 5 Dec 7 Dec 7 dSep 7	1949 1944 1949 1944 1944 1950 1950 1944						
STATIS'	TICS OF MO	ONTHLY MEA	N DATA F	OR WATER Y	EARS 1953	- 1998,	BY WATER	YEAR (WY)	[REGUL	ATED, UNADJ	USTED]	
MEAN MAX (WY) MIN (WY)	OCT 17.4 82.2 1990 2.63 1964	390 1986	DEC 28.6 127 1973 3.16 1982	JAN 40.9 131 1996 3.45 1981	221 1998	82.4	APR 65.7 337 1987 6.78 1981	MAY 39.8 138 1958 9.75 1963	5.06	52.2 1989	AUG 12.3 75.5 1985 2.28 1981	SEP 14.5 105 1979 2.30 1981
SUMMAR	Y STATISTI	ICS	FOR	1997 CALEN	DAR YEAR	F	OR 1998 WA	TER YEAR		WATER YEA	ARS 1953	- 1998
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS			703 3.9 4.1	Jun 1 Oct 20 Dec 15		967 2.1 2.4	Sep 29 Sep 24 Mar 20 Mar 20 Sep 29		21200 g19.19 h.28 1.04 14.14 73	Aug fNov Nov Nov Aug	4 1985	
90 PER	CENT EXCE	EDS		4.7			4.1			4.3		

a Observed.
b Also Sept. 10, 1944.
c From floodmark or crest-stage indicator.
d Also Sept. 8-11, 1944.
f Also Nov. 17, 1963.
g From high-water mark.
h Regulation from unknown source.

02022500 KERRS CREEK NEAR LEXINGTON, VA

LOCATION.--Lat 37°49'32", long 79°26'36", Rockbridge County, Hydrologic Unit 02080202, on right bank 100 ft upstream from bridge on Interstate Highway 64, 1.4 mi upstream from mouth, and 2.9 mi north of Lexington.

DRAINAGE AREA. -- 35.0 mi².

PERIOD OF RECORD.--October 1926 to current year. Monthly discharge only for some periods, published in WSP 1303.

REVISED RECORDS.--WSP 1203: 1927-29, 1930-34(M), 1935-40, 1941(M), 1942, 1943-48(M), 1949. WSP 2104: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 980.32 ft above sea level (levels by U.S. Army Corps of Engineers).

Jan. 27, 1927, to Sept. 30, 1953, nonrecording gage at site 1,000 ft downstream at different datum.

REMARKS.--Records good except for period with ice effect, Jan. 1, which is fair. Maximum discharge, $23,000 \text{ ft}^3/\text{s}$, from rating curve extended above $800 \text{ ft}^3/\text{s}$ on basis of contracted-opening and slope-area measurements of peak flow. Minimum discharge, $0.90 \text{ ft}^3/\text{s}$, July 22, 1966, result of temporary dam upstream. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 600 ft^3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 8	0530	*6,350	*10.73	Mar. 20	1830	2,770	8.53
Jan. 28	1145	890	6.12	Mar. 21	0315	1,280	6.80
Feb. 4	1545	875	6.10	Apr. 19	1930	681	5.71
Feb. 17	1330	1,100	6.50				

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Minimum discharge, 6.0 ft³/s, Sept. 28, 29, 30.

	DAILY MEAN VALUES													
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP		
1	7.0	26	27	e12	101	67	47	59	27	20	11	7.4		
2	7.0	18	17	14	85	62	43	66	25	18	9.9	7.3		
3	7.0	13	14	15	86	56	41	61	24	18	9.6	7.1		
4	6.9	11	15	21	376	51	116	61	24	17	9.2	6.9		
5	6.8	9.5	14	29	240	47	84	64	24	17	9.0	6.8		
6	6.7	9.8	13	31	230	43	67	58	23	16	8.7	6.8		
7	6.6	30	12	64	197	41	58	60	22	16	8.6	6.7		
8	6.6	17	11	1060	145	93	53	252	21	19	10	7.7		
9	6.7	14	11	268	119	261	137	129	21	17	11	7.3		
10	6.7	12	12	120	104	136	108	94	22	16	12	7.0		
11	6.7	11	13	82	107	96	82	78	21	14	12	6.9		
12	6.9	10	12	65	142	77	68	68	21	14	9.6	6.8		
13	7.0	9.9	11	57	122	67	60	58	21	13	9.3	6.6		
14	7.1	12	11	47	98	61	56	52	19	13	9.3	6.5		
15	7.7	12	11	95	82	54	51	47	41	13	9.7	6.5		
16	7.2	11	11	138	75	49	47	43	49	12	14	6.5		
17	7.2	10	10	93	566	46	206	40	41	12	14	6.6		
18	7.3	9.8	10	72	280	81	102	36	27	12	11	6.8		
19	7.4	9.5	10	61	162	314	232	34	30	12	10	6.8		
20	7.3	9.5	9.9	54	137	581	222	32	25	11	9.3	7.0		
21	7.2	10	9.7	46	113	603	129	31	22	11	8.8	7.0		
22	7.3	14	11	43	94	247	101	29	21	11	8.7	6.9		
23	7.2	12	11	238	105	152	87	31	20	11	8.6	6.6		
24	8.0	11	11	154	112	114	74	36	19	12	8.4	6.6		
25	11	10	19	121	93	92	63	34	20	11	7.9	6.8		
26	10	10	17	88	83	80	57	28	22	10	7.9	6.8		
27	11	9.8	18	78	76	71	55	64	21	11	7.7	6.6		
28	8.5	9.5	19	479	71	63	48	50	22	11	7.8	6.4		
29	8.0	9.5	18	219		58	45	37	32	10	7.8	6.3		
30	7.9	9.8	17	176		52	43	32	23	9.7	7.7	6.3		
31	7.8		15	133		48		29		13	7.5			
TOTAL	233.7	370.6	420.6	4173	4201	3863	2582	1793	750	420.7	296.0	204.3		
MEAN	7.54	12.4	13.6	135	150	125	86.1	57.8	25.0	13.6	9.55	6.81		
MAX	11	30	27	1060	566	603	232	252	49	20	14	7.7		
MIN	6.6	9.5	9.7	12	71	41	41	28	19	9.7	7.5	6.3		
CFSM	.22	.35 .39	.39 .45	3.85	4.29	3.56	2.46	1.65	.71	.39	.27	.19		
IN.	. 25	. 39	.45	4.44	4.47	4.11	2.74	1.91	.80	. 45	.31	. 22		

e Estimated.

02022500 KERRS CREEK NEAR LEXINGTON, VA--Continued

STATISTICS	OF	V.THTI/OM	MEDN	$D\Delta T\Delta$	FOR	MATER	VEARS	1927	- 1998	RY W	JATER	VEAR	(WV)	

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	23.2	24.3	33.1	47.2	55.8	74.7	58.9	38.9	28.1	17.8	23.8	19.5
MAX	141	209	129	163	150	357	306	159	195	99.5	162	188
(WY)	1938	1986	1949	1937	1998	1936	1987	1989	1995	1972	1969	1950
MIN	5.24	6.50	5.88	5.15	8.86	14.5	10.3	12.0	8.59	5.56	5.85	5.31
(WY)	1964	1966	1966	1966	1931	1981	1942	1956	1945	1966	1981	1970
SUMMARY	Y STATIST	ICS	FOR I	1997 CALEN	IDAR YEAR	F	OR 1998 WA	TER YEAR		WATER YE	ARS 1927	- 1998
ANNUAL	TOTAL			10819.0			19307.9					
ANNUAL	MEAN			29.6			52.9			37.0		
HIGHEST	r annual i	MEAN								75.5		1936
LOWEST	ANNUAL M	EAN								14.1		1981
HIGHEST	C DAILY M	EAN		463	Jun 1		1060	Jan 8		e4840	Mar 1	L7 1936
LOWEST	DAILY MEA	AN		6.6	aOct 7		6.3	bSep 29		4.0	cAug 3	30 1932
ANNUAL	SEVEN-DAY	MINIMUM Y		6.7	Oct 5		6.5	Sep 24		4.2	Jan 2	24 1966
INSTANT	TANEOUS PI	EAK FLOW					6350	Jan 8		23000	Sep 1	LO 1950
INSTANT	TANEOUS PI	EAK STAGE					10.73	Jan 8		d15.44	Jun 2	28 1995

6.0 fSep 28

1.51

20.52

7.0

119

19

g.90 1.06

14.38

7.7

70

18

Jul 22 1966

INSTANTANEOUS LOW FLOW

ANNUAL RUNOFF (CFSM)

10 PERCENT EXCEEDS

50 PERCENT EXCEEDS

90 PERCENT EXCEEDS

ANNUAL RUNOFF (INCHES)

.85

11.50

7.3

58

16

A Also Oct. 8, 1997.
b Also Sept. 30, 1998.
c Also many days in September 1932, Nov. 21, 1938, and July 22, 1966.
d From high-water mark in gage house.
e Estimated.
f Also Sept. 29, 30, 1998.
g Result of temporary dam upstream.

02027000 TYE RIVER NEAR LOVINGSTON, VA

LOCATION.--Lat 37°42'55", long 78°58'55", Nelson County, Hydrologic Unit 02080203, on right bank at downstream side of bridge on State Highway 158, 3.5 mi downstream from Hat Creek, 4.8 mi upstream from Piney River, and 6.8 mi southwest of Lovingston.

DRAINAGE AREA. -- 92.8 mi².

PERIOD OF RECORD. -- August 1938 to current year.

REVISED RECORDS.--WSP 892: 1938. WSP 2104: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 578.39 ft above sea level. Sept. 15, 1969, to Oct. 15, 1970, nonrecording gage at same site and datum.

REMARKS.--Records good except those for periods with doubtful gage-height record, Oct. 3-11, 22, 23, Nov. 17, 26, 27, 29, Mar. 26, and July 14, 15, and period with ice effect, Jan. 1, 2, which are fair. Maximum discharge, 80,000 ft³/s, from rating curve extended above 7,600 ft³/s on basis of slope-area measurement of peak flow. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 1,600 ${\rm ft}^3/{\rm s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 8	1230	*6,850	*9.15	Feb. 17	1700	3,640	6.13
Jan. 28	1230	2,570	4.89	Mar. 9	1230	2,040	4.20
Feb. 4	1200	2,160	4.36	May 8	0500	2,110	4.29

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Minimum discharge, 7.7 ft³/s, Sept. 29.

		210011	.11.02 / 111	00010 122	Di	AILY MEAN	VALUES	,102211 177	, 10 0211.		,	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	26	154	95	e87	427	484	246	255	102	69	34	21
2	23	202	82	e90	367	507	223	264	97	59	27	20
3	e21	147	74	95	341	449	202	240	92	63	25	18
4	e23	114	84	107	1360	394	405	249	86	60	24	19
5	e20	95	76	120	1110	352	391	296	91	72	23	16
6	e18	86	70	139	896	313	341	255	89	57	23	15
7	e17	392	69	349	740	289	303	374	80	51	22	17
8	e17	383	65	3830	596	620	280	1340	76	64	29	22
9	e16	306	64	1540	512	1530	406	928	74	63	60	17
10	e20	220	74	842	453	1170	423	698	89	55	42	14
11	e21	177	82	566	486	804	387	551	82	49	37	13
12	17	143	72	432	907	628	352	489	77	46	32	12
13	17	120	69	363	788	517	320	415	76	46	28	11
14	18	145	67	296	661	444	293	363	70	e44	32	10
15	17	131	65	400	551	383	273	320	165	e42	27	10
16	17	116	65	462	484	334	252	328	e250	47	50	9.9
17	17	e108	65	387	2000	303	536	442	e270	92	138	9.6
18	23	100	63	338	1830	299	379	283	139	50	68	11
19	23	92	63	306	1210	360	696	240	e185	43	48	11
20	20	82	60	280	1010	389	1100	209	139	41	39	11
21	18	88	60	240	869	847	777	194	e110	38	33	12
22	e17	133	68	220	730	682	607	172	e100	34	31	12
23	e16	114	77	612	719	541	512	167	e93	41	34	10
24	18	104	73	644	623	457	432	181	e89	50	32	8.9
25	36	97	133	512	546	371	379	160	e82	38	29	9.4
26	42	e92	116	411	503	e350	334	141	e78	35	29	9.7
27	62	e88	120	467	475	323	306	160	e65	35	26	9.3
28	36	84	118	1480	457	299	273	165	69	38	27	8.5
29	29	e80	112	842		273	246	133	94	33	24	8.2
30	26	77	114	644		249	231	118	79	31	21	8.9
31	26		102	517		234		110		32	20	
TOTAL	717	4270	2517	17618	21651	15195	11905	10240	3188	1518	1114	384.4
MEAN	23.1	142	81.2	568	773	490	397	330	106	49.0	35.9	12.8
MAX	62	392	133	3830	2000	1530	1100	1340	270	92	138	22
MIN	16	77	60	87	341	234	202	110	65	31	20	8.2
CFSM	.25	1.53	.87	6.12	8.33	5.28	4.28	3.56	1.15	.53	.39	.14
IN.	.29	1.71	1.01	7.06	8.68	6.09	4.77	4.10	1.28	.61	.45	.15

e Estimated.

02027000 TYE RIVER NEAR LOVINGSTON, VA--Continued

STATIST	rics of	MONTHLY MEAN	DATA	FOR WATER	YEARS 1939	- 1998,	BY WATER	YEAR (WY)				
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	104	133	171	195	221	264	240	184	137	79.4	109	89.2
MAX	550	765	499	568	773	568	692	492	676	382	1541	556
(WY)	1943	1986	1997	1998	1998	1993	1987	1989	1972	1972	1969	1979
MIN	8.69	15.3	23.7	14.7	69.7	64.0	63.1	53.1	30.8	15.1	7.07	6.87
(WY)	1942	1942	1981	1981	1963	1981	1966	1941	1956	1966	1966	1954
SUMMARY	Y STATIS	TICS	FOR	1997 CAL	ENDAR YEAR	F	OR 1998 W	ATER YEAR		WATER Y	EARS 1939	- 1998

ANNUAL TOTAL	45338			90317.4					
ANNUAL MEAN	124			247		160			
HIGHEST ANNUAL MEAN						280			1973
LOWEST ANNUAL MEAN						61.7			1956
HIGHEST DAILY MEAN	586	Mar	4	3830	Jan 8	e32600	Aug	20	1969
LOWEST DAILY MEAN	12	aSep	7	8.2	Sep 29	.60	bSep	9	1966
ANNUAL SEVEN-DAY MINIMUM	14	Sep	3	9.0	Sep 24	.73	Sep	7	1966
INSTANTANEOUS PEAK FLOW				6850	Jan 8	80000	Aug	20	1969
INSTANTANEOUS PEAK STAGE				9.15	Jan 8	c29.00	Aug	20	1969
INSTANTANEOUS LOW FLOW				7.7	Sep 29	.50	dSep	10	1966
ANNUAL RUNOFF (CFSM)	1.3	4		2.67		1.72			
ANNUAL RUNOFF (INCHES)	18.1	7		36.20		23.42			
10 PERCENT EXCEEDS	276			609		325			
50 PERCENT EXCEEDS	91			100		104			
90 PERCENT EXCEEDS	19			18		23			

Also Sept. 8, 1997. Also Sept. 10, 11, 1966. From floodmarks. Also Sept. 11, 1966. Estimated.

02027500 PINEY RIVER AT PINEY RIVER, VA

LOCATION.--Lat 37°42'08", long 79°01'40", Nelson County, Hydrologic Unit 02080203, on left bank at upstream side of bridge on State Highway 151, 0.2 mi southwest of Piney River Post Office, 1.7 mi downstream from Indian Creek, and 2.5 mi southeast of Lowesville.

DRAINAGE AREA. -- 47.6 mi².

PERIOD OF RECORD. -- July 1949 to current year.

REVISED RECORDS.--WSP 2104: Drainage area. WDR VA-72-1: 1971(M).

GAGE.--Water-stage recorder. Datum of gage is 633.58 ft above sea level. Prior to May 27, 1969, water-stage recorder, and Nov. 4, 1969, to Feb. 26, 1970, nonrecording gage at site 20 ft downstream from former highway bridge at same datum. Feb. 26, 1970, to Sept. 20, 1973, on right bank 20 ft upstream from bridge at same datum.

REMARKS.--Records good except those for periods of doubtful gage-height record, May 20-23, May 29 to June 4, and period with ice effect, Jan. 1, 2, which are fair. Periodic dewatering of upstream quarries adds small amount of inflow. Maximum discharge, 38,000 ft³/s, from rating curve extended above 6,000 ft³/s on basis of slope-area measurement of peak flow. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in June 1949 reached a stage of 9.9 ft, from floodmarks.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 650 ft³/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 8	1115	*3,160	*6.54	Apr. 17	0545	864	3.18
Jan. 28	0745	716	2.85	Apr. 19	1845	785	3.01
Feb. 17	1645	1,360	4.10	May 8	1345	958	3.37
Mar. 9	1045	845	3.14	May 16	2215	1,370	4.12

Minimum discharge, 2.3 ft^3/s , Sept. 17, 26-30.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	12 11 9.7 10 9.5	103 125 103 85 71	59 50 49 55 50	e54 e55 56 59 63	269 232 212 346 350	194 195 182 170 157	117 103 96 277 230	158 149 137 144 146	e67 e63 e60 e57	33 31 30 30 33	14 11 11 10 9.5	4.8 4.5 4.1 4.0 3.9
6 7 8 9 10	9.0 8.5 8.4 8.4	65 166 174 169 142	49 48 47 47 51	69 233 2060 1060 571	347 309 267 236 213	144 136 264 707 606	213 193 172 243 250	139 228 701 542 419	63 60 56 56 59	27 26 35 30 26	8.9 8.6 16 24 21	3.4 3.3 8.2 6.9 4.6
11 12 13 14 15	9.7 9.2 8.8 8.9 9.0	118 99 88 98 83	48 45 44 42 41	396 308 251 203 259	227 335 334 304 267	451 352 285 239 201	238 220 200 182 163	343 301 248 215 187	54 53 53 49 74	24 22 21 21 20	17 13 12 19	4.2 3.9 3.1 3.0 2.8
16 17 18 19 20	8.9 11 13 13	79 75 70 65 61	40 39 38 37 36	287 267 240 217 192	244 814 966 650 506	174 153 145 157 216	148 347 234 403 626	278 375 256 226 e170	64 62 51 63 54	26 30 21 19 18	23 55 25 17 13	2.7 2.6 3.9 3.7 3.8
21 22 23 24 25	10 9.6 9.3 11 21	63 78 65 62 61	35 41 43 44 68	168 155 313 334 309	404 336 329 290 257	421 385 325 277 237	475 382 319 270 232	e145 e130 e120 148 127	49 47 45 43 41	17 16 18 22 17	11 10 9.3 8.5 7.7	4.2 4.2 3.4 2.9 2.8
26 27 28 29 30 31	25 34 20 17 16 15	60 57 54 51 50	60 68 67 67 67	270 288 576 491 392 322	235 219 205 	206 181 161 144 129 117	203 184 162 145 136	111 132 115 e90 e82 e75	39 37 37 47 36	16 16 17 14 13	7.0 6.5 6.1 6.1 5.5	3.3 2.9 2.8 2.3 2.4
TOTAL MEAN MAX MIN CFSM IN.	385.8 12.4 34 8.4 .26 .30	2640 88.0 174 50 1.85 2.06	1536 49.5 68 35 1.04 1.20	10518 339 2060 54 7.13 8.22	9703 347 966 205 7.28 7.58	7711 249 707 117 5.23 6.03	7163 239 626 96 5.02 5.60	6637 214 701 75 4.50 5.19	1606 53.5 74 36 1.12 1.26	703 22.7 35 13 .48	423.9 13.7 55 5.2 .29	112.6 3.75 8.2 2.3 .08

e Estimated.

203

61

11

JAMES RIVER BASIN

02027500 PINEY RIVER AT PINEY RIVER, VA--Continued

STATISTICS OF	MONTHLY MEAN	DATA FOR	WATER Y	EARS 1950	- 1998.	BY WATER	YEAR ((WY)
DIMITIDITED OF	LIOIATITET LIBITIA	DITTI I OIC	WILLIAM I	LIMED IJJO	100,	DI WHILDIO	TDIM(· ** ± /

152

60

9.6

	OCT	NOV	DEC	JAN	FEB	3	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	65.4	91.1	109	119	132	!	162	148	111	90.3	40.3	60.6	48.5
MAX	313	644	297	339	347		311	417	352	541	213	1239	388
(WY)	1991	1986	1997	1998	1998		1993	1987	1989	1972	1972	1969	1996
MIN	4.75	10.7	14.2	7.94	34.4	:	37.8	38.4	35.8	15.9	9.04	4.92	3.75
(WY)	1964	1954	1981	1981	1977	'	1981	1966	1963	1956	1964	1987	1998
SUMMARY	STATIST	ICS	FOR 1	1997 CALEN	DAR YE	AR	F	OR 1998 W	ATER YEAR		WATER Y	EARS 1950	- 1998
ANNUAL	TOTAL			26168.7				49139.3					
ANNUAL	MEAN			71.7				135			98.0		
HIGHEST	ANNUAL I	MEAN									188		1969
LOWEST	ANNUAL M	EAN									35.9		1956
HIGHEST	DAILY M	EAN		544	Jun	2		2060	Jan 8		25000	Aug 2	0 1969
LOWEST	DAILY ME	AN		3.7	aSep	7		2.3	Sep 29		b1.4	Sep 1	.3 1966
ANNUAL	SEVEN-DA	Y MINIMUM		4.5	Sep	2		2.8	Sep 24		b1.7	Sep	7 1966
INSTANT	ANEOUS P	EAK FLOW						3160	Jan 8		38000	Aug 2	0 1969
INSTANT	ANEOUS P	EAK STAGE						6.5	4 Jan 8		c13.80) Aug 2	0 1969
INSTANT	CANEOUS L	OW FLOW						2.3	dSep 17		b1.1	Sep 1	.3 1966
ANNUAL	RUNOFF (CFSM)		1.51				2.8	3		2.06	5	
ANNUAL	RUNOFF (INCHES)		20.45				38.4	0		27.97	7	

327

62

8.0

10 PERCENT EXCEEDS

50 PERCENT EXCEEDS

90 PERCENT EXCEEDS

a Also Sept. 8, 1997.
b Dewatering of upstream quarry at a rate of 300 gallons per minute or 0.67 ft³/s included in flow.
c From floodmarks.
d Also Sept. 26-30, 1998.

02028500 ROCKFISH RIVER NEAR GREENFIELD, VA

LOCATION.--Lat 37°52'10", long 78°49'25", Nelson County, Hydrologic Unit 02080203, on left bank 50 ft downstream from bridge on State Highway 634, 2.8 mi downstream from confluence of North and South Forks, and 4.1 mi south of Greenfield.

DRAINAGE AREA. -- 94.6 mi².

PERIOD OF RECORD. -- April 1943 to current year.

REVISED RECORDS. -- WSP 2104: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 530.29 ft above sea level. Prior to Aug. 21, 1943, nonrecording gage at same site and datum.

REMARKS.--Records good except those for periods of doubtful gage-height record, Jan. 28 to Feb. 3, Feb. 5-11, June 22-26, and July 9-11, 19, 20, which are fair. Maximum discharge, 70,000 ft³/s, from rating curve extended above 8,500 ft³/s on basis of contracted-opening measurement at gage height 18.11 ft, slope-area measurements at gage heights 17.2 ft, 23.4 ft, and 31.2 ft, and peak runoff comparison with nearby stations. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Oct. 15, 1942, reached a stage of 23.4 ft, from floodmarks, discharge, about $30,000 \text{ ft}^3/\text{s}$.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 1,500 ft³/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 8	1130	2,530	6.50	Feb. 17	1730	*4,210	*8.48
Jan. 28	1330	3,840	8.09	Mar. 9	0900	1,690	5.18
Feb. 4	1100	2,760	6.84	May 8	0100	2,670	6.71

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Minimum discharge, 6.5 ft³/s, Sept. 26, 29, 30.

					Di	AILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	19	175	79	77	e390	348	238	208	110	72	24	11
2	17	153	62	81	e355	357	212	212	102	69	20	10
3	17	104	62	90	e325	317	195	190	92	70	19	10
4	16	70	67	106	1680	286	360	188	88	66	18	10
5	15	53	61	120	e1150	260	320	246	90	77	16	9.2
6	14	51	53	122	e850	238	292	212	88	61	15	9.0
7	14	661	50	363	e650	222	263	455	81	57	15	8.6
8	14	490	49	1730	e530	571	241	1520	77	69	18	11
9	14	326	50	926	e450	1250	399	830	77	e64	99	10
10	14	220	66	554	e400	849	397	602	90	e56	42	9.8
11	14	174	67	390	e570	622	370	486	86	e53	32	9.1
12	14	138	60	295	840	501	329	449	84	50	26	8.6
13	14	122	55	238	772	428	295	390	77	46	23	8.0
14	14	170	51	183	694	377	271	341	70	45	22	7.6
15	14	136	51	252	614	329	246	298	147	43	23	7.3
16	14	120	51	320	562	295	227	274	239	45	32	7.1
17	15	104	53	252	2330	266	303	362	248	80	46	7.2
18	23	98	51	217	1430	283	230	283	163	46	44	7.7
19	20	90	50	195	910	378	451	246	189	e40	27	9.0
20	19	81	49	179	754	472	670	222	165	e37	22	9.3
21	17	87	47	155	622	874	497	200	140	35	20	9.0
22	15	136	50	142	531	630	417	176	e120	31	18	8.8
23	15	104	61	542	600	505	360	172	e110	35	17	8.0
24	17	92	58	490	562	431	314	172	e100	42	16	7.4
25	44	82	142	393	475	373	277	157	e90	34	14	8.2
26	42	79	116	317	431	338	243	140	e84	30	13	7.5
27	60	75	116	335	400	310	230	191	79	31	14	7.8
28	33	70	116	e1900	370	283	210	170	82	35	15	7.4
29	27	66	104	e900		260	190	140	114	28	13	6.7
30	25	64	104	e580		235	179	126	84	24	12	7.1
31	23		90	e430		220		118		24	12	
TOTAL	633	4391	2141	12874	20247	13108	9226	9776	3366	1495	747	257.4
MEAN	20.4	146	69.1	415	723	423	308	315	112	48.2	24.1	8.58
MAX	60	661	142	1900	2330	1250	670	1520	248	80	99	_11
MIN	14	51	47	. 77	325	220	179	118	70	24	12	6.7
CFSM	.22	1.55	.73	4.39	7.64	4.47	3.25	3.33	1.19	.51	.25	.09
IN.	. 25	1.73	.84	5.06	7.96	5.15	3.63	3.84	1.32	.59	.29	.10

e Estimated.

02028500 ROCKFISH RIVER NEAR GREENFIELD, VA--Continued

STATISTICS	OF	W.THTIOM	MEAN	DATA	FOR	WATER	VEARS	1943	_	1998	RY	WATER	VEAR	(WV)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	95.6	126	152	174	200	249	224	163	125	74.4	87.1	83.8
MAX	394	733	445	480	723	629	699	369	696	327	1246	506
(WY)	1991	1986	1951	1996	1998	1993	1983	1990	1995	1972	1969	1979
MIN	8.65	17.9	18.5	23.1	62.0	55.9	52.5	44.7	23.1	8.82	4.10	3.34
(WY)	1964	1954	1966	a1966	1944	1981	1981	1981	1956	1966	1966	1954
(W ±)	1704	1754	1000	a1500	1711	1701	1701	1701	1930	1500	1000	1001

SUMMARY STATISTICS	FOR 1997 CALENDAR YEAR	FOR 1998 WATER YEAR	WATER YEARS 1943 - 1998
ANNUAL TOTAL	39896.6	78261.4	
ANNUAL MEAN	109	214	146
HIGHEST ANNUAL MEAN			290 1973
LOWEST ANNUAL MEAN			45.9 1981
HIGHEST DAILY MEAN	955 Jul 24	2330 Feb 17	e28800 Aug 20 1969
LOWEST DAILY MEAN	9.6 bSep 5	6.7 Sep 29	.20 cSep 8 1966
ANNUAL SEVEN-DAY MINIMUM	10 Sep 3	7.4 Sep 24	.30 Sep 6 1966
INSTANTANEOUS PEAK FLOW		4210 Feb 17	70000 Aug 20 1969
INSTANTANEOUS PEAK STAGE		8.48 Feb 17	d31.20 Aug 20 1969
INSTANTANEOUS LOW FLOW		6.5 fSep 26	.20 gSep 8 1966
ANNUAL RUNOFF (CFSM)	1.16	2.27	1.54
ANNUAL RUNOFF (INCHES)	15.69	30.78	20.97
10 PERCENT EXCEEDS	249	530	303
50 PERCENT EXCEEDS	79	100	89
90 PERCENT EXCEEDS	15	14	19

a Also 1981.
b Also Sept. 6, 8. 1997.
c Also Sept. 9-11, 1966.
d From floodmarks.
e Estimated.
f Also Sept. 29, 30, 1998.
g Also Sept. 9-12, 1966.

02031000 MECHUMS RIVER NEAR WHITE HALL, VA

LOCATION.--Lat 38°06'09", long 78°35'35", Albemarle County, Hydrologic Unit 02080204, on right bank 20 ft downstream from bridge on State Highway 614, 1.5 mi downstream from Rocky Run, 4.0 mi southeast of White Hall, and 4.9 mi upstream from confluence with Moormans River.

DRAINAGE AREA. -- 95.4 mi².

PERIOD OF RECORD.--October 1942 to September 1951, October 1979 to current year. Prior to September 1951, published as Mechum River near Ivy.

GAGE.--Water-stage recorder. Datum of gage is 429.75 ft above sea level. Oct. 1, 1942, to Sept. 30, 1951, on right bank 20 ft downstream from former highway bridge at different datum.

REMARKS.--Records good except those for period with ice effect, Jan. 1, 2, and periods of no gage-height record, Mar. 21-23, and Apr. 10-28, which are fair. Maximum discharge, 20,000 ${\rm ft}^3/{\rm s}$, from rating curve extended above 8,000 ${\rm ft}^3/{\rm s}$. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION. -- Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of Sept. 6, 1979, reached a stage of 24.5 ft, from floodmarks, discharge, about 13,500 ${\rm ft}^3/{\rm s}$, from rating curve extended above 8,300 ${\rm ft}^3/{\rm s}$.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of $1,200~{\rm ft}^3/{\rm s}$.

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Nov. 7	0830	1,730	9.88	Feb. 17	1800	*6,040	*16.60
Jan. 8	1130	2,230	10.86	Mar. 20	2100	1,860	10.15
Jan. 28	5100	4,900	15.12	May 12	0300	3,850	13.61
Feb. 4	1700	3,230	12.63	Aug. 9	0530	1,650	9.72

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES

Minimum discharge, 13 ${\rm ft}^3/{\rm s}$, Sept. 29, gage height, 4.30 ft.

					DA	TLY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	22	92	68	e66	311	219	180	154	95	61	30	21
	20	114	60	e70	273	228	170	189	87	56	27	21
3	19	71	56	72	249	224	156	164	84	59	26	20
2 3 4	19	57	57	86	1660	202	228	176	80	55	25	20
5	19	37	56	90	1130	191	221	233	81	58	24	18
6	18	35	53	90	764	183	191	193	83	51	23	18
7	18	1030	50	178	638	176	174	358	77	48	22	17
8	18	677	48	1060	488	398	164	2210	72	64	24	24
9	18	254	48	494	381	802	221	730	74	61	510	21
10	18	164	56	300	319	492	e350	440	95	64	113	17
11	18	125	61	214	312	355	e305	338	89	51	68	17
12	18	102	55	178	428	289	e270	297	97	46	53	17
13	18	87	53	156	330	251	e225	259	87	44	43	16
14	18	126	51	132	289	226	e205	224	80	42	39	16
15	19	107	48	170	251	205	e185	198	166	40	37	15
16	19	89	49	256	233	187	e170	180	156	46	40	15
17	19	78	50	189	2920	178	e200	170	220	103	45	16
18	95	72	48	162	1050	196	e175	152	114	55	55	28
19	27	67	48	145	540	336	e350	141	112	45	39	23
20	24	63	48	138	420	399	e500	132	121	42	33	22
21	21	66	46	123	344	e630	e320	128	94	39	31	21
22	20	109	49	118	292	e470	e265	121	84	37	29	20
23	19	89	58	544	342	e380	e220	121	138	35	29	19
24	20	78	57	378	384	300	e195	125	157	39	27	17
25	40	68	119	286	302	256	e185	123	94	35	26	17
26	37	66	97	224	262	233	e175	112	81	34	25	18
27	56	63	92	247	246	214	e168	134	72	34	26	17
28	33	61	94	2810	228	205	e150	141	70	38	28	16
29	27	57	87	894		193	140	116	90	33	25	14
30	26	61	92	460		185	136	105	70	30	24	15
31	24		80	381		178		100		30	22	
TOTAL	787	4165	1934	10711	15386	8981	6594	8264	3020	1475	1568	556
MEAN	25.4	139	62.4	346	550	290	220	267	101	47.6	50.6	18.5
MAX	95	1030	119	2810	2920	802	500	2210	220	103	510	28
MIN CFSM	18 .27	35	46 .65	66 3.62	228 5.76	176 3.04	136 2.30	100 2.79	70 1.06	30 .50	22 .53	14
		1.46										.19
IN.	.31	1.62	.75	4.18	6.00	3.50	2.57	3.22	1.18	.58	.61	.22

e Estimated.

02031000 MECHUMS RIVER NEAR WHITE HALL, VA--Continued

STATIST	TICS OF M	ONTHLY M	EAN DATA	FOR WATER	YEARS 194	12 - 1951,	1979 -	1998, BY	WATER YEAR	(WY)		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	89.4	106	120	135	154	172	175	125	93.9	64.2	58.5	85.2
MAX	606	636	329	425	550	473	703	289	323	192	245	422
(WY)	1943	1986	1949	1996	1998	1993	1983	1989	1995	1991	1949	1987
MIN	8.65	19.7	20.7	24.0	55.4	45.2	37.1	34.9	23.9	8.95	13.2	8.29
(WY)	1944	1944	1944	1981	1947	1981	1981	1981	1944	1944	1943	1943
SIIMMARY	Y STATIST	TCS	FOF	R 1997 CAL	ENDAR YEAF	म ९	OR 1998	WATER YEA	\ R	WATER	YEARS 1942	- 1951
DOI HILL	ı billilbi	100	1 01	C 1997 CHIL	BIVDING IBIN		010 1000	WIII DIC IDI	110	WIIIDI		- 1998
ANNUAL	TOTAL			34186.	8		63441					
ANNUAL	MEAN			93.	7		174			114		
HIGHEST	r annual	MEAN								178		1996
LOWEST	ANNUAL M	EAN								41.	6	1981
HIGHEST	r daily M	EAN		1030	Nov '	7	2920	Feb 1	L7	10600	Oct	15 1942
LOWEST	DAILY ME	AN		9.	2 Sep 8	3	14	Sep 2	29	. '	70 Sep	9 1944
ANNUAL	SEVEN-DA	Y MINIMU	M	11	aSep 2	2	16	Sep 1	1	1.	2 Sep	5 1944
INSTANT	TANEOUS P	EAK FLOW					6040	Feb 1	L7	20000	Oct	15 1942
INSTANT	TANEOUS P	EAK STAG	E				16.	60 Feb 1	L7	b30.	30 Oct	15 1942
INSTANT	TANEOUS L	OW FLOW					13	Sep 2	29		60 Sep	9 1944
ANNUAL	RUNOFF (CFSM)			98		1.	82		1.	20	
ANNUAL	RUNOFF (INCHES)		13.	33		24.	74		16.	30	
10 PERG	CENT EXCE	EDS		166			352			205		
50 PERG	CENT EXCE	EDS		78			89			72		
90 PERG	CENT EXCE	EDS		18			20			22		

a Also Sept. 3, 1997. b From floodmarks, datum then in use.

02032640 NORTH FORK RIVANNA RIVER NEAR EARLYSVILLE, VA

LOCATION.--Lat 38°09'48", long 78°25'30", Albemarle County, Hydrologic Unit 02080204, on right bank at downstream side of bridge on State Highway 606, 0.4 mi upstream from mouth of Jacobs Run, 1.9 mi downstream from mouth of Marsh Run, and 2.1 mi southeast of Advance Mills.

DRAINAGE AREA. -- 108 mi².

PERIOD OF RECORD. -- October 1993 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 365 ft above sea level, from topographic map.

REMARKS.--Records good except those for period with ice effect, Jan. 1, and periods of doubtful gage-height record, Jan. 12-14, Feb. 26 to Mar. 3, Mar. 20, 25-27, and May 11-20, which are fair. Maximum discharge, $30,100 \text{ ft}^3/\text{s}$, from rating curve extended above 2,150 ft^3/s on basis of slope-area measurement of peak flow. Several measurements of water temperature were made during the year.

COOPERATION. -- Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in April 1992 reached a stage of 19.92 ft, from floodmark, by the Virginia Department of Highways.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 2,000 ft³/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Nov. 7	1530	2,540	7.60	Feb. 17	1830	6,370	12.28
Jan. 8	1230	*7,130	*13.06	Mar. 20	2400	2,700	7.88
Jan. 28	1330	3,810	9.35	May 8	0930	7,030	12.96
Feb 4	1530	2.250	7 23	-			

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Minimum discharge, 3.0 ft³/s, Sept. 7.

					Di	AILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	33	40	72	e75	312	e225	162	157	86	45	16	5.7
2	26	127	64	79	256	e245	156	391	81	41	14	5.3
3	23	122	61	86	229	e250	140	306	77	40	13	5.0
4	22	89	65	106	1280	223	249	350	72	37	12	5.3
5	20	71	61	124	1510	203	234	828	76	36	11	5.0
6	18	61	57	125	1040	185	204	545	73	31	11	4.2
7	17	1580	55	355	763	173	183	748	68	30	11	3.7
8	16	1690	52	3530	503	512	173	4320	67	38	11	8.9
9	16	586	52	1240	381	1030	342	1110	66	43	16	7.5
10	16	317	61	597	315	659	451	628	83	48	29	6.2
11	15	218	72	396	302	429	375	e430	79	36	28	5.8
12	15	169	64	e285	504	325	306	e325	84	34	23	5.4
13	15	141	59	e240	406	267	257	e305	86	31	18	4.7
14	15	177	56	e200	335	243	229	e240	88	30	15	4.4
15	15	163	52	272	278	221	203	e210	150	29	15	4.7
16	15	139	50	461	242	195	184	e180	132	28	17	4.1
17	16	123	48	317	2930	174	212	e195	123	31	27	10
18	26	112	46	262	1720	201	176	e178	84	33	42	46
19	23	103	45	226	782	495	339	e155	85	29	27	12
20	21	96	44	201	551	e470	673	e147	87	26	20	9.4
21	19	94	43	173	423	1530	400	140	70	24	17	8.5
22	18	124	47	159	336	667	304	129	70	24	15	8.8
23	17	104	55	679	404	443	253	127	181	22	13	8.2
24	18	91	53	538	510	337	219	129	154	21	12	7.4
25	34	82	141	405	368	e260	191	125	79	21	10	7.0
26	47	80	120	309	e290	e245	174	112	62	20	9.2	7.0
27	81	75	111	301	e255	e230	176	118	52	19	8.9	6.9
28	47	71	114	2060	e240	195	154	118	49	20	7.9	6.3
29	36	69	105	994		178	143	106	61	19	7.2	5.5
30	32	69	111	578		165	136	98	53	17	6.7	5.1
31	29		97	406		154		92		17	6.4	
TOTAL	761	6983	2133	15779	17465	11129	7398	13042	2578	920	489.3	234.0
MEAN	24.5	233	68.8	509	624	359	247	421	85.9	29.7	15.8	7.80
MAX	81	1690	141	3530	2930	1530	673	4320	181	48	42	46
MIN	15	40	43	75	229	154	136	92	49	17	6.4	3.7
CFSM	. 23	2.15	.64	4.71	5.77	3.32	2.28	3.89	.79	.27	.15	.07
IN.	.26	2.40	.73	5.43	6.01	3.83	2.54	4.49	.89	.32	.17	.08

e Estimated.

JAMES RIVER BASIN

02032640 NORTH FORK RIVANNA RIVER NEAR EARLYSVILLE, VA--Continued

STATIST	TICS OF MO	ONTHLY MEAN	N DATA F	FOR WATER	YEARS 1994	- 1998,	BY WATER	YEAR (WY)				
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY		JUN	JUL	AUG	SEP
MEAN	78.0	156	165	351	274	264	161	161		150	94.9	49.4	162
MAX	195	233	367	574	624	406	247	421		316	195	112	682
(WY)	1996	1998	1997	1996	1998	1994	1998	1998	;	1995	1995	1994	1996
MIN	18.9	47.1	68.8	143	80.1	127	60.1	60.8	;	31.4	29.7	15.8	7.80
(WY)	1994	1995	1998	1997	1995	1995	1995	1994		1994	1998	1998	1998
SUMMARY	Y STATIST	ICS	FOR	1997 CALE	ENDAR YEAR	F	OR 1998 WAT	rer ye	AR		WATER YE	ARS 1994	- 1998
ANNUAL	TOTAL			41078.9)		78911.3						
ANNUAL	MEAN			113			216				172		
HIGHEST	T ANNUAL 1	MEAN									246		1996
LOWEST	ANNUAL MI	EAN									116		1995
HIGHEST	r daily Mi	EAN		1720	Jul 24		4320	May	8		e11000	Sep	6 1996
LOWEST	DAILY ME	AN		5.9			3.7	Sep	7		3.7	Sep	7 1998
ANNUAL	SEVEN-DAY	Y MINIMUM		6.9	9 Sep 3		4.9	Sep	1		4.9	Sep	1 1998
INSTAN	TANEOUS PI	EAK FLOW					7130	Jan	8		30100	Sep	6 1996
INSTAN	TANEOUS PI	EAK STAGE					13.06	Jan	8		a23.56	Sep	6 1996
	TANEOUS LO						3.0	Sep	7		3.0	Sep	7 1998
	RUNOFF (/		1.0			2.00				1.59		
	RUNOFF (14.1	L3		27.14				21.55		
	CENT EXCE			192			465				327		
	CENT EXCE			80			87				89		
90 PER	CENT EXCE	EDS		15			11				19		

a From floodmarks. e Estimated.

02036500 FINE CREEK AT FINE CREEK MILLS, VA

LOCATION.--Lat 37°35'52", long 77°49'12", Powhatan County, Hydrologic Unit 02080205, on right bank 75 ft downstream from bridge on State Highway 711 at Fine Creek Mills, 0.8 mi upstream from mouth, and 6.7 mi northeast of Powhatan.

DRAINAGE AREA. -- 22.1 mi².

PERIOD OF RECORD. -- July 1944 to current year.

REVISED RECORDS.--WSP 1203: 1948. WSP 1303: 1945(M). WSP 1383: 1954. WSP 2104: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 156.59 ft above sea level. Prior to Oct. 28, 1953, nonrecording gage and crest-stage gage at site 75 ft upstream at same datum.

REMARKS.--Records good except for period of doubtful or no gage-height record, Aug. 13 to Sept. 30, which is fair. Maximum discharge, 4,180 ft³/s, from rating curve extended above 2,600 ft³/s. Minimum gage height, 1.53 ft, Sept. 30, Oct. 1, 1970. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION. -- Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 200 ${\rm ft}^3/{\rm s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 24	1230	222	2.94	Feb. 18	0515	308	3.19
Jan. 28	1930	670	3.98	Mar. 19	1645	*742	*4.14
Feb. 5	0430	423	3.47	Mar. 21	1245	573	3.80

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Minimum daily discharge, 0.32 ${\rm ft}^3/{\rm s}$, Sept. 16.

					DA	ILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.99	1.5	16	17	43	30	24	19	10	3.3	1.4	e.45
2	.86	2.0	14	15	32	32	27	32	8.4	2.6	1.1	e1.2
3	.77	2.3	12	15	27	39	23	31	7.5	2.3	1.0	e1.0
4	.80	2.7	15	14	135	33	59	22	6.8	2.4	.90	e1.1
5	.72	2.5	14	13	361	28	90	19	6.9	2.6	.85	e1.1
6	.63	2.3	11	12	231	25	48	16	11	2.2	.76	e1.6
7	.58	40	9.2	14	169	23	36	15	7.4	2.3	.78	e3.2
8	.64	91	8.4	22	87	49	32	47	5.4	3.3	.95	e1.9
9	.75	70	8.2	27	52	160	44	112	6.9	3.9	1.1	e1.2
10	.84	36	12	21	37	136	59	64	15	6.1	1.3	e.82
11	.79	22	16	17	32	62	38	39	14	5.1	1.5	e.68
12	.68	15	15	15	43	41	29	36	13	3.6	1.2	e.58
13	.67	11	12	17	41	34	25	34	15	2.9	e.80	e.50
14	1.0	22	9.7	16	31	31	24	28	20	2.7	e.76	e.42
15	2.1	20	9.0	26	26	28	24	22	27	2.4	e.72	e.36
16	1.1	16	8.4	54	25	25	23	19	22	2.0	e.90	e.32
17	1.2	13	8.2	45	101	25	78	17	16	1.8	e1.2	e.43
18	3.3	11	7.9	32	234	48	87	15	12	1.9	e1.2	e.54
19	3.6	7.9	7.7	26	95	447	52	13	12	1.8	e.96	e.95
20	3.0	7.6	7.5	24	54	324	69	12	12	1.6	e.85	e1.3
21	2.1	9.1	7.4	20	39	400	48	12	11	1.5	e.72	e1.6
22	1.6	26	9.9	18	32	214	36	10	9.1	1.2	e.64	e2.2
23	1.1	24	14	88	56	98	30	11	8.4	1.2	e.70	e1.5
24	.87	18	14	190	127	62	30	13	14	1.8	e.60	e1.1
25	1.3	13	26	113	82	46	27	13	13	2.9	e.52	e1.0
26	3.3	11	26	62	49	37	23	13	10	2.5	e.48	e.92
27	4.8	9.1	28	47	37	34	20	17	8.3	2.4	e1.0	e.86
28	2.9	8.1	33	361	34	31	17	21	7.0	2.0	e.82	e.80
29	1.8	7.5	28	393		29	16	17	6.4	1.8	e.70	e1.2
30	1.4	12	26	147		27	15	14	4.7	1.5	e.62	e2.0
31	1.0		22	71		25		12		1.5	e.55	
TOTAL	47.19	533.6	455.5	1952	2312	2623	1153	765	340.2	77.1	27.58	32.83
MEAN	1.52	17.8	14.7	63.0	82.6	84.6	38.4	24.7	11.3	2.49	.89	1.09
MAX	4.8	91	_ 33	393	361	447	90	112	27	6.1	1.5	3.2
MIN	.58	1.5	7.4	12	25	23	15	10	4.7	1.2	.48	.32
CFSM	.07	.80	.66	2.85	3.74	3.83	1.74	1.12	.51	.11	.04	.05
IN.	.08	.90	.77	3.29	3.89	4.42	1.94	1.29	.57	.13	.05	.06

e Estimated.

6 1972

JAMES RIVER BASIN

02036500 FINE CREEK AT FINE CREEK MILLS, VA--Continued

STATISTICS	OF	MONTHLY	MEAN	DATA	FOR	WATER	YEARS	1945	_	1998.	BY	WATER	YEAR	(WY)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	14.6	17.5	21.9	27.7	31.9	35.3	29.6	20.7	11.8	8.15	11.4	8.54
MAX	119	105	53.9	92.5	92.7	99.1	84.1	54.1	60.8	25.7	83.3	46.1
(WY)	1973	1986	1949	1978	1979	1994	1983	1978	1972	a1949	1955	1996
MIN	.47	3.15	5.60	6.38	8.76	11.4	7.63	3.21	2.87	1.34	.74	.31
(WY)	1969	1992	1966	1955	1991	1985	1985	1991	1970	1993	1977	1968
SUMMARY	Y STATIST	ICS	FOR I	1997 CALEN	IDAR YEAR	F	OR 1998 W <i>F</i>	ATER YEAR		WATER YE	EARS 1945	- 1998
ANNUAL	TOTAL			5337.26	5		10319.00)				
ANNUAL	MEAN			14.6			28.3			19.9		
HIGHEST	r annual i	MEAN								40.7		1973
LOWEST	ANNUAL MI	EAN								8.79	9	1981
HIGHEST	r DAILY M	EAN		102	Mar 1		447	Mar 19		1880	Oct 2	1 1961
LOWEST	DAILY ME	AN		e.45	Sep 9		e.32	2 Sep 16		.08	Oct	1 1968

ANNUAL SEVEN-DAY MINIMUM e.55 Sep 3 INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) .66 ANNUAL RUNOFF (INCHES) 8.98 10 PERCENT EXCEEDS 31 50 PERCENT EXCEEDS 9.9 90 PERCENT EXCEEDS .87

e.45 Sep 12 .10 Sep 25 1968 742 Mar 19 4180 Oct 6 1972 4.14 Mar 19 9.02 Oct (b) .08 Oct 1 1968 (c) 1.28 .90 17.37 12.22 59 38 13 11 2.4 .83

a Also 1975.
b Unknown.
c Probably occurred Sept. 16, 1998.
e Estimated.

02037000 JAMES RIVER AND KANAWHA CANAL NEAR RICHMOND, VA

LOCATION.--Lat 37°33'52", long 77°34'28", Henrico County, Hydrologic Unit 02080205, on left bank 75 ft downstream from Canal bridge, 400 ft downstream from head gates, 1,200 ft north of north end of Bosher Dam on James River, 1.6 mi upstream from Huguenot Memorial Bridge, and 2.0 mi west of Richmond city limits.

PERIOD OF RECORD. -- September 1936 to current year.

GAGE.--Water-stage recorder. Datum of gage is 106.07 ft above sea level. Prior to Oct. 1, 1938, at datum 3.06 ft higher.

REMARKS.--Records fair except those for periods of doubtful gage-height record, Nov. 3-5, and Jun. 1-8, which are poor. Canal diverts from James River 1,200 ft upstream from Bosher Dam and discharges into river at several points downstream from gaging station near Richmond. Beginning with the 1969 water year, the descriptive statement that above 2,540 ft³/s, gage height, 14.5 ft, there is interchange of flow with the James River and that discharge above 2,540 ft³/s is included in discharge for the James River near Richmond (station 02037500) has been used. Daily discharges in excess of 2,540 ft³/s for water years 1937-68 should be used with caution until historical records of canal construction and modifications can be reviewed. Figures given show flow in canal only. Probably no flow at times when head gates were closed. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 340 ${\rm ft}^3/{\rm s}$, Mar. 21; maximum gage height, 8.61 ${\rm ft}$, Mar. 21; minimum discharge, 1.5 ${\rm ft}^3/{\rm s}$, Oct. 26, result of head gates being closed.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

			- ,		DA	ILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	141	8.3	6.0	4.7	19	18	21	18	e2.8	52	117	132
2	138	9.9	4.9	4.6	18	19	21	23	e2.6	41	117	132
3	132	e8.4	4.8	6.0	18	18	20	19	e2.9	32	113	132
4	133	e7.0	5.6	4.7	62	18	30	26	e2.4	24	99	136
5	131	e5.6	5.4	4.6	45	18	22	20	e2.5	18	92	136
6	131	8.9	4.9	4.7	41	18	21	17	e2.5	14	91	136
7	132	35	4.5	5.0	28	18	20	17	e2.7	11	90	134
8	134	7.2	4.4	7.5	21	26	20	38	e2.6	64	99	141
9	123	8.5	4.3	6.0	20	54	23	16	6.6	146	109	137
10	123	5.7	5.9	8.4	19	21	21	14	9.5	149	124	138
11	125	5.2	6.0	9.0	19	19	20	13	8.7	145	158	138
12	125	5.0	5.0	8.3	20	18	20	14	8.5	145	163	137
13	124	5.1	4.7	9.1	19	18	20	13	11	140	160	138
14	125	7.7	4.5	8.0	19	18	20	12	2.3	132	158	134
15	126	5.4	4.4	11	19	18	20	12	8.5	131	159	132
16	125	5.0	4.3	8.2	19	18	20	12	22	124	159	133
17	91	5.1	4.2	7.2	68	18	38	12	26	116	151	133
18	15	4.9	4.1	6.8	25	24	22	12	23	126	146	135
19	3.3	4.8	4.0	7.0	30	71	22	11	20	128	148	134
20	2.8	6.2	4.0	6.7	24	34	21	9.3	19	123	142	138
21	2.6	6.3	3.9	6.5	19	77	20	8.6	16	119	139	135
22	2.7	17	4.7	6.5	18	43	20	8.0	14	113	134	138
23	4.1	6.0	6.2	40	30	37	20	7.9	12	106	134	137
24	6.6	5.6	5.4	13	24	24	19	8.5	14	107	131	136
25	7.1	5.7	7.4	8.3	20	22	19	8.3	13	109	132	135
26	3.2	5.7	5.5	7.3	19	22	19	7.2	11	111	134	136
27	4.2	5.4	7.8	9.3	18	21	19	6.0	8.3	110	136	135
28	2.9	5.2	7.2	85	18	21	19	7.0	64	109	133	133
29	5.1	5.1	5.7	32		21	19	5.2	71	109	132	135
30	6.5	6.6	6.0	31		21	19	3.5	63	110	132	145
31	7.0		5.0	20		21		e2.9		114	132	
TOTAL	2232.1	227.5	160.7	396.4	719	814	635	401.4	472.4	3078	4064	4071
MEAN	72.0	7.58	5.18	12.8	25.7	26.3	21.2	12.9	15.7	99.3	131	136
MAX	141	35	7.8	85	68	77	38	38	71	149	163	145
MIN	2.6	4.8	3.9	4.6	18	18	19	2.9	2.3	11	90	132

e Estimated.

02037000 JAMES RIVER AND KANAWHA CANAL NEAR RICHMOND, VA--Continued

STATISTICS OF	MONTHLY	MEAN	DATA	FOR	WATER	YEARS	1937	_	1998,	BY	WATER	YEAR	(WY)
---------------	---------	------	------	-----	-------	-------	------	---	-------	----	-------	------	------

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	592	622	646	667	679	670	685	663	670	604	590	571
MAX	1078	1014	1220	1145	1086	1094	1108	1086	1061	956	1108	937
(WY)	1949	1948	1949	1949	1979	1951	1951	1952	1951	1940	1940	1949
MIN	.60	.60	.60	.60	.60	.60	.60	.60	.60	.60	.60	.60
(WY)	a1981	a1980	a1980	a1980	a1980	a1980	a1980	a1980	a1980	a1980	a1980	a1980
	Y STATIST	CICS	FOR		NDAR YEAR	F	FOR 1998 W			WATER Y	EARS 1937	- 1998
ANNUAL				33607.3			17271.5					
ANNUAL	MEAN			92.1			47.3			638		
HIGHES'	T ANNUAL	MEAN								1023		1949
LOWEST	ANNUAL M	IEAN								1.4	8	1980
HIGHES'	T DAILY M	IEAN		304	Jul 25		163	Aug 12		b3860	Aug	18 1940
LOWEST	DAILY ME	AN		c2.6	Oct 21		c2.3	Jun 14		(d)		(f)
ANNUAL	SEVEN-DA	Y MINIMUM		c4.1	Dec 15		c2.6	Jun 2		c.4	4 Jan	1 1991

340

135

19

8.61

1.5

4.7

Mar 21

Mar 21

Oct 26

(g)

(d)

Jun 23 1972

(f)

h29.10

988

802

17

INSTANTANEOUS PEAK FLOW

INSTANTANEOUS PEAK STAGE

INSTANTANEOUS LOW FLOW

10 PERCENT EXCEEDS

50 PERCENT EXCEEDS

90 PERCENT EXCEEDS

17

5.3

a Estimated, leakage through head gates; also 1983. b See REMARKS.

D See REMARKS.

C Result of headgates being closed.

d Probably no flow at times when head gates were closed prior to 1958.

f Many days in 1937-38, 1949-50, 1952, 1954-55, and 1957.

Interchange of flow with James River makes maximum discharge indeterminate.

h From floodmarks.

02037500 JAMES RIVER NEAR RICHMOND, VA

LOCATION.--Lat 37°33'47", long 77°32'50", Henrico County, Hydrologic Unit 02080205, on left bank 0.2 mi upstream from Huguenot Memorial Bridge, 0.5 mi southwest of Richmond city limits, 1.7 mi downstream from Bosher Dam, 3.3 mi upstream from Powhite Creek, and at mile 116.6.

DRAINAGE AREA. -- 6,758 mi².

PERIOD OF RECORD. --October 1934 to current year. Gage-height records collected in vicinity of Mayo's Bridge, at mile 109.5, 1876-1956, and at mile 108.7 since 1957, are contained in reports of the National Weather Service. REVISED RECORDS.--WSP 972: 1936(M). WSP 1433: 1951(M). WSP 2104: Drainage area.

GAGE.--Water-stage recorder. Control is Williams Island dams which divert flow for city of Richmond water supply. Datum of gage is 98.82 ft above sea level.

REMARKS.--Records good except those for periods of doubtful or no gage-height record, Dec. 31 to Jan. 1, Jun. 26—30, July 12-23, and Sept. 21, 22, 25, 26, 29, which are fair. City of Richmond takes from 40 ft³/s to 90 ft³/s for water supply from river downstream from gage except during periods of low flow when supply is obtained from James River and Kanawha Canal. Flow regulated by powerplants upstream from station. Above 18.2 ft stage, there is interchange of flow with James River and Kanawha Canal. Records of daily discharge include diversion by city of Richmond but do not include flow in James River and Kanawha Canal (station 02037000) which diverts around station. National Weather Service gage-height telemeter at station. Maximum discharge, 313,000 ft³/s, includes canal flow. Minimum daily discharge of James River and James River and Kanawha Canal combined, 214 ft³/s, Oct. 5, 1941, caused by recharging of the pool above Bosher Dam after the canal gates were closed. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of $50,000 \text{ ft}^3/\text{s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 10	1800	74,300	15.70	Feb. 19	1300	85,700	16.66
Jan. 29	2245	*87,000	*16.77	Mar. 22	1845	86,900	16.76
Feb. 6	1545	86.500	16 73				

Minimum discharge, 865 ft³/s, Sept. 28, gage height, 3.34 ft.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES

DAY	OCT	NON	/ DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2380 2160 1440 1470 1440	2000 2070 3520 5000 4090	3420 3470 3610	e5450 4770 4340 4100 4080	27300 21700 17500 20500 60500	16200 15200 15600 15200 13600	11800 11500 11100 10800 21500	10900 12700 12600	7720 6940 6210 5700 5430	4120 4250 4460 4220 4010	1870 1790 1710	1430 1490 1310 1280 1310
6 7 8 9	1410 1310 1330 1270 1190	3600 4310 19400 20300 11700	4640 3740 2490	4210 4440 6870 37300 69800		12400 11300 11100 24400 37200	20300 17600 16000 14300 15100	16900 22000 42900	5150 5040 4940 4750 4800	3790 3600 3530 3420 3400	1410 1520 1490	1170 942 1140 1140 1200
11 12 13 14 15	1210 1180 1070 1080 1190	9340 7480 5720 5000 5060	3580 3520 3170	41800 20200 15000 12100 10800	22100 20600 25400 24200 22500	32900 27600 21500 17700 15200	16900 19600 16600 14700 13400	20500 18500 17000	4920 5200 5070 5040 5010	3570 e4000 e3300 e2850 e3250	2960 2330 2080	1240 1250 1310 1190 984
16 17 18 19 20	1240 1300 1630 2940 2720	5140 4420 3890 3540 3410	3200 3030 2890		19100 20300 58800 83200 61000	13400 12500 12200 21600 31500	12600 13800 33600 28800 25900	11400 12600 11000	6460 7070 7120 6780 6830	e2550 e2500 e2600 e2800 e3000	2190 2610 3240	1090 1020 1100 1110 1520
21 22 23 24 25	2100 1800 1610 1560 1570	3250 3800 4580 4960 4430	2770 2770 3130		37600 30700 27600 32300 27800	59900 84100 78300 42500 29800	42400 42400 29200 22300 18000	8180 7580 7250	6510 5550 5340 6050 6570	e2650 e2250 e1850 1750 2160	e2350 e2100 1790	e1200 e1150 1210 1150 e1000
26 27 28 29 30 31	1610 2060 2920 3110 2440 2240	3950 3710 3560 3440 3180	5820 5650 6500 6230	26400 21100 36600 78500 70800 35700	17300 	24700 21200 17400 14800 13500 12600	15700 13900 12900 11900 10800	7510 7940 8760 10700	e5300 e4400 e4150 e3900 e4000	2330 2220 2050 2070 2150 2160	1680 1520 1590 1510	e1150 1020 913 e1050 964
TOTAL MEAN MAX MIN (†) MEAN‡ CFSM‡ IN.‡	53980 1741 3110 1070 2232.1 1813 .27	167850 5595 20300 2000 227.5 5603 .83	3825 6500 2490 5 160.7 8 3831 5 .57	78500 4080 396.4 22460 3.32	719 34990	777100 25070 84100 11100 814 25090 3.71 4.28	565400 18850 42400 10800 635 18870 2.79 3.12	14210 42900 7250 401.4 14220 2.10	167950 5598 7720 3900 472.4 5614 .83 .93	92860 2995 4460 1750 3078 3095 .46	2083 4570 1410 4064 2214 .33	35033 1168 1520 913 4071 1303 .19
CAL YR WTR YR	1997	TOTAL TOTAL	2335330 4158543	MEAN 6	398 MAX 390 MAX	38200 84100	MIN 10	70 MEAN‡		CFSM‡	.96 IN.‡ 1.69 IN.‡	13.04

[†] Total diversion, in cubic feet per second, per month, by James River and Kanawha Canal.

[‡] Adjusted for diversion.

e Estimated.

02037500 JAMES RIVER NEAR RICHMOND, VA--Continued

STATIS	TICS OF	MONTHLY MEA	N DATA	FOR WATER	YEARS 1937	- 1998,	BY WATER	R YEAR (WY)	[REGU	LATED, UI	NADJUSTED]		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
MEAN	4047	4740	6861	9325	11040	13020	11000	7847	5624	3219	3690	3198	
MAX	19090	30480	26480	25300	34960	32740	35900	24280	30910	11300	21710	18390	
(WY)	1938	1986	1949	1937	1998	1993	1987	1989	1972	1972	1969	1996	
MIN	177	338	450	837	3243	2988	2766	2137	904	76.1	149	125	
(WY)	1942	1942	1966	1966	1959	1981	1966	1941	1964	1966	1966	1963	
SUMMAR	Y STATIS	TICS	FOI	R 1997 CAL	ENDAR YEAR	F	OR 1998 W	NATER YEAR		WATER	YEARS 193	7 - 1998	
ANNUAL	TOTAL			2335330			4158543						
ANNUAL	MEAN			6398			11390			6946			
HIGHES'	T ANNUAL	MEAN								13540		1973	
LOWEST	ANNUAL	MEAN								2666		1981	
HIGHES	T DAILY	MEAN		38200	Mar 6		84100	Mar 22		a296000	Jun	23 1972	
LOWEST	DAILY M	EAN		1070	bSep 8		913	Sep 28		c10	dSep	8 1966	
ANNUAL	SEVEN-D	AY MINIMUM		1170	Oct 10		1040	Sep 24		c10	fSep	8 1966	
INSTAN	TANEOUS	PEAK FLOW					87000	Jan 29		a313000	Jun	23 1972	
INSTAN	TANEOUS	PEAK STAGE					16.7	77 Jan 29		28.	.62 Jun	23 1972	
INSTANTANEOUS LOW FLOW							865	Sep 28		(9	g)	(h)	
ANNUAL RUNOFF (CFSM)					95		1.6	59	1.03				
ANNUAL	RUNOFF	(INCHES)		12.	86		22.8	39		13.	.96		
10 PER	10 PERCENT EXCEEDS			13400			27700		15000				
50 PER	CENT EXC	EEDS		4530			5000			4200			
90 PER	CENT EXC	EEDS		1440			1310			950			

a Includes canal flow.
b Also Oct. 13, 1997.
c Result of diversion by Bosher Dam construction.
d Also Sept. 9-15, 1966, Sept. 30, Oct. 5, 6, 1968, and Oct. 8-10, 1970.
f Also Sept. 9, 1966.
g Not determined.
h Probably occurred Sept. 8-15, 1966.

02039000 BUFFALO CREEK NEAR HAMPDEN SYDNEY, VA

LOCATION.--Lat 37°15'25", long 78°29'12", Prince Edward County, Hydrologic Unit 02080207, on left bank 100 ft upstream from bridge on State Highway 658, 0.8 mi upstream from Locket Creek, 2.0 mi northwest of Hampden Sydney, and 6.0 mi southwest of Farmville.

DRAINAGE AREA. -- 69.7 mi².

PERIOD OF RECORD. -- August 1946 to current year.

REVISED RECORDS.--WSP 1303: 1948-50(M). WSP 2104: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 339.19 ft above sea level (levels by Virginia Department of Transportation). Prior to Aug. 19, 1953, nonrecording gage at same site and datum.

REMARKS.-Records good except for period of doubtful gage-height record, May 9-17, which is fair. Maximum discharge, 9,160 ft³/s, from rating curve extended above 1,600 ft³/s on basis of slope-area measurement at gage height 11.96 ft. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location by the Virginia Department of Environmental Quality - Water Division.

COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in August 1940 reached a stage of about 15 ft, from information by local resident.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 500 ft^3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 24	0300	701	6.22	Mar. 19	1200	*1,650	*7.86
Jan. 28	2230	1,500	7.55	Apr. 4	2100	518	5.83

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Minimum daily discharge, 14 ft³/s, Sept. 12-16.

		21001111	102, 11, 0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	DAI	LY MEAN V	ALUES	02211 1337	10 021121			
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	18	40	65	52	221	86	76	71	55	34	23	17
2	17	47	53	48	145	90	74	79	52	32	22	17
3	16	42	46	46	99	93	69	70	50	32	21	17
4	16	37	55	45	542	81	308	67	50	32	21	20
5	16	33	53	43	584	75	369	95	51	36	20	19
6	15	32	47	41	403	70	225	82	50	33	20	18
7	15	104	43	45	320	67	151	80	47	32	20	17
8	15	99	40	120	235	178	115	590	45	32	38	16
9	16	75	39	144	167	379	107	e450	45	32	91	15
10	16	58	44	90	126	302	97	e300	57	34	64	15
11	16	48	52	69	111	187	87	e180	55	32	46	15
12	16	43	47	58	231	125	79	e145	54	30	36	14
13	16	41	43	57	186	99	73	e120	50	29	31	14
14	16	56	40	54	133	87	72	e100	46	28	28	14
15	21	52	38	124	107	78	71	e84	45	27	27	14
16	23	45	36	382	97	72	67	e76	47	27	31	14
17	24	41	35	259	501	69	313	e73	47	27	36	15
18	60	39	34	158	532	97	333	71	43	26	39	15
19	47	37	33	111	341	929	215	64	52	25	34	16
20	42	36	32	97	249	496	209	61	55	24	29	16
21	33	36	32	79	179	551	149	59	48	24	26	17
22	28	62	35	69	129	406	113	56	44	23	24	24
23	25	59	42	295	170	313	99	61	43	27	23	19
24	25	51	40	569	206	240	100	67	57	28	22	17
25	27	45	67	368	145	181	85	65	47	26	21	17
26	38	42	62	229	113	141	75	60	42	26	20	16
27	55	39	63	185	99	115	69	85	38	26	20	16
28	42	37	85	1210	92	100	65	87	36	27	21	15
29	35	35	74	784		91	62	74	37	25	20	15
30	31	43	68	450		84	61	65	36	24	19	15
31	29		61	325		79		59		23	18	
TOTAL	809	1454	1504	6606	6463	5961	3988	3596	1424	883	911	489
MEAN	26.1	48.5	48.5	213	231	192	133	116	47.5	28.5	29.4	16.3
MAX	60	104	85	1210	584	929	369	590	57	36	91	24
MIN	15	32	32	41	92	67	61	56	36	23	18	14
CFSM	.37	.70	.70	3.06	3.31	2.76	1.91	1.66	.68	.41	.42	.23
IN.	.43	.78	.80	3.53	3.45	3.18	2.13	1.92	.76	. 47	.49	.26

e Estimated.

02039000 BUFFALO CREEK NEAR HAMPDEN SYDNEY, VA--Continued

STATISTICS	OF	MONTHLY	MEAN	DATA	FOR	WATER	YEARS	1947	_	1998.	BY	WATER	YEAR	(WY)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	50.5	64.8	73.0	91.8	101	113	93.4	67.2	50.6	39.8	41.5	41.4
MAX	365	315	157	313	295	324	256	173	294	129	260	168
(WY)	1972	1986	1997	1978	1979	1993	1983	1978	1972	1989	1955	1979
MIN	9.94	14.6	18.7	25.3	36.9	37.5	29.4	23.4	11.2	14.0	9.02	6.67
(WY)	1971	1970	1966	1966	1968	1981	1967	1969	1970	1970	1977	1970
SUMMARY	STATIST	ICS	FOR :	1997 CALE	NDAR YEAR	F	OR 1998 W	ATER YEAR		WATER Y	EARS 1947	- 1998
ANIMITAT TOTAT			22720				24000					

ANNUAL TOTAL	22738	34088	
ANNUAL MEAN	62.3	93.4	68.9
HIGHEST ANNUAL MEAN			134 1972
LOWEST ANNUAL MEAN			28.5 1970
HIGHEST DAILY MEAN	710 Apr 29	1210 Jan	28 4940 Aug 18 1955
LOWEST DAILY MEAN	12 aSep 6	14 bSep	12 e2.7 cOct 7 1970
ANNUAL SEVEN-DAY MINIMUM	13 dSep 1	14 fSep	10 2.9 Oct 4 1970
INSTANTANEOUS PEAK FLOW		1650 Mar	19 9160 Jun 21 1972
INSTANTANEOUS PEAK STAGE		7.86 Mar	19 12.38 Jun 21 1972
INSTANTANEOUS LOW FLOW		14 gSep	14 (h) (j)
ANNUAL RUNOFF (CFSM)	.89	1.34	.99
ANNUAL RUNOFF (INCHES)	12.14	18.19	13.43
10 PERCENT EXCEEDS	109	223	121
50 PERCENT EXCEEDS	46	50	44
90 PERCENT EXCEEDS	17	17	18

a Also Sept. 7, 1997.
b Also Sept. 13-16, 1998.
c Also Oct. 8, 1970.
d Also Sept. 2, 1997.
e Estimated.
f Also Sept. 11, 12, 1998.
g Also Sept. 15, 1998.
h Not determined.
j Probably occurred Oct. 7, 8, 1970.

DAY

JAMES RIVER BASIN

02039500 APPOMATTOX RIVER AT FARMVILLE, VA

LOCATION.--Lat 37°18'25", long 78°23'20", Cumberland County, Hydrologic Unit 02080207, on left bank at downstream side of bridge on State Highway 45 at north town limits of Farmville and 1.1 mi downstream from Buffalo Creek.

DRAINAGE AREA. -- 303 mi².

PERIOD OF RECORD. -- March 1926 to current year.

REVISED RECORDS.--WSP 972: 1927-37, 1938(M). WSP 1303: 1927(M). WSP 2104: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 281.93 ft above sea level. Prior to Nov. 29, 1928, nonrecording gage at same site and datum.

REMARKS.--No estimated daily discharges. Records good. Maximum discharge, 33,100 ft³/s, from rating curve extended above 12,000 ft³/s on basis of contracted-opening measurement of peak flow. Diurnal fluctuation at low flow caused by Prince Edward Mill 0.2 mi upstream. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION. -- Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 1,900 ft³/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 24	1400	3,720	14.86	Mar. 21	2130	5,070	16.21
Jan. 29	0230	*8,710	*18.87	Apr. 5	0930	4,390	15.59
Feb. 5	1200	5,970	16.93	Apr. 18	0830	3,760	14.91
Feb. 18	1130	5,990	16.95	May 5	2300	2,320	12.82
Mar. 10	0400	2,940	13.90	May 9	0800	3,850	15.01
Mar 20	0030	5.070	16 21	-		•	

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

AUG

SEP

Minimum discharge, 57 ft³/s, Sept. 15-18.

DAILY MEAN VALUES

OCT NOV DEC JAN FEB MAR APR MAY JUN JUL

1	80	114	180	210	711	420	380	362	217	143	84	77
2	71	225	185	188	559	478	417	469	203	133	80	75
3	67	200	156	181	471	519	368	410	194	125	74	74
3 4	67	155	180	183	1860	422	1550	383	192	122	70	80
5	67	120	251	187	5150	382	3620	1680	196	123	67	81
6	64	108	196	179	3140	357	1130	1130	197	123	66	75
7	62	542	163	196	1860	342	678	543	194	117	65	73
8	61	812	148	413	1010	879	544	2090	187	115	71	70
9	61	457	146	690	707	2470	502	3240	185	132	512	68
10	62	288	172	404	553	2240	529	1190	235	127	393	66
11	61	226	221	283	487	844	461	779	254	124	200	62
12	60	201	207	232	1110	587	411	626	231	113	155	62
13	59	187	179	221	939	479	383	516	222	106	130	61
14	60	226	164	220	600	430	369	415	211	103	117	60
15	71	251	155	389	483	395	372	352	194	98	110	59
16	89	211	147	1630	433	368	358	314	198	97	193	58
17	91	181	143	1060	1720	355	1310	306	189	98	352	58
18	364	153	139	587	5060	458	2870	305	176	116	237	58
19	286	125	135	414	1860	3410	931	266	196	101	187	63
20	167	120	133	360	887	3730	1260	244	275	92	138	68
21	125	121	130	301	711	4000	867	236	215	87	116	68
22	99	211	137	259	554	3160	596	227	187	89	108	79
23	86	282	169	1220	768	1160	509	229	207	107	103	81
24	80	204	179	3290	1220	822	513	263	216	116	99	73
25	85	164	320	1610	727	652	449	264	190	109	96	68
26	112	146	353	858	541	547	403	240	170	99	90	66
27	210	137	270	713	465	492	374	263	159	95	88	67
28	197	126	339	4750	433	449	356	358	148	100	88	74
29	129	122	310	7470		421	345	288	159	106	85	69
30	106	141	281	2330		399	334	251	159	94	81	64
31	97		252	965		378		227		85	80	
TOTAL	3296	6556	6140	31993	35019	32045	23189	18466	5956	3395	4335	2057
MEAN	106	219	198	1032	1251	1034	773	596	199	110	140	68.6
MAX	364	812	353	7470	5150	4000	3620	3240	275	143	512	81
MIN	59	108	130	179	433	342	334	227	148	85	65	58
CFSM	.35	.72	.65	3.41	4.13	3.41	2.55	1.97	.66	.36	.46	. 23
IN.	.40	.80	.75	3.93	4.30	3.93	2.85	2.27	.73	. 42	.53	. 25
				3.23	1.55	3.23	2.00					

02039500 APPOMATTOX RIVER AT FARMVILLE, VA--Continued

STATIST	TICS OF 1	MONTHLY MEAN	DATA	FOR WATER	YEARS 1926	- 1998,	BY WATE	ER YEAR (WY)				
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	195	249	308	406	447	487	412	278	211	163	198	196
MAX	1190	1287	961	1430	1402	1518	1155	872	1866	518	1783	1140
(WY)	1972	1986	1997	1978	1979	1993	1983	1978	1972	1972	1940	1996
MIN	30.3	51.0	61.6	96.3	114	126	107	95.2	29.5	40.5	19.6	16.7
(WY)	1931	1932	1966	1966	1934	1981	1966	1969	1970	1966	1930	1968
SUMMAR	Y STATIS	rics	FOR	1997 CAL	ENDAR YEAR	F	FOR 1998	WATER YEAR		WATER Y	EARS 1926	- 1998
ANNUAL	TOTAL			98123			172447					
ANNUAL	MEAN			269			472			296		
HIGHES	T ANNUAL	MEAN								584		1972
LOWEST	ANNUAL I	MEAN								115		1970
HIGHES	T DAILY N	MEAN		2210	Apr 29		7470	Jan 29		28000	Jun	22 1972
LOWEST	DAILY M	EAN		55	Sep 7		58	aSep 16		6.3	Oct	5 1968
ANNUAL	SEVEN-DA	MUMINIM YA		59	Sep 2		59	Sep 12		8.1	Sep	30 1968
INSTAN'	TANEOUS I	PEAK FLOW					8710	Jan 29		33100	Jun	22 1972
INSTAN	TANEOUS I	PEAK STAGE					18.	.87 Jan 29		b29.7	0 Jun	22 1972
INSTAN	TANEOUS 1	LOW FLOW					57	cSep 15		3.8	Sep	25 1941
ANNUAL	RUNOFF	(CFSM)		.:	89		1.	. 56		.9	8	
ANNUAL	RUNOFF	(INCHES)		12.	05		21.	. 17		13.2	7	
10 PER	CENT EXC	EEDS		520			983			534		
50 PER	CENT EXC	EEDS		196			207			168		

71

62

76

90 PERCENT EXCEEDS

a Also Sept. 17, 18, 1998. b From floodmarks. c Also Sept. 16-18, 1998.

02040000 APPOMATTOX RIVER AT MATTOAX, VA

LOCATION.--Lat 37°25'17", long 77°51'33", Amelia County, Hydrologic Unit 02080207, on right bank 75 ft upstream from Norfolk Southern Railway bridge at Mattoax, 0.3 mi upstream from Skinquarter Creek, and 3.7 mi upstream from Flat Creek.

DRAINAGE AREA. -- 726 mi².

PERIOD OF RECORD. -- August 1900 to December 1905, March 1926 to current year.

REVISED RECORDS.--WSP 892: 1938. WSP 972: 1928, 1932, 1934-38. WSP 1303: 1901(M). WSP 2104: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 174.51 ft above sea level. August 1900 to December 1905, non-recording gage at same site, different datum. March 1926 to October 1936, nonrecording gage at same site and datum.

REMARKS.--Records good except those for periods of doubtful gage-height record, Oct. 14, and July 13, which are fair. National Weather Service gage-height telemeter at station. Maximum discharge, 35,000 ft³/s, from rating curve extended above 20,000 ft³/s on basis of records for stations at Farmville and near Petersburg. Minimum gage height, 3.52 ft, Oct. 2, 1930. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of $4,000~\text{ft}^3/\text{s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 29	0330	5,390	20.85	Mar. 12	1900	4,040	18.12
Feb. 1	0300	9,280	24.77	Mar. 19	2400	5,130	20.35
Feb. 8	1100	7,440	23.39	Mar. 22	2130	*10,900	*25.85
Feb. 21	1500	5,580	21.21				

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Minimum discharge, 78 ft³/s, Sept. 16.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	150	183	290	546	8810	985	747	626	441	257	146	103
2	138	186	386	451	6320	914	751	800	405	248	135	99
3	113	217	370	393	2530	946	734	908	377	239	130	95
4	103	269	335	365	2420	967	1090	775	359	233	124	96
5	98	239	345	346	4450	801	2580	699	352	222	115	95
6	94	211	390	338	4910	706	3040	1650	350	215	109	101
7	93	281	363	331	6000	647	3450	1650	346	212	105	102
8	90	781	300	364	7290	866	3450	1760	333	211	102	99
9	87	1340	265	637	6240	3100	1380	3240	318	208	107	93
10	87	782	261	1070	4510	3700	1200	3430	337	207	313	88
11	86	503	313	743	1610	3790	1100	3710	374	231	515	85
12	87	378	382	542	1630	4000	964	3240	421	212	291	83
13	89	323	368	463	2410	2310	851	1480	393	e190	217	82
14	e85	332	319	487	2260	1110	784	1200	383	186	180	80
15	89	407	296	549	1350	936	750	994	370	178	159	79
16	90	437	279	1460	1020	815	728	860	345	174	150	82
17	102	367	267	2440	1970	734	1590	766	329	169	147	133
18	133	309	259	2610	3820	881	2820	711	327	172	313	155
19	222	281	251	1490	3990	3840	3190	665	346	172	269	152
20	388	252	246	1050	4600	5080	3660	591	361	180	236	146
21	261	240	243	917	5450	6420	3730	541	411	163	188	149
22	212	292	242	769	4410	10100	2250	508	385	153	158	157
23	181	434	260	1430	1830	10200	1380	482	332	147	142	158
24	158	530	295	3400	3070	8320	1160	482	368	148	134	163
25	149	415	402	3610	3170	6220	1050	513	383	167	126	157
26 27 28 29 30 31	150 179 243 284 226 196	333 293 272 259 254	667 703 744 893 755 637	3900 4160 4870 5320 5590 7980	2370 1370 1120 	3600 1370 1150 999 892 809	909 798 720 668 635	507 498 585 681 573 491	335 301 275 260 256	174 165 157 154 157	121 120 119 117 113 107	148 140 137 137 147
TOTAL MEAN MAX MIN CFSM IN.	4663 150 388 85 .21 .24	11400 380 1340 183 .52 .58	12126 391 893 242 .54 .62	58621 1891 7980 331 2.60 3.00	100930 3605 8810 1020 4.97 5.17	87208 2813 10200 647 3.87 4.47	48159 1605 3730 635 2.21 2.47	35616 1149 3710 482 1.58 1.82	10573 352 441 256 .49	5858 189 257 147 .26 .30	5308 171 515 102 .24 .27	3541 118 163 79 .16

e Estimated.

02040000 APPOMATTOX RIVER AT MATTOAX, VA--Continued

STATISTICS	OF.	MON.I.HTA	MEAN	DAT'A	FOR	WA:I:ER	YEARS	1926	-	1998,	ВY	WA.I.F.K	YEAR	(WY)	

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	476	548	746	1029	1149	1249	1067	671	488	378	432	393
MAX	3932	2728	2620	3650	3605	3566	2975	1889	4369	1918	4566	2294
(WY)	1972	1986	1994	1978	1998	1993	1983	1978	1972	1938	1940	1975
MIN	32.7	107	123	207	248	309	273	208	95.0	56.5	35.6	30.0
(WY)	1931	1931	1966	1966	1931	1981	1966	1926	1970	1966	1930	1932
SUMMARY	SUMMARY STATISTICS			1997 CALEI	NDAR YEAR	F	OR 1998 W	ATER YEAR		WATER Y	EARS 1926	- 1998

501111111111111111111111111111111111111	1010 1997 01122112			1011 1330	**********	12111	WIII 211 121.	10 100	•	1,,,,	
ANNUAL TOTAL	207939			384003							
ANNUAL MEAN	570			1052			719				
HIGHEST ANNUAL MEAN							1553			1972	
LOWEST ANNUAL MEAN							285			1981	
HIGHEST DAILY MEAN	3900	May	2	10200	M	ar 23	e34300	Aug	18	1940	
LOWEST DAILY MEAN	77	Sep	8	79	S	ep 15	13	Oct	2	1930	
ANNUAL SEVEN-DAY MINIMUM	e80	Sep	3	83	S	ep 10	16	Aug	28	1932	
INSTANTANEOUS PEAK FLOW				10900	aM	ar 22	35000	Aug	18	1940	
INSTANTANEOUS PEAK STAGE				25	.85 aM	ar 22	b35.30	Aug	18	1940	
INSTANTANEOUS LOW FLOW				78	S	ep 16	11	Oct	2	1930	
ANNUAL RUNOFF (CFSM)	.78			1	. 45		.99				
ANNUAL RUNOFF (INCHES)	10.65			19	.68		13.45				
10 PERCENT EXCEEDS	1120			3440			1610				
50 PERCENT EXCEEDS	359			367			387				
90 PERCENT EXCEEDS	105			113			116				

a Also Mar. 23, 1998. b From floodmark in gage house.

Estimated.

DAY

TOTAL

17.9

3.8

.11

.13

MEAN

MAX

MIN

IN.

CFSM

OCT

JAMES RIVER BASIN

02041000 DEEP CREEK NEAR MANNBORO, VA

LOCATION.--Lat 37°16'59", long 77°52'12", Amelia County, Hydrologic Unit 02080207, on left bank 300 ft upstream from bridge on State Highway 153, 0.9 mi upstream from Sweathouse Creek, 3.4 mi northwest of Mannboro, and 7.5 mi southeast of Amelia.

DRAINAGE AREA. -- 158 mi².

PERIOD OF RECORD. -- September 1946 to current year.

REVISED RECORDS.--WSP 1203: 1948 (calendar year figures only). WSP 2104: Drainage area. WDR VA-79-1: 1973-76(P), 1978.

GAGE.--Water-stage recorder. Datum of gage is 177.20 ft above sea level. Prior to Sept. 2, 1949, nonrecording gage at same site and datum.

REMARKS.--No estimated daily discharges. Records good. Maximum discharge, $15,000 \, \mathrm{ft}^3/\mathrm{s}$, from rating curve extended above 3,900 ft^3/s . Minimum gage height, 0.29 ft, Aug. 9-12, 1957. Several measurements of water temperature were made during the year. Water-quality records for some periods have been collected at this location.

COOPERATION. -- Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in August 1940 reached a stage of 14.8 ft, from information by local resident.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 1,200 ${\rm ft}^3/{\rm s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 24	2330	2,160	8.67	Feb. 20	0600	1,600	7.99
Jan. 29	0730	3,490	9.95	Mar. 10	0730	1,700	8.13
Feb. 5	1630	2,960	9.47	Mar. 20	0400	*6,900	*12.82
Feb. 18	1830	2,090	8.60	Mar. 22	0300	3,260	9.74

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
DAILY MEAN VALUES

APR

MAY

JUN

59.2

. 37

.42

14.2

.09

.10

.79

.91

JUL

AUG

120.3

3.88

6.8

.02

.03

123.3

4.11

.03

.03

SEP

MAR

Minimum discharge, 1.2 ft³/s, Sept. 2, 3.

DEC

93.8

. 59

.68

.76

.85

2.84

3.27

3.34

3.48

JAN

FEB

NOV

6.8 1.4 8.0 5.8 1.3 7.6 6 9 4 9 2.0 2.7 4.5 6.3 7 5.8 73 3.4 4.5 5.5 2.8 8.3 4 9 3 5 4.6 3.6 4.2 4 3 4 2 3 5 4.9 4.2 2.8 4.2 2.3 3 8 4 8 2 0 1.8 4.3 4.8 6 5 4 6 1 6 8.3 5.0 1.5 5.4 1.6 4 6 3 2 4.8 9 0 3 5 7 0 8.0 6.8 3.3 6.2 3.0 5.7 6.2 7.0 2.2 5.2 4.5 8.7 2.1 29 8.4 2.3 3.7 8.0 2.5 3.0 ---7.6 2.7 ---7.3 2.0

4.15

4.79

1.83

2.04

02041000 DEEP CREEK NEAR MANNBORO, VA--Continued

STATIST	TICS OF M	ONTHLY MEAN	DATA	FOR WATER	YEARS 1947	- 1998,	BY WATER	YEAR (WY)				
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	104	140	156	221	257	283	216	133	83.5	67.2	59.0	72.8
MAX	859	821	453	800	793	718	632	406	449	301	309	1002
(WY)	1973	1986	1997	1978	1979	1993	1987	1971	1972	1975	1978	1979
MIN	3.55	26.0	26.4	48.5	52.4	74.8	51.2	36.4	15.4	7.26	3.43	2.19
(WY)	1971	1966	1966	1966	1968	1981	1985	1985	1985	1991	1987	1968
SUMMAR	Y STATIST	ICS	FOR	1997 CAL	ENDAR YEAR	F	OR 1998 WA	ATER YEAR		WATER YE	ARS 1947	- 1998
ANNUAL	TOTAL			45968.2	2		71063.4					
ANNUAL	MEAN			126			195			149		
HIGHEST	T ANNUAL	MEAN								319		1979
LOWEST	ANNUAL M	EAN								67.5		1981
HIGHEST	T DAILY M	EAN		2620	Apr 29		5050	Mar 20		12000	Oct	6 1972
LOWEST	DAILY ME	AN		3.8	3 Oct 14		1.3	Sep 3		.04	Oct	4 1968
ANNUAL	SEVEN-DA	Y MINIMUM		4.3	3 Oct 9		1.9	Aug 29		.16	Oct	13 1970
INSTANT	TANEOUS P	EAK FLOW					6900	Mar 20		15000	Oct	6 1972
		EAK STAGE					12.82			a24.04		6 1972
	TANEOUS L							bSep 2		.03		4 1968
	RUNOFF (. 8			1.23			.94		
	RUNOFF (10.8	32		16.73	3		12.79		
	CENT EXCE			245			349			289		
	CENT EXCE			76			73			75		
90 PER	CENT EXCE	EDS		7.6	5		4.2			16		

a From floodmarks. b Also Sept. 3, 1998. c Also Oct. 5, 1968.

02041650 APPOMATTOX RIVER AT MATOACA, VA

LOCATION.--Lat 37°13'28", long 77°28'32", Chesterfield County, Hydrologic Unit 02080207, on left bank at upstream side of bridge on State Highway 600, 0.2 mi south of Matoaca, 2.0 mi upstream from Rohoic Creek, 2.8 mi downstream from Lake Chesdin, 3.5 mi west of Petersburg, and at mile 15.9.

DRAINAGE AREA. -- 1,344 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1969 to current year.

GAGE.--Water-stage recorder. Datum of gage is 68.30 ft above sea level.

REMARKS.--Records good except those for period of no gage-height record, Oct. 19, 20, which are fair. Flow regulated by Appomattox Water Authority at Lake Chesdin, capacity, 36,000 acre-ft, 2.8 mi upstream from which an average of 36.3 ft³/s is diverted for industrial and municipal use. Records do not include flow of Upper Appomattox Canal of city of Petersburg which diverts around station. National Weather Service gage-height telemeter at station.

COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES FOR CURRENT YEAR.—Maximum discharge, 14,100 ${\rm ft}^3/{\rm s}$, Mar. 21, gage height, 11.97 ${\rm ft}$; minimum, 64 ${\rm ft}^3/{\rm s}$, Sept. 11, result of regulation; minimum daily, 69 ${\rm ft}^3/{\rm s}$, Sept. 18, result of regulation.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP e100 2.0 e108 TOTAL MEAN 94.7 MAX MTN (†) CAL YR 1997 TOTAL MEAN MAX MIN (†)

MIN

(†)

TOTAL

MEAN

MAX

WTR YR 1998

[†] Total diversion, in cubic feet per second, at Lake Chesdin, provided by Appomattox Water Authority.

e Estimated.

JAMES RIVER BASIN

02041650 APPOMATTOX RIVER AT MATOACA, VA--Continued

ST	ATISTI	CS OF I	MONTHLY MEAN	DATA	FOR WATER	YEARS 1	970	- 1998,	BY WATER	R YEAR (WY)	[REGUI	ATED, UNA	DJUSTED]	
		OCT	NOV	DEC	JAN	FEB	3	MAR	APR	MAY	JUN	JUL	AUG	SEP
ME		1099	1115	1454	2098	2325		2619	2140	1363	925	570	499	711
MA	X	6869	5648	3857	5868	6532		6098	5003	4452	5293	2123	1818	5312
(W	Y)	1973	1986	1997	1978	1998		1993	1983	1978	1972	1995	1978	1979
MΙ	N	87.8	200	398	384	889		478	498	411	161	99.2	84.5	85.1
(W	Υ)	1994	1970	1981	1981	1977	'	1981	1985	1985	1970	1986	1987	1993
SU	MMARY	STATIS	rics	FOF	R 1997 CAL	ENDAR YE	AR	Ŧ	OR 1998 W	NATER YEAR		WATER Y	EARS 1970	- 1998
AN	NUAL T	OTAL			367556				694697					
AN	NUAL M	EAN			1007				1903			1405		
ΗI	GHEST	ANNUAL	MEAN									2559		1973
LO	WEST A	NNUAL I	MEAN									460		1981
ΗI	GHEST	DAILY I	MEAN		7190	May	1		13600	Mar 21		39400	Oct	7 1972
LO	WEST D	AILY M	EAN		a60	Sep	7		a69	Sep 18		a32	Aug :	31 1993
AN	NUAL S	EVEN-D	AY MINIMUM		a70	Sep	5		a79	Sep 15		a48	Aug	25 1980
IN	STANTA	NEOUS 1	PEAK FLOW						14100	Mar 21		40800		7 1972
IN	STANTA	NEOUS 1	PEAK STAGE						11.9			18.3		7 1972
IN	STANTA	NEOUS 1	LOW FLOW						a64	Sep 11		a26	Aug	31 1993
AN	NUAL R	UNOFF	(CFSM)			75			1.4	-		1.0	_	
AN	NUAL R	UNOFF	(INCHES)		10.	17			19.2	23		14.2	0	
		NT EXC			2080				6230			3500		
50	PERCE	NT EXC	EEDS		612				699			703		
90	PERCE	NT EXC	EEDS		104				101			161		

a Result of regulation.

02041650 APPOMATTOX RIVER AT MATOACA, VA--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1978 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1991 to September 1993. WATER TEMPERATURE: October 1991 to September 1993.

COOPERATION.--Chemical data as noted were provided by the Virginia Division of Consolidated Laboratory Services (VDCLS) and reviewed by the U.S. Geological Survey.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	TUR- BID- ITY (NTU) (00076)	OXYGEN, DIS- SOLVED (MG/L) (00300)
OCT 1997										
07	1200	104	103	6.9	30.0	22.0	772	VDCLS	2.7	9.2
21	1045	279	101	6.7	11.5	16.0	768	VDCLS	8.4	9.3
NOV										
06	1015	665	99	6.7	11.0	14.0	773	VDCLS	14	10.4
10	1230 1200	1760 629	99 97	6.9 7.2	15.0 9.5	24.0 10.0	762 774	VDCLS	14 4.9	10.3
18 DEC	1200	629	97	1.2	9.5	10.0	//4	VDCLS	4.9	11.7
02	1215	653	95	7.1	9.0	9.0	770	VDCLS	4.8	12.1
*02	1230	653	95	7.1	9.0	9.0	770	VDCLS	5.6	12.1
16	1045	617	91	7.1	6.5	7.0	769	VDCLS	12	12.0
JAN 1998										
07	1045	795	90	6.7	19.0	7.0	766	VDCLS	15	12.2
18	0945	4060	88	7.2	8.0	8.0	768	VDCLS	24	11.9
21	1030 1230	2000 6030	79 74	6.8 7.1	.00 11.0	6.0 6.0	774 760	VDCLS VDCLS	29 36	13.6 12.7
24 26	1330	7030	66	7.1	10.0	6.0	774	VDCLS	43	13.0
*26	1345	7020	66	7.8	10.0	6.0	774	VDCLS	42	13.0
29	1015	9790	59	6.3	9.5	5.0	762	VDCLS	51	14.0
FEB										
01	0930	9110	47	7.1	4.0	5.5	773	VDCLS	73	13.0
07	0930	9280	47	6.3	4.5	5.0	762	VDCLS	70	14.5
18	1315	6800	61	6.9	19.0	7.5	756	VDCLS	40	12.2
28 MAR	0915	2650	55	6.0	9.5	9.5	763	VDCLS	34	12.3
05	1045	1810	58	6.9	9.0	10.0	766	VDCLS	25	11.6
17	1145	1470	54	7.0	8.0	8.5	772	VDCLS	33	11.9
20	1100	10700	59	6.7	14.5	9.0	759	VDCLS	33	12.0
*20	1115	10700	59	6.7	14.5	9.0	759	USGS		12.0
21	0830	13800	41	6.6	10.0	8.7	723	VDCLS	41	12.6
22	1015	13400	37	6.7	8.8	9.0	728	VDCLS	83	12.5
APR	0000	1.650	50	6.0	10 5	15 0	740	TID OT O	0.0	0 0
02 05	0800 0900	1650 4120	50 59	6.9 5.4	18.5 7.0	15.8 16.0	740	VDCLS VDCLS	22 16	9.8 10.2
19	0930	5170	71	7.1	16.5	16.4	757	VDCLS	9.4	
20	1100	5860	66	6.8	17.0	17.0	766	VDCLS	18	8.5
*20	1115	5860	66	6.8	17.0	17.0	766	VDCLS	17	8.5
21	1145	5470	63	6.9	23.5	17.4	760	VDCLS	49	10.2
MAY										
04	1000	1830	66	6.5	17.0	18.0	759	VDCLS	9.6	9.2
09 19	0900 1045	5200 774	73 62	6.2 7.5	18.0 27.0	18.0 20.0	758 767	VDCLS VDCLS	8.7	9.2 9.6
*19	1045	772	62	7.5	27.0	20.0	767	USGS		9.6
JUN	1050	772	02	7.5	27.0	20.0	, , ,	0000		5.0
08	1215	617	77	7.6	24.0	24.0	770	VDCLS	4.8	9.4
14	1000	795	83	6.4	25.0	23.5	757	VDCLS	3.7	7.8
19	0945	429	84	6.2	24.0	25.0	764	VDCLS	3.0	7.0
*19	1000	434	84	6.2	24.0	25.0	764	USGS		7.0
23	1130	594	84	6.4	32.0	26.0	769	VDCLS	3.1	7.9 7.2
24 JUL	1030	924	82	7.3	24.0	26.0	768	VDCLS	6.8	1.2
07	0945	261	87	7.1	25.0	27.0	768	VDCLS	4.3	7.2
21	1130	123	99	6.4	34.5	26.0	755	VDCLS	4.3	6.8
AUG		-								
04	0915	102	102	7.1	23.5	23.0	758	VDCLS	4.2	7.0
18	1100	125	103	6.7	34.0	26.5	753	VDCLS	4.7	6.9
SEP	1000	0.0	101	- A		05.0	5.45		1.0	
08	1000	93	101	7.4	22.0	25.0	745	VDCLS	12 2.9	7.1
22	1130	100	96	6.3	26.5	25.0	748	VDCLS	2.9	7.3

^{*} Replicate sample.

JAMES RIVER BASIN

02041650 APPOMATTOX RIVER AT MATOACA, VA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DATE	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) **	RESIDUE FIXED NON FILTER- ABLE (MG/L) (00540) **	RESIDUE VOLA- TILE, SUS- PENDED (MG/L) (00535) **	NITRO- GEN DIS- SOLVED (MG/L AS N) (00602)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)
OCT 1997										
07	104	11	<3	<3	<3	.337	.130	.002	.130	.070
21	93	18	5	<3	3	.381	.145	.004	.149	.016
NOV										
06 10	99	19	14 18	11 14	3 4	.371	.110	.004	.114	.021
18	122 102	18 18	18	<3	<3	.332	.075 .087	.004	.079 .090	.058
DEC	102	10	3	~3	\3	.302	.007	.003	.000	.050
02	104	19	<3	<3	<3	.392	.159	< .002	.159	.032
*02	104	19	<3	<3	<3	.374	.159	< .002	.159	.025
16	98	19	5	4	<3	.437	.168	< .002	.168	.031
JAN 1998										
07	100	18	6	4	< 3	.538	.191	<.002	.191	.010
18 21	100	17	22	18	4	 .564	.177	.002	.179	.210
24	108 102	16 15	15 29	11 23	6	.580	.208 .211	.002	.210 .215	.018 .014
26	103	13	27	21	6	.550	.213	.002	.215	.026
*26	103	13	26	21	5	.501	.215	.002	.217	.024
29	110	12	24	19	5	.481	.173	< .002	.173	.012
FEB										
01	102	9.1	23	18	5	.416	.155	.002	.157	.010
07	113	9.5	23	18	5	.417	.164	.003	.167	.021
18 28	103 107	14 11	3 16	3 13	<3 3	.375 .436	.192 .157	<.002	.192 .159	.018
MAR	107	11	10	13	3	.430	.15/	.002	.139	.010
05	102	13	10	8	<3	.564	.158	<.002	.158	.019
17	100	12	9	7	<3	.494	.130	<.002	.130	.025
20	104	12	18	15	3	.418	.157	< .002	.157	.015
*20	104	11	224	221	3	.34			.11	.015
21	114	8.1	34	28	6	.447	.133	.002	.135	.024
22	113	7.5	35	29	6	.496	.144	.003	.147	.024
APR 02	102	11	15	10	5	.326	.075	.002	.077	.024
05	103	11	11	8	<3	.268	.047	<.002	.047	.024
19		2.5				.337	.061	<.002	.061	.022
20	87	2.4	10	<3	10	.486	.124	.003	.127	.037
*20	87	2.4				.400	.124	.003	.127	.040
21	107	12				.516	.152	.003	.155	.046
MAY	0.0	1.0	0	_	. 3	215	0.4.4	. 000	0.4.4	015
04 09	98 98	13 15	8 9	6 6	<3 <3	.317	.044	<.002 <.002	.044	.015 .026
19	105	2.6	8	5	<3	.354	.092	.002	.094	.020
*19	105	12	7		<1	.53			.071	.013
JUN										
08	111	16	3	<3	<3	.348	.059	.003	.062	.010
14	92	17	<3	<3	<3	.342	.082	.005	.087	.034
19	85	18	6	<3	5	.355	.090	.005	.095	.027
*19	85	17	1 4		7	.33	 077		.061	.029
23 24	97 88	18 18	6	<3 3	<3 3	.335 .293	.077 .058	.004	.081 .062	.023 .026
JUL	00	10	U	٠	ی	. 433	.000	.004	.002	.020
07	90	19	4	<3	<3	.386	.089	.003	.092	.022
21	85	18	<3	<3	<3	.591	.303	.017	.320	.025
AUG										
04	82	20	<3	<3	<3	.562	.370	.010	.380	.018
18	87	20	<3	<3	<3	.607	.371	.016	.387	.041
SEP 08	88	19	<3	-2	<3	F76	252	0.00	261	014
22	90	19	<3 <3	<3 <3	<3 <3	.576 .527	.352 .218	.009 .005	.361 .223	.014
22	20	10	\3	13	\ 3	. 221	.210	.005	. 223	

^{*} Replicate sample.
** For these constituents, there are differences in the minimum constituent reporting levels between the analyzing agencies.
< Actual value is known to be less than the value shown.

02041650 APPOMATTOX RIVER AT MATOACA, VA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

OCT 1997 07008018 .011 21062030 .015 NOV 06061016 .009 10019016 .009 18019012 .016 DEC 02027020 .016 *02028020 .009	.005 .42 .007 .66 .013 .99
07008018 .013 21062030 .015 NOV 06061016 .009 18019012 .019 DEC 02027020 .010	.005 .42 .007 .66 .013 .99
NOV 06061016 .009 10019012 .019 DEC 02027020 .016	.007 .66 .013 .99
06061016 .009 10099016 .009 18019012 .019 DEC 02027020 .010	.013 .99
10099016 .009 18019012 .019 DEC 02027020 .010	.013 .99
18019012 .019 DEC 02027020 .010	
DEC 02027020 .010	.004 .23
02027020 .010	
	.009 2.24
UZUZOUZU .UUS	
16040010 .016	
JAN 1998	
07058020 .007	
18099250 .010	
21073027 .012	
24145035 .012 26122024 .016	
26122024 .016 *26126024 .015	
29 121036 .013	
FEB	.010 1.05
01182030 .015	.066 1.35
07133023 .023	.055 1.13
18072020 .010	
28086025 .014	.038 .87
MAR 05059023 .004	0.21 47
05059023 .004 1706020 .012	
2008020 .010	
*203 .203 <.01 .009	
2117030 .021	
22170027 .019	.068 1.33
APR	
02092040 .007	
05121014 .006 19112019 .006	
19112019 .006 20117022 .010	
*20122021 .011	
21083029 .014	
MAY	
04103014 .006	
09116012 .006	
19078016 .011 *196 .503 <.01 .009	
*196 .503 <.01 .005	·
08055014 .012	.011 .35
14062011 .009	
19049013 .005	.012 .34
*193 .3 <.01 <.01 .007	'
23062013 .010	
24094014 .004	.022 .61
JUL 07042026 .011	011 21
07042026 .011 21024044 .032	
AUG024044 .032	2 .007 .20
04009049 .038	.006 .11
18170045 .035	
SEP	
08018036 .026	
22015021 .012	.005 .11

^{*} Replicate sample.

** For these constituents, there are differences in the minimum constituent reporting levels between the analyzing agencies.

< Actual value is known to be less than the value shown.

THIS IS A BLANK PAGE

02044500 NOTTOWAY RIVER NEAR RAWLINGS, VA

LOCATION.--Lat 36°59'00", long 77°48'00", Brunswick County, Hydrologic Unit 03010201, on right bank at downstream side of bridge on State Highway 612 at Harpers Bridge, 0.1 mi upstream from Beaver Pond Creek, and 2.6 mi northwest of Rawlings.

DRAINAGE AREA. -- 309 mi².

PERIOD OF RECORD. -- October 1950 to current year.

REVISED RECORDS. -- WSP 2104: Drainage area.

GAGE. -- Water-stage recorder. Datum of gage is 184.88 ft above sea level.

REMARKS.--Records good except for period of no gage-height record, Mar. 30, 31, which is fair. Maximum discharge, 29,900 ft³s, from rating curve extended above 16,000 ft³/s on basis of slope-area measurement of peak flow. Minimum gage height, 1.83 ft, Oct. 15, 1954. Several measurements of water temperature were made during the year. Water-quality records for some periods have been collected at this location.

COOPERATION. -- Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES OUTSIDE PERIOD OF RECORD.—Flood in August 1940 reached a stage of 20.8 ft, discharge, about $19,000 \text{ ft}^3/\text{s}$, from information by local resident.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 2,500 ${\rm ft}^3/{\rm s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 25	0830	2,610	7.77	Feb. 19	0030	3,640	9.25
Jan. 29	2030	3,940	9.64	Mar. 10	0500	3,290	8.76
Feb. 5	2400	4,680	10.59	Mar. 20	1030	*10,100	*15.26

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Minimum discharge, 22 ft³/s, Sept. 16-18.

					Di	AILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	59	71	172	254	530	417	390	322	190	90	40	28
2	51	75	189	216	439	397	435	498	170	79	38	26
3	45	78	178	193	391	390	403	507	158	72	35	24
4	41	73	164	180	1050	369	627	412	154	68	32	81
5	40	69	162	169	3450	340	1440	361	155	65	29	284
6	39	65	157	159	3700	318	1080	329	150	63	26	148
7	37	94	143	162	1410	308	599	309	142	60	25	81
8	35	304	130	259	801	419	514	699	129	58	26	60
9	34	297	123	490	605	2240	504	1300	115	59	48	49
10	33	192	126	455	503	3050	640	659	125	60	66	37
11	33	141	138	305	444	1300	582	444	142	67	88	30
12	32	113	147	239	454	613	485	379	143	66	68	27
13	32	101	142	215	478	510	429	367	136	58	53	25
14	33	134	131	218	421	456	399	334	127	53	44	24
15	41	252	124	278	370	415	390	292	136	49	40	23
16	66	229	119	825	342	385	374	265	154	53	50	22
17	74	150	116	1070	733	363	520	248	142	53	192	22
18	72	119	115	566	2700	660	1570	235	128	52	151	23
19	74	103	113	423	2780	3900	1620	217	134	52	81	38
20	90	96	111	392	770	9140	998	200	187	47	57	43
21	92	92	110	367	575	5310	901	197	180	44	46	41
22	79	254	111	315	486	4290	614	188	143	41	39	38
23	70	942	135	427	549	1990	530	182	126	38	36	45
24	61	443	158	1570	1150	790	485	200	164	36	33	47
25	60	259	181	2310	1040	635	443	217	151	35	30	39
26	66	195	226	787	602	562	397	223	123	39	28	35
27	123	168	246	532	498	518	362	252	106	45	28	33
28	165	148	467	1410	448	485	343	355	95	47	34	32
29	117	134	514	3300		451	330	314	96	46	33	31
30	86	136	377	2860		e423	317	246	101	43	31	30
31	72		301	777		e403		212		42	28	
TOTAL	1952	5527	5626	21723	27719	41847	18721	10963	4202	1680	1555	1466
MEAN	63.0	184	181	701	990	1350	624	354	140	54.2	50.2	48.9
MAX	165	942	514	3300	3700	9140	1620	1300	190	90	192	284
MIN	32	65	110	159	342	308	317	182	95	35	25	22
CFSM	.20	.60	.59	2.27	3.20	4.37	2.02	1.14	. 45	.18	.16	.16
IN.	.23	.67	.68	2.62	3.34	5.04	2.25	1.32	.51	.20	.19	.18

e Estimated.

02044500 NOTTOWAY RIVER NEAR RAWLINGS, VA--Continued

STATIST	CS OF	MONTHLY MEAN	N DATA	FOR WATER	YEARS 1	951	- 1998,	BY WATE	R YEAR (WY)				
	OCT	NOV	DEC	JAN	FEB		MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	232	251	297	422	503		564	466	304	211	154	132	151
MAX	2024	1560	893	1289	1248		1350	1201	893	1359	965	650	1436
(WY)	1973	1986	1958	1978	1979		1998	1987	1958	1972	1975	1955	1979
MIN	13.0	50.5	65.0	95.0	123		126	124	98.3	55.8	25.2	8.60	3.62
(WY)	1964	1968	1966	1966	1968		1981	1966	1991	1964	1966	1963	1954
SUMMARY	STATIS	TICS	FOR	1997 CAL	ENDAR YE	AR	F	OR 1998	WATER YEAR		WATER YE	CARS 1951	- 1998
ANNUAL	TOTAL			105621				142981					
ANNUAL	MEAN			289				392			306		
HIGHEST	' ANNUAI	MEAN									619		1973
LOWEST	ANNUAL	MEAN									144		1981
HIGHEST	DAILY	MEAN		5660	Apr	30		9140	Mar 20		27400	Oct	6 1972
LOWEST	DAILY M	IEAN		29	Sep	9		22	aSep 16		.40	Oct	14 1954
ANNUAL	SEVEN-D	MUMINIM YA		32	Sep	4		24	Sep 12		1.0	Oct	9 1954
INSTANT	ANEOUS	PEAK FLOW						10100	Mar 20		29900	Oct	6 1972
INSTANT	ANEOUS	PEAK STAGE						15.	26 Mar 20		23.25	0ct	6 1972
INSTANT	'ANEOUS	LOW FLOW						22	bSep 16		.40	cOct	14 1954
ANNUAL	RUNOFF	(CFSM)		. 9	94			1.	27		.99)	
ANNUAL	RUNOFF	(INCHES)		12.	72			17.	21		13.47	7	
10 PERC	ENT EXC	CEEDS		525				748			581		
50 PERC	ENT EXC	CEEDS		198				158			174		
90 PERC	ENT EXC	EEDS		44				35			44		

a Also Sept. 17, 1998.
b Also Sept. 17, 18, 1998.
c Also Oct. 15, 1954.

02045500 NOTTOWAY RIVER NEAR STONY CREEK, VA

LOCATION.--Lat 36°54'00", long 77°24'00", Sussex County, Hydrologic Unit 03010201, on left bank 15 ft downstream from bridge on U.S. Highway 301, 1.8 mi upstream from Island Swamp, 3.3 mi south of town of Stony Creek, and 4.4 mi upstream from Stony Creek.

DRAINAGE AREA. -- 579 mi².

PERIOD OF RECORD. --October 1929 to current year. Monthly discharge only for some periods, published in WSP 1303.

REVISED RECORDS.--WSP 802: 1935(M). WSP 972: 1931(M), 1932, 1934-35, 1939. WSP 2104: Drainage area. WDR VA-74-1: 1972.

GAGE.--Water-stage recorder. Datum of gage is 58.42 ft above sea level. Prior to Oct. 11, 1934, nonrecording gage at same site and datum.

REMARKS.--Records good except those for periods of doubtful or no gage-height record, Dec. 4-9, Mar. 31, and July 15 to Sept. 1, which are fair. Diurnal fluctuation at low flow caused by Baskerville Mill, 33 mi upstream. Maximum discharge, 25,200 ft³/s, from rating curve extended above 13,000 ft³/s. Minimum gage height, 0.62 ft, Sept. 2, 5, 1932. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 3,500 ${\rm ft}^3/{\rm s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 29	1530	5,540	15.81	Mar. 10	1500	7,110	16.90
Feb. 6	0200	6,400	16.43	Mar. 22	0645	*12,100	*19.28
Feb. 20	0830	3,830	14.04				

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Minimum discharge, 30 ft³/s, Oct. 14, 15, Sept. 17, 30.

DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	80	117	318	495	1970	754	693	438	338	151	e63	e39
2	76	122	387	396	1030	706	717	509	279	135	e59	47
3	66	132	343	339	864	671	735	760	238	120	e54	43
4	57	133	e300	305	2150	635	1210	692	226	112	e49	70
5	51	120	e280	279	5440	585	2370	584	213	107	e46	174
6	46	111	e270	261	6290	534	2430	492	210	101	e43	415
7	43	135	e240	249	6090	509	1430	428	206	96	e41	240
8	41	241	e220	340	3980	843	969	1420	192	90	e45	151
9	40	511	e200	1080	1530	3980	867	2690	178	86	e61	108
10	39	413	191	1050	1060	6860	986	2160	174	86	e80	84
11	37	285	207	731	887	6340	1070	1090	189	85	e110	67
12	35	212	232	499	870	3310	874	785	213	86	e130	53
13	34	179	225	402	874	1200	729	714	211	94	e100	44
14	32	255	212	379	804	933	647	660	194	82	e70	38
15	35	396	194	419	694	817	621	577	187	e73	e57	37
16	43	443	182	1580	624	725	593	499	221	e80	e94	33
17	66	348	175	2370	1070	667	732	443	248	e85	e130	31
18	94	242	169	1780	3010	1850	1790	406	206	e82	e175	32
19	101	192	166	966	3550	4020	2490	367	239	e80	e145	36
20	112	167	163	816	3590	7530	2480	328	453	e77	e105	33
21	131	157	160	725	1440	10100	1840	303	353	e70	e73	57
22	130	247	162	619	948	11700	1310	291	274	e64	e61	60
23	117	853	185	702	970	8900	985	271	211	e59	e55	53
24	103	1180	226	2480	2090	5790	852	272	404	e57	e47	47
25	92	552	275	3090	2270	1950	747	306	384	e55	e45	53
26	88	356	344	3030	1450	1230	645	342	270	e56	e43	51
27	107	280	385	1320	977	1070	566	412	204	e74	e44	44
28	183	238	637	3220	831	971	510	489	169	e80	e50	39
29	215	207	910	5330		894	473	533	156	e87	e55	35
30	164	204	840	5190		819	453	444	152	e73	e59	32
31	129		657	4660		e732		400		e69	e45	
TOTAL	2587	9028	9455	45102	57353	87625	32814	20105	7192	2652	2234	2246
MEAN	83.5	301	305	1455	2048	2827	1094	649	240	85.5	72.1	74.9
MAX	215	1180	910	5330	6290	11700	2490	2690	453	151	175	415
MIN	32	111	160	249	624	509	453	271	152	55	41	31
CFSM	.14	.52	.53	2.51	3.54	4.88	1.89	1.12	. 41	.15	.12	.13
IN.	.17	.58	.61	2.90	3.68	5.63	2.11	1.29	.46	.17	.14	.14

e Estimated.

02045500 NOTTOWAY RIVER NEAR STONY CREEK, VA --Continued

STATIST	CICS OF 1	MONTHLY MEAN	DATA	FOR WATER	YEARS 1	931	- 1998,	BY WATER	YEAR (WY)				
	OCT	NOV	DEC	JAN	FEB	3	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	313	410	521	831	948		1047	860	540	334	352	304	269
MAX	2666	2800	1783	2578	2355		2827	2261	1878	1612	2423	3057	2191
(WY)	1973	1986	1958	1936	1979	1	1998	1987	1958	1938	1938	1940	1979
MIN	14.0	43.1	65.7	109	176		196	192	129	74.6	46.6	14.9	9.40
(WY)	1931	1942	1966	1966	1931		1981	1966	1942	1942	1966	1963	1932
SUMMARY	STATIS	rics	FOR	1997 CALI	ENDAR YE	AR	F	OR 1998 W.	ATER YEAR		WATER YEA	RS 1931	- 1998
ANNUAL	TOTAL			189255				278393					
ANNUAL	MEAN			519				763			559		
HIGHEST	ANNUAL	MEAN									1100		1973
LOWEST	ANNUAL N	MEAN									191		1942
HIGHEST	DAILY N	MEAN		7000	May	2		11700	Mar 22		24000	Aug	17 1940
LOWEST	DAILY M	EAN		30	aSep	2		31	Sep 17		4.3	Aug	15 1977
ANNUAL	SEVEN-DA	AY MINIMUM		32	Sep	5		34	Sep 14		6.0	Aug	30 1932
INSTANT	CANEOUS I	PEAK FLOW						12100	Mar 22		25200	Aug	17 1940
INSTANT	CANEOUS I	PEAK STAGE						19.2	8 Mar 22		23.66	Aug	17 1940
INSTANT	CANEOUS 1	LOW FLOW						30	bOct 14		3.4	cAug	15 1977
ANNUAL	RUNOFF	(CFSM)		. 9	90			1.3	2		.97		
ANNUAL	RUNOFF	(INCHES)		12.	16			17.8	19		13.11		
10 PERC	CENT EXC	EEDS		1050				1890			1170		
50 PERC	CENT EXC	EEDS		280				261			303		
90 PERC	CENT EXC	EEDS		51				48			61		

a Also Sept. 7, 8, 10, 1997.
b Also Oct. 15, 1997 and Sept. 17, 30, 1998.
c Also Aug. 16, 1977.

02046000 STONY CREEK NEAR DINWIDDIE, VA

LOCATION.--Lat 37°04'01", long 77°36'10", Dinwiddie County, Hydrologic Unit 03010201, on right bank at upstream side of upstream bridge on U.S. Highway 1, 1.2 mi southwest of Dinwiddie, 1.7 mi downstream from Chamberlains Bed Creek, and 5.7 mi downstream from confluence of White Oak and Butterwood Creeks.

DRAINAGE AREA. -- 112 mi².

PERIOD OF RECORD.--September 1946 to current year. Published as "at Dinwiddie" September 1946 to September 1947 and October 1949 to September 1950.

REVISED RECORDS.--WSP 1303: 1947(M). WSP 1433: 1951(M). WSP 2104: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 129.94 ft above sea level. Prior to June 12, 1957, nonrecording gage and crest-stage gage at same site and datum.

REMARKS.--Records good except those for periods of doubtful or no gage-height record, Dec. 25 to Feb. 9, and Mar. 19-22, which are fair. Maximum discharge, 11,400 ft³/s, from rating curve extended above 5,800 ft³/s on basis of contracted-opening measurement of peak flow. No flow part of Oct. 13, 1954. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 1,200 ${\rm ft}^3/{\rm s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 29 Feb. 6	Unknown Unknown	Unknown Unknown	Unknown Unknown	Mar. 20 Mar. 22	Unknown Unknown	*4,010 Unknown	a*13.13 Unknown
Max 0	2220	1 0/10	0 00				

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

a From high-water mark in well.

Minimum discharge, 0.74 ft³/s, Sept. 17.

					Di	AILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.7 1.6 1.6 1.5	2.1 2.8 2.8 2.4 2.1	67 59 47 41 40	e85 e72 e65 e60 e57	e220 e185 e160 e355 e1100	148 138 128 114 105	118 126 120 442 619	81 117 170 138 114	56 43 36 33 31	16 13 11 11	2.8 2.6 2.4 2.2 2.1	1.2 1.1 1.0 4.3 7.0
6 7 8 9 10	1.3 1.2 1.1 1.0	1.9 41 75 58 51	34 29 26 26 27	e53 e50 e115 e185 e160	e1250 e590 e330 e265 198	98 96 206 1050 1600	389 232 175 181 265	92 80 556 1060 522	30 27 25 23 28	9.0 8.0 7.5 7.5 7.3	1.9 1.8 1.9 2.4 2.5	7.7 5.9 4.7 3.4 2.5
11 12 13 14 15	.98 1.0 .94 .97 1.7	32 24 21 78 90	31 30 28 27 25	e105 e80 e70 e76 e130	168 183 171 146 122	690 310 218 184 158	215 155 126 113 110	240 168 150 132 109	30 30 29 27 35	6.7 6.1 5.8 5.3 4.9	2.4 2.1 2.2 2.2 1.9	1.9 1.5 1.2 1.0
16 17 18 19 20	1.8 2.1 2.2 2.6 3.2	57 38 29 25 22	23 23 21 21 21	e315 e390 e185 e150 e130	111 423 861 656 337	137 125 564 e1350 e3700	101 290 834 569 692	91 81 72 63 55	37 31 25 94 136	5.2 6.2 6.8 6.1 5.5	2.0 2.2 3.2 2.4 2.2	.88 .80 1.1 1.2 1.1
21 22 23 24 25	2.9 2.4 2.1 1.7	20 97 119 82 57	20 21 31 38 e40	e120 e100 e250 e520 e730	227 172 348 726 486	e1650 e1850 744 412 291	527 274 219 182 146	52 44 42 47 49	91 58 47 170 92	4.8 4.3 4.6 7.8 5.7	1.9 1.6 1.4 1.2	1.2 1.6 1.6 1.9 2.5
26 27 28 29 30 31	2.2 5.1 4.2 3.1 2.4 2.1	44 37 30 27 30	e55 e90 e135 e170 e130 e100	e300 e200 e510 e980 e850 e460	275 200 167 	234 198 174 156 139 124	121 104 95 87 82	46 79 143 105 79 96	72 40 27 22 19	4.8 4.3 4.0 3.7 3.4 3.1	1.1 1.4 2.0 1.7 1.7	2.4 2.3 2.1 1.9 1.6
TOTAL MEAN MAX MIN CFSM IN.	60.89 1.96 5.1 .94 .02	1198.1 39.9 119 1.9 .36 .40	1476 47.6 170 20 .43 .49	7553 244 980 50 2.18 2.51	10432 373 1250 111 3.33 3.46	17091 551 3700 96 4.92 5.68	7709 257 834 82 2.29 2.56	4873 157 1060 42 1.40 1.62	1444 48.1 170 19 .43 .48	209.4 6.75 16 3.1 .06	61.9 2.00 3.2 1.1 .02	69.53 2.32 7.7 .80 .02

e Estimated.

02046000 STONY CREEK NEAR DINWIDDIE, VA--Continued

STATIST	TICS OF M	ONTHLY MEAN	DATA	FOR WATER	YEARS 1947	- 1998,	BY WATER	YEAR (WY)				
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	69.7	88.6	108	168	200	220	165	96.3	59.7	47.9	46.0	52.8
MAX	554	510	426	549	541	551	377	351	156	560	288	774
(WY)	1973	1986	1958	1978	1979	1998	1952	1958	1981	1975	1955	1979
MIN	.12	2.99	5.68	15.5	37.5	27.7	27.0	20.9	14.1	2.62	.97	.18
(WY)	1955	1966	1966	1966	1968	1981	1966	1991	1994	1986	1963	1954
SUMMAR	Y STATIST	ICS	FOR	2 1997 CALE	NDAR YEAR	F	OR 1998 WA	TER YEAR		WATER YEA	RS 1947	7 - 1998
ANNUAL	TOTAL			34550.4	3		52177.82					
ANNUAL	MEAN			94.7			143			110		
HIGHEST	T ANNUAL	MEAN								231		1979
LOWEST	ANNUAL M	EAN								34.1		1981
HIGHES'	T DAILY M	EAN		1990	Apr 29		e3700	Mar 20		7050	Oct	6 1972
LOWEST	DAILY ME	AN		.8	2 Sep 8		.80	Sep 17		e.04	a0ct	7 1993
ANNUAL	SEVEN-DA	Y MINIMUM		.9	2 Sep 4		1.0	Sep 14		e.05	b0ct	6 1993
INSTAN	TANEOUS P	EAK FLOW					4010	Mar 20		11400	Oct	6 1972
INSTAN	TANEOUS P	EAK STAGE					13.13	Mar 20		20.84	Oct	6 1972
INSTAN	TANEOUS L	OW FLOW					.74	Sep 17		c.00	Oct	13 1954
ANNUAL	RUNOFF (CFSM)		.8	5		1.28			.98		
ANNUAL	RUNOFF (INCHES)		11.4	8		17.33			13.30		
10 PER	CENT EXCE	EDS		215			351			244		

41 1.7

49 5.3

39 1.6

50 PERCENT EXCEEDS 90 PERCENT EXCEEDS

a Also Oct. 8, 9, 1993. b Also Oct. 7, 8, 1998. c Observed. e Estimated.

02047500 BLACKWATER RIVER NEAR DENDRON, VA

LOCATION.--Lat 37°01'30", long 76°52'30", Surry County, Hydrologic Unit 03010202, on left bank 10 ft upstream from Walls Bridge on State Highway 617, 1.2 mi downstream from Cypress Swamp, and 3.5 mi southeast of Dendron.

DRAINAGE AREA. -- 294 mi².

PERIOD OF RECORD. -- October 1941 to December 1986, July 1988 to current year.

REVISED RECORDS.--WSP 2104: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 30.99 ft above sea level (U.S. Army Corps of Engineers bench mark). Prior to Aug. 13, 1980, at site 25 ft upstream at same datum.

REMARKS.--Records good except those for periods of no gage-height record, Nov. 19 to Dec. 8, Feb. 10-17, Feb. 24 to Mar. 16, and May 30 to June 4, which are fair. Maximum discharge, 5,850 ${\rm ft}^3/{\rm s}$, from rating curve extended above 4,900 ${\rm ft}^3/{\rm s}$. No flow at times most years. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES OUTSIDE PERIOD OF RECORD.—Flood in August 1940 reached a stage of 13.1 ft, from U.S. Army Corps of Engineers floodmarks, discharge, $10,000 \text{ ft}^3/\text{s}$, from rating curve extended above 4,900 ft $^3/\text{s}$.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 4,030 ft³/s, Feb. 6, gage height, 7.81 ft; no flow part or all of each day Oct. 1 to Nov. 4, Aug. 8 to Sept. 2, and Sept. 20-30.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DAILY MEAN VALUES DAY OCT NOV JAN FEB APR MAY JUL .00 .00 e255 511 3250 e810 530 313 e235 3.6 16 .00 2 .00 .00 e300 504 2580 e710 479 295 e190 1.7 6.1 .00 3 .00 e345 474 1880 265 .00 e620 432 e160 1.8 2.0 1.5 e320 1740 e530 268 .48 21 4 .00 1.8 439 531 e140 .75 5 18 e305 398 3030 e480 784 248 99 3.6 .09 41 .00 6 .00 26 e288 363 3910 e440 993 223 78 3.2 .04 44 .00 e269 329 3390 e400 992 203 62 1.7 .02 51 47 8 e263 303 3200 e575 986 275 .82 0.0 137 51 0.0 36 .00 9 420 251 334 2790 e850 1040 588 44 . 62 .00 2.5 1.0 790 7 4 0.0 626 247 395 e2200 e1400 1000 50 0.0 15 11 .00 527 247 428 e1770 e1800 852 778 49 7.0 .00 8.5 .00 .00 12 441 230 399 e1500 e2300 715 713 50 3 9 5 2 13 .00 331 211 365 e1200 e2050 596 844 46 1.5 .00 2.8 .32 14 .00 304 197 348 e980 e1700 532 932 42 .00 1.3 15 .00 284 188 379 e800 e1350 503 865 51 .09 .00 .37 e940 435 16 .00 273 177 623 e1050 721 55 16 .00 .12 17 .00 311 164 903 e1100 855 404 574 54 48 .00 .07 18 .00 355 152 1090 1250 1090 412 455 46 30 .00 .04 19 .00 e310 142 1030 1470 1950 494 357 42 8.5 .00 .02 20 .00 e270 134 934 1400 2990 608 288 42 3.5 .00 .00 21 .00 127 675 .00 e240 852 1180 3140 233 33 .81 .00 22 .00 e309 127 834 1100 3200 756 186 26 .11 .00 .00 3.0 23 .00 e425 141 1090 3200 764 154 21 .00 .00 2.4 .00 e560 145 949 e1050 2680 716 130 16 15 .00 .00 .00 e500 e1000 2050 672 106 8.1 .00 .00 26 .00 e445 170 1020 e950 1620 611 88 34 4.5 .00 .00 27 .00 e360 198 989 e890 1300 538 91 22 2.4 .00 .00 28 276 1070 474 112 .58 e305 1560 e860 13 .00 .00 .00 e255 3130 407 9.7 29 .00 336 879 134 .00 .00 .10 ---726 1.2 30 e225 442 3470 e195 6.5 .00 348 .00 .00 31 .00 503 3360 ---616 --e290 25 .00 ---0.00 8309.80 28553 48500 44431 19279 11714 1789.2 204.80 24.73 TOTAL 7311 248.92 .80 MEAN 000 277 236 921 1732 1433 643 378 59 6 6 61 8 30 3470 932 235 47 MAX .00 626 503 3910 3200 1040 48 16 .09 MTN .00 .00 127 303 800 400 348 88 6.5 .00 .00 .80 .20 .02 .00 4 88 1 29 .03 CESM 94 3 13 5.89 2 19 0.0 TN. .00 1.05 . 93 3.61 6.14 5.62 2.44 1.48 . 23 . 03 .00 .03

e Estimated.

02047500 BLACKWATER RIVER NEAR DENDRON, VA--Continued

STATIST	rics of	MONTHLY MEAN	DATA	FOR WATER	YEARS 194	2 - 1986,	1989 -	1998, BY	WATER YEAR	(WY)		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	151	207	318	499	584	662	456	265	145	141	168	138
MAX	1128	1108	1240	1473	1732	1501	1271	879	988	1364	912	1329
(WY)	1973	1980	1958	1978	1998	1975	1989	1958	1963	1945	1969	1979
MIN	.000	.000	2.65	21.1	70.8	79.5	87.2	25.8	2.62	.32	.000	.000
(WY)	(a)	(b)	1981	1981	1942	1981	1981	1991	1944	1957	(c)	(d)
SUMMARY	Y STATIS	TICS	FOF	R 1997 CALE	ENDAR YEAR	F	OR 1998	WATER YE	AR	WATER Y	YEARS 1942	2 - 1986
						_						9 - 1998
ANNUAL	TOTAL			99439.5	52		170365	.45				
ANNUAL	MEAN			272			467			311		
HIGHEST	r annual	MEAN								622		1958
LOWEST	ANNUAL	MEAN								57.5	5	1981
HIGHEST	r DAILY	MEAN		1950	May 3		3910	Feb	6	5540	Sep	28 1985
LOWEST	DAILY M	EAN		. (00 fJul 1			.00 gOct	1	. (0.0	(h)
ANNUAL	SEVEN-D	AY MINIMUM		. (00 jJul 1			.00 kOct	1	. (00	(h)
INSTANT	FANEOUS	PEAK FLOW					4030	Feb	6	5850	Sep	28 1985
INSTANT	FANEOUS	PEAK STAGE					7	.81 Feb	6	9.3	11 Sep	28 1985
INSTANT	raneous	LOW FLOW						.00 (m)	. (0.0	(h)
	RUNOFF	, ,		. 9	93		1	.59		1.0		
ANNUAL	RUNOFF	(INCHES)		12.5	8		21	.56		14.3	36	
10 PERC	CENT EXC	EEDS		620			1130			785		
50 PERC	CENT EXC	EEDS		164			198			160		
90 PERC	CENT EXC	EEDS		. (00			.00		1.8	8	

a Monthly mean flow is 0.0 ft³/s in 1955, 1969, 1981, 1984, 1994, 1998.

b Monthly mean flow is 0.0 ft³/s in 1955, 1981.
c Monthly mean flow is 0.0 ft³/s in 1976, 1980, 1993.
d Monthly mean flow is 0.0 ft³/s in 1944, 1954, 1980, 1983, 1993, 1995, 1997.
f Also July 2-16, Aug. 28 to Nov. 3, 1997.
g Also Oct. 2 to Nov. 3, 1997, Aug. 8 to Sept. 2, Sept. 20-30, 1998.
h No flow at times most years.
j Also July 2-10, Aug. 28 to Oct. 28, 1997.
k Also Oct. 2-28, 1997, Aug. 8-27, Sept. 20-24, 1998.
m No flow part or all of each day Oct. 1 to Nov. 3, 1997, Aug. 8 to Sept. 2, Sept. 20-30, 1998.

02051000 NORTH MEHERRIN RIVER NEAR LUNENBURG, VA

LOCATION.--Lat 36°59'53", long 78°21'03", Lunenburg County, Hydrologic Unit 03010204, on right bank at upstream side of bridge on State Highway 40, 0.5 mi downstream from Tusekiah Creek, 4.6 mi upstream from Juniper Creek, and 5.2 mi northwest of Lunenburg.

DRAINAGE AREA. -- 55.6 mi².

PERIOD OF RECORD. -- August 1946 to September 1980, October 1981 to current year.

REVISED RECORDS.--WSP 1303: 1947(M), 1949(M). WSP 2104: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 333.7 ft above sea level (levels by U.S. Army Corps of Engineers). Prior to July 5, 1951, nonrecording gage at same site and datum. July 5, 1951, to July 11, 1980, water-stage recorder at site 20 ft downstream at same datum.

REMARKS.--Records good except those for periods of doubtful or no gage height record, Jan. 15-17, 23-25, 27-29, Feb. 4, 5, and Apr. 16 to May 20, which are fair. Maximum discharge, $14,400 \text{ ft}^3/\text{s}$, from rating curve extended above 2,320 ft^3/s on basis of slope-area measurement of peak flow. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in August 1940 reached a stage of 48 ft, from information by local resident.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 2,200 ${\rm ft}^3/{\rm s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Feb. 4	Unknown	Unknown	Unknown	Mar. 19	0930	*4,240	*19.34
Feb. 17	1400	2,450	13.45	Mar. 21	0400	3,170	16.06

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Minimum discharge, 0.53 ft³/s, Sept. 16-18.

	DAILY MEAN VALUES													
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP		
1 2 3 4 5	3.7 2.8 2.6 2.7 2.7	7.5 11 10 8.2 7.0	33 24 18 21 24	29 25 23 22 21	50 42 39 e1500 e560	45 43 43 37 35	40 42 36 518 158	e37 e67 e73 e52 e42	18 17 16 17 16	8.4 7.2 6.9 6.7 7.2	2.9 2.5 2.0 1.8 1.6	1.9 1.6 1.4 4.3 4.5		
6 7 8 9 10	2.6 2.4 2.3 2.4 2.4	6.3 72 39 20 13	18 16 15 15 16	20 21 130 94 42	260 152 87 64 54	33 33 371 598 141	76 58 51 62 62	e33 e75 e270 e150 e80	16 15 14 14	6.7 6.0 5.8 6.7 8.9	1.5 1.4 67 75 20	2.8 2.1 1.8 1.3		
11 12 13 14 15	2.6 2.6 2.7 3.2 5.7	11 9.5 9.0 59 28	23 19 17 16 15	32 29 28 30 e120	49 126 69 54 46	71 57 48 46 41	53 45 41 39 39	e58 e50 e46 e41 e37	17 16 15 16 15	7.4 5.8 4.9 4.7 4.3	19 11 5.7 5.0 4.8	1.0 .90 .86 .79 .72		
16 17 18 19 20	6.1 5.3 10 9.5 9.2	15 10 10 9.7 9.5	15 14 14 14 13	e300 e140 64 59 69	44 952 280 99 74	38 37 221 2480 432	e135 e350 e230 e165 e135	e33 e27 e23 e22 e20	15 18 14 15 18	4.3 4.3 4.5 4.0 3.8	9.6 12 7.5 5.6 4.5	.66 .64 .71 .79		
21 22 23 24 25	6.8 5.3 4.3 3.8 4.7	10 161 42 24 19	13 15 26 21 53	45 37 e200 e420 e170	62 53 300 178 79	1250 228 100 75 61	e100 e75 e65 e58 e53	21 19 21 25 24	13 13 12 14 12	3.4 2.9 3.1 3.6 3.1	4.1 3.9 3.7 3.3 3.1	1.1 3.3 2.5 1.4		
26 27 28 29 30 31	17 45 10 7.7 6.5 5.9	17 16 15 14 16	34 115 105 53 42 39	71 e180 e580 e230 104 63	60 53 49 	54 51 47 44 41 39	e49 e44 e41 e39 e38	21 43 35 25 22 20	11 9.7 8.7 10 9.7	4.2 4.5 4.6 4.3 3.6 3.0	2.8 2.6 3.0 2.9 2.6 2.2	1.4 1.4 1.3 1.0 .82		
TOTAL MEAN MAX MIN CFSM IN.	200.5 6.47 45 2.3 .12 .13	698.7 23.3 161 6.3 .42 .47	876 28.3 115 13 .51	3398 110 580 20 1.97 2.27	5435 194 1500 39 3.49 3.64	6840 221 2480 33 3.97 4.58	2897 96.6 518 36 1.74 1.94	1512 48.8 270 19 .88 1.01	432.1 14.4 18 8.7 .26 .29	158.8 5.12 8.9 2.9 .09	294.6 9.50 75 1.4 .17 .20	46.29 1.54 4.5 .64 .03		

e Estimated.

aSep

5 1954

Oct 23 1971

Oct 23 1971

aSep 5 1954

CHOWAN RIVER BASIN

02051000 NORTH MEHERRIN RIVER NEAR LUNENBURG, VA--Continued

STATISTICS	OF	MONTHLY	MEAN	DATA	FOR	WATER	YEARS	1947	_	1998.	BY	WATER	YEAR	(WY)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	33.8	46.2	54.0	71.9	91.7	97.7	77.6	46.2	27.6	20.7	19.4	26.9
MAX	442	299	186	194	249	293	223	161	154	98.6	138	292
(WY)	1972	1986	1949	1978	1979	1975	1978	1971	1968	1975	1955	1979
MIN	1.70	4.37	7.22	12.7	18.7	32.8	15.3	11.2	3.97	2.72	1.83	.16
(WY)	1994	1992	1966	1955	1968	1985	1995	1964	1964	1957	1977	1954
SUMMARY	STATIST:	ICS	FOR :	1997 CALEN	IDAR YEAR	F	OR 1998 W <i>I</i>	ATER YEAR		WATER YI	EARS 1947	- 1998
ANNUAL	TOTAL			16740.5			22788.99)				
ANNUAL	MEAN			45.9			62.4			50.9		
HIGHEST	C ANNUAL 1	MEAN								98.8		1972
LOWEST	LOWEST ANNUAL MEAN									21.2		1992
HIGHEST	C DAILY M	EAN		e1380	Apr 28		2480	Mar 19		6710	Oct :	23 1971
LOWEST	DAILY ME	AN		1.4	Sep 9		.64	1 Sep 17		.00) aSep	5 1954

LOWEST DAILY MEAN .64 Sep 17 Sep ANNUAL SEVEN-DAY MINIMUM 1.8 Sep Sep 13 .00 INSTANTANEOUS PEAK FLOW 4240 Mar 19 14400 INSTANTANEOUS PEAK STAGE 19.34 Mar 19 28.30 INSTANTANEOUS LOW FLOW .53 bSep 16 .00 ANNUAL RUNOFF (CFSM) .82 1.12 .92 11.20 ANNUAL RUNOFF (INCHES) 15.25 12.44 10 PERCENT EXCEEDS 91 122 94 50 PERCENT EXCEEDS 20 18 20 90 PERCENT EXCEEDS 3.8 2.9 2.5

a Also Sept. 6-21 and Oct. 8-14, 1954. b Also Slept. 17, 18, 1998.

02052000 MEHERRIN RIVER AT EMPORIA, VA

LOCATION.--Lat $36^{\circ}41^{\circ}24^{\circ}$, long $77^{\circ}32^{\circ}27^{\circ}$, Emporia City, Hydrologic Unit 03010204, on left bank at downstream side of bridge on U.S. Highway 301 and 1.2 mi upstream from Falling Run.

DRAINAGE AREA. -- 747 mi².

PERIOD OF RECORD. -- January 1951 to current year.

REVISED RECORDS.--WSP 2104: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 67.17 ft above sea level (levels by U.S. Army Corps of Engineers).

REMARKS.--Records good except for period of no gage-height record, Apr. 21 to May 19, which is fair. Prior to November 1965 and since April 1986, low and medium flow regulated by powerplant 0.8 mi upstream from station. Minimum discharge, 5.0 ft³/s, Nov. 11, 1954, gage height, 1.00 ft, result of regulation. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION. -- Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in August 1940 reached a stage of 31.5 ft, from floodmarks, discharge, about 40,000 ft³/s, from rating curve extended above 18,000 ft³/s on basis of record for station near Lawrenceville.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 16,000 $\rm ft^3/s$, Mar. 22, gage height, 24.96 $\rm ft$; minimum, 8.0 $\rm ft^3/s$, Sept. 24, result of regulation; minimum daily, 9.6 $\rm ft^3/s$, Sept. 24.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

			,		E	DAILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	142	167	512	591	1830	832	839	e570	445	184	113	60
2	123	187	548	527	1090	789	805	e760	375	165	57	59
3	106	186	504	443	894	715	838	e860	327	145	80	93
4	98	184	438	402	2610	614	1150	e710	306	162	100	164
5	97	160	406	379	7620	646	2970	e630	298	177	84	229
6	84	160	371	373	9200	560	2980	e560	291	189	34	392
7	99	178	341	358	9170	529	1430	e520	292	153	67	146
8	89	259	311	529	4330	919	1050	e1700	270	151	48	126
9	88	511	314	1680	2020	5780	955	e3300	267	136	112	83
10	88	330	296	1930	1320	9010	1240	e1450	260	154	246	85
11	88	280	343	1020	1040	7800	1440	e970	274	214	371	68
12	59	242	344	664	978	3220	1080	e800	283	153	242	68
13	85	216	296	531	993	1450	889	e730	295	153	155	47
14	89	431	300	482	1060	1090	786	e650	293	142	110	63
15	100	430	337	551	848	922	733	e580	314	120	102	57
16	146	672	271	2300	708	838	711	e520	317	152	70	44
17	185	332	263	5140	1100	724	882	e470	328	133	122	29
18	171	292	220	3050	4460	2250	3320	e430	295	102	166	82
19	199	250	283	1380	6800	6480	4200	e375	275	97	159	54
20	207	231	172	1090	5700	9900	2520	346	283	169	113	31
21	223	222	232	1030	2000	14100	e1800	374	298	123	88	64
22	216	347	322	868	1190	15200	e1300	460	303	85	61	57
23	172	2210	302	837	1080	12500	e1050	304	245	109	74	56
24	155	1430	376	3550	2410	6670	e900	338	207	124	69	9.6
25	153	611	380	5850	2990	2430	e820	384	214	42	118	59
26	164	418	527	3630	1540	1490	e740	566	178	159	56	44
27	195	354	556	1640	1080	1220	e660	543	186	149	80	30
28	227	312	838	4430	906	1090	e640	511	195	125	63	50
29	251	285	1450	7420		995	e600	509	188	138	65	14
30	241	315	1080	7930		918	e580	447	198	88	44	67
31	201		836	5030		872		389		147	86	
TOTAL	4541	12202	13769	65635	76967	112553	39908	21756	8300	4340	3355	2430.6
MEAN	146	407	444	2117	2749	3631	1330	702	277	140	108	81.0
MAX	251	2210	1450	7930	9200	15200	4200	3300	445	214	371	392
MIN	59	160	172	358	708	529	580	304	178	42	34	9.6
CFSM	.20	.54	.59	2.83	3.68	4.86	1.78	.94	.37	.19	.14	.11
IN.	.23	.61	.69	3.27	3.83	5.61	1.99	1.08	.41	.22	.17	.12

e Estimated.

02052000 MEHERRIN RIVER AT EMPORIA, VA--Continued

STATIST	rics of M	ONTHLY MEAN	N DATA F	OR WATER	YEARS 1952	- 1998,	BY WATER Y	YEAR (WY)					
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG		SEP
MEAN	421	538	677	1070	1256	1387	1065	665	428	345	299		282
MAX	3057	3711	1772	3063	2749	3631	3077	2244	1399	2647	1536	1	810
(WY)	1973	1986	1973	1978	1998	1998	1987	1958	1972	1975	1955	1	979
MIN	37.7	60.0	89.9	159	298	261	221	256	137	62.9	46.3	1	8.7
(WY)	1969	1955	1966	1966	1968	1981	1995	1995	1986	1954	1995	1	954
SUMMARY	SUMMARY STATISTICS			1997 CALE	NDAR YEAR	FC	OR 1998 WAT	TER YEAR		WATER YE.	ARS 1952	- 1	998
ANNUAL	ANNUAL TOTAL ANNUAL MEAN			253408			365756.6						
ANNUAL	ANNUAL MEAN			694			1002			700			
HIGHEST	r annual i	MEAN								1297		1	973
LOWEST	ANNUAL M	EAN								248		1	981
HIGHEST	r daily M	EAN		9570	May 1		15200	Mar 22		20700	Oct	8 1	972
LOWEST	DAILY ME.	AN		59	Oct 12		a9.6	Sep 24		a7.1	Jul	20 1	986
ANNUAL	SEVEN-DA	Y MINIMUM		84	Oct 8		38	Sep 23		a9.1	Nov	4 1	954
INSTANT	TANEOUS P	EAK FLOW					16000	Mar 22		21100	Oct	8 1	972
INSTANT	TANEOUS P	EAK STAGE					24.96	Mar 22		27.38	Oct	8 1	972
INSTANT	TANEOUS L	OW FLOW					a8.0	Sep 24		a5.0	Nov	11 1	954
ANNUAL	ANNUAL RUNOFF (CFSM)			.9	3		1.34			.94			
ANNUAL	ANNUAL RUNOFF (INCHES)				2		18.21			12.73			
10 PERG	10 PERCENT EXCEEDS			1360			2340			1440			
50 PERG	50 PERCENT EXCEEDS			398			332			360			
90 PERG	CENT EXCE	EDS		112			80			71			

a Result of regulation.

02053800 SOUTH FORK ROANOKE RIVER NEAR SHAWSVILLE, VA

LOCATION.--Lat 37°08'24", long 80°16'00", Montgomery County, Hydrologic Unit 03010101, on right bank 95 ft downstream from bridge on State Highway 637, 0.3 mi downstream from Georges Run, 1.3 mi downstream from Elliott Creek, and 2.0 mi southwest of Shawsville.

DRAINAGE AREA. -- 110 mi².

PERIOD OF RECORD. -- October 1960 to current year.

REVISED RECORDS. -- WSP 2104: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,361.87 ft above sea level. Prior to Aug. 26, 1974, water-stage recorder, and Aug. 26, 1974, to July 24, 1975, nonrecording gage at site 95 ft upstream at same datum.

REMARKS.--Records good except for period with ice effect, Jan. 1, 2, which is fair. Virginia Department of Emergency Services gage-height radio transmitter at station. Maximum discharge, 14,200 ft³/s, from rating curve extended above 3,700 ft³/s on basis of slope-area measurement of peak flow. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location by the Virginia Department of Environmental Quality - Water Division.

COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Sept. 30, 1959, reached a stage of 9.89 ft, from information by local resident.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 800 ${\rm ft}^3/{\rm s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 8	0500	3,750	5.56	Mar. 20	1830	*4,030	*6.39
Feb. 4	1430	2,300	4.65	Apr. 19	2000	1,650	3.86
Feb. 17	1730	3,050	5.45				

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES

Minimum discharge, 20 ft³/s, Sept. 15, 16, 29.

DAILI MEAN VALUED												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	29	42	34	e30	217	248	111	198	149	73	42	25
2	28	58	32	e33	188	209	103	195	227	63	39	24
3	27	46	31	35	206	181	97	191	245	62	36	24
4	27	38	34	40	1480	158	205	227	184	62	35	25
5	27	34	34	56	1120	142	194	253	178	73	34	23
6	27	33	32	88	905	129	159	215	167	59	32	22
7	26	33	30	102	617	121	138	196	140	57	32	22
8	26	34	29	1550	443	145	125	205	123	65	59	22
9	26	33	31	392	365	230	177	177	117	70	55	23 23
10	27	32	34	191	324	231	161	163	135	71	54	
11	27	32	36	131	329	185	142	278	133	57	51	23
12	27	31	33	111	459	157	125	248	153	53	41	22
13	27	31	32	108	450	141	115	210	144	51	37	22
14	28	36	31	91	345	135	112	180	119	51	35	22
15	28	37	29	223	274	123	105	158	134	48	34	21
16	28	34	29	415	245	115	101	148	111	47	53	21
17	30	32	29	283	1650	108	283	137	101	46	56	22
18	33	31	30	183	1250	116	240	122	91	44	44	24
19 20	32 32	31 31	29 29	145 120	683 527	255 1330	633 933	113 107	88 85	46 44	40 34	24 23
	34		29		547	1330				44		
21	31	38	30	100	418	1920	508	105	79	41	32	27
22	31	55	37	94	323	771	365	100	78	42	30	32
23	31	43	37	139	379	458	296	136	74	46	29	26
24	32	37	37	198	375	320	259	136	74	45	28	24
25	38	35	49	188	318	242	214	144	73	44	27	23
26	40	34	43	155	270	200	190	162	67	44	27	22
27	49	33	44	143	247	174	175	372	64	44	26	22
28	38	32	43	221	247	155	160	312	63	44	26	22
29 30	34 32	32 34	37 39	283 305		140 127	148 144	214 178	80 74	41 39	26 25	21 24
31	32		39	265		117		203		40	25 25	
31	32		3 /	205		117		203		40	25	
TOTAL	950	1082	1061	6418	14654	9083	6718	5783	3550	1612	1144	700
MEAN	30.6	36.1	34.2	207	523	293	224	187	118	52.0	36.9	23.3
MAX	49	58	49	1550	1650	1920	933	372	245	73	59	32
MIN	26	31	29	30	188	108	97	100	63	39	25	21
CFSM	.28	.33	.31	1.88	4.76	2.66	2.04	1.70	1.08	.47	.34	.21
IN.	.32	.37	.36	2.17	4.96	3.07	2.27	1.96	1.20	.55	.39	.24

e Estimated.

02053800 SOUTH FORK ROANOKE RIVER NEAR SHAWSVILLE, VA--Continued

STATIST	TICS OF M	ONTHLY MEAN	N DATA F	OR WATER	YEARS 1	961	- 1998,	BY WATER	YEAR (WY)					
	OCT	NOV	DEC	JAN	FEB	3	MAR	APR	MAY	JUN	JUL	AUG		SEP
MEAN	74.2	92.9	102	141	171		215	188	138	103	59.1	54.2		61.3
MAX	294	407	232	299	523		571	750	334	483	205	174		347
(WY)	1972	1986	1973	1996	1998		1993	1987	1978	1972	1972	1994		1989
MIN	21.4	24.4	22.1	18.9	70.1		55.6	51.0	50.7	35.2	20.6	17.4		17.8
(WY)	1992	1982	1966	1966	1981		1981	1966	1963	1966	1966	1963		1968
SUMMARY	Y STATIST	ICS	FOR	1997 CALE	NDAR YE	AR	F	OR 1998 W	ATER YEAR		WATER YE	ARS 1961	-	1998
ANNUAL	TOTAL			32294				52755						
ANNUAL	MEAN			88.5				145			116			
HIGHEST	T ANNUAL	MEAN									205			1972
LOWEST	ANNUAL M	EAN									46.5			1981
HIGHEST	T DAILY M	EAN		842	Mar	4		1920	Mar 21		6840	Jun	21	1972
LOWEST	DAILY ME.	AN		22	aSep	6		21	bSep 15		7.5	Jul	28	1966
ANNUAL	SEVEN-DA	Y MINIMUM		23	Sep	3		22	Sep 11		8.9	Jul	23	1966
INSTANT	TANEOUS P	EAK FLOW			-			4030	Mar 20		14200	Jun	21	1972
INSTANT	TANEOUS P	EAK STAGE						6.3	9 Mar 20		c11.12	Jun	21	1972
INSTANT	TANEOUS L	OW FLOW						20	bSep 15		7.5	dJul	27	1966
ANNUAL	RUNOFF (CFSM)		.8	0			1.3	1		1.06			
ANNUAL	RUNOFF (INCHES)		10.9	2			17.8	4		14.36			
10 PERG	10 PERCENT EXCEEDS			194				288			223			
50 PERG	50 PERCENT EXCEEDS			58				62			72			
90 PERG	CENT EXCE	EDS		27				27			29			

a Also Sept. 7, 8, 1997. b Also Sept. 16, 29, 1998. c From high-water mark in well. d Also July 28, 29, 1966.

02054500 ROANOKE RIVER AT LAFAYETTE, VA

LOCATION.--Lat 37°14'11", long 80°12'34", Montgomery County, Hydrologic Unit 03010101, on right bank 120 ft upstream from bridge on State Highway 603 at Lafayette, 0.4 mi downstream from confluence of North and South Forks, and 1.1 mi upstream from Cove Hollow.

DRAINAGE AREA. -- 257 mi².

PERIOD OF RECORD. -- September 1943 to current year.

REVISED RECORDS. -- WSP 1333: 1944-47(M), 1948-49.

GAGE.--Water-stage recorder. Datum of gage is 1,174.47 ft above sea level. Prior to July 30, 1949, nonrecording gage at same site and datum.

REMARKS.--Records good except those for period with ice effect, Jan. 1, and periods of doubtful or no gage-height record, July 13-17, and July 23 to Aug. 18, which are fair. Occasional diurnal fluctuation caused by meat-processing plant upstream from station. Virginia Department of Emergency Services gage-height radio transmitter at station. Maximum discharge, 24,500 ft³/s, from rating curve extended above 12,000 ft³/s on basis of slope-area measurement of peak flow. Minimum discharge, 8.0 ft³/s, Jan. 19, 1959, gage height, 0.60 ft, result of freezeup. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES OUTSIDE PERIOD OF RECORD.—Flood in August 1940 reached a stage of 12.2 ft, from information by local residents, discharge, 19,000 ${\rm ft}^3/{\rm s}$, from rating curve extended above 12,000 ${\rm ft}^3/{\rm s}$.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 3,500 ft³/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 8	0900	7,340	8.93	Mar. 20	2115	*7,730	*9.14
Feb. 4	1500	6,130	8.24	Apr. 19	2130	4,700	7.33
Feb. 17	1930	4,530	7.21				

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Minimum discharge, 39 ft³/s, Sept. 15, 16, 17.

	DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1	59	60	61	e60	669	574	370	547	274	148	e70	51	
2	55	93	58	64	550	498	334	750	359	127	e67	49	
3	53	95	54	75	610	437	311	604	505	122	e63	49	
4	52	72	58	83	3980	382	690	838	327	115	e59	50	
5	51	63	58	107	3000	338	752	761	310	128	e57	48	
6	49	59	55	154	2450	304	592	574	290	112	e55	47	
7	48	57	52	161	1670	283	507	501	249	109	e54	46	
8	47	59	51	3220	1200	334	449	560	222	115	e61	45	
9	46	58	51	933	991	585	642	495	210	126	e112	45	
10	47	55	56	464	859	644	612	432	235	130	e105	45	
11	46	55	64	291	811	510	529	860	225	111	e115	45	
12	45	53	58	231	938	428	456	648	298	103	e80	44	
13	45	53	54	236	941	375	414	518	267	e92	e70	43	
14	45	59	52	203	766	346	394	435	226	e86	e68	42	
15	47	62	50	566	630	313	362	376	254	e80	e66	41	
16	46	58	48	1080	553	288	338	333	218	e83	e135	40	
17	48	54	49	691	2460	271	1260	308	194	e82	e165	41	
18	52	52	50	451	2320	279	965	270	177	84	e104	44	
19	52	51	49	338	1320	1360	1870	246	169	82	89	44	
20	49	51	48	277	1060	2930	2660	229	166	78	78	44	
21	48	61	48	226	889	5040	1270	218	156	73	72	45	
22	47	107	58	204	738	2050	868	208	154	72	68	69	
23	45	88	70	357	905	1310	679	252	145	e86	65	54	
24	47	71	66	500	971	982	581	278	142	e80	63	49	
25	58	63	86	500	808	789	488	368	156	e79	61	47	
26	60	60	86	383	694	673	430	316	137	e76	58	47	
27	75	58	84	335	631	593	390	631	129	e74	56	46	
28	65	55	93	1360	591	529	356	583	126	e76	56	44	
29	56	54	83	1240		476	322	413	191	e72	53	44	
30	51	55	80	1100		430	308	326	148	e68	52	48	
31	50		76	869		394		341		e67	51		
TOTAL	1584	1891	1906	16759	34005	24745	20199	14219	6659	2936	2328	1396	
MEAN	51.1	63.0	61.5	541	1214	798	673	459	222	94.7	75.1	46.5	
MAX	75	107	93	3220	3980	5040	2660	860	505	148	165	69	
MIN	45	51	48	60	550	271	308	208	126	67	51	40	
CFSM	.20	.25	.24	2.10	4.73	3.11	2.62	1.78	.86	. 37	.29	.18	
IN.	.23	.27	.28	2.43	4.92	3.58	2.92	2.06	.96	.42	.34	.20	

e Estimated.

02054500 ROANOKE RIVER AT LAFAYETTE, VA--Continued

STATISTICS	OF	MONTHLY	MEAN	DATA	FOR	WATER	YEARS	1944 -	1997.	BY	WATER	YEAR	(WY))

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	138	173	230	316	403	476	418	288	188	115	113	121
MAX	603	770	913	682	1214	1309	1497	716	791	590	551	570
(WY)	1977	1978	1949	1947	1998	1993	1987	1978	1972	1949	1948	1989
MIN	36.7	44.1	47.0	52.0	83.4	103	102	99.1	61.6	43.2	37.0	29.4
(WY)	1954	1954	1964	1981	1959	1981	1966	1963	1963	1963	1963	1954
SUMMAR	Y STATIST	ICS	FOR :	1997 CALE	NDAR YEAR	F	OR 1998 W	ATER YEAR		WATER Y	EARS 1944	- 1998
ANNUAL	TOTAL			72851			128627					
ANNUAL	MEAN			200			352			247		
HIGHES'	T ANNUAL I	MEAN								442		1949
										00		1001

ANNUAL TOTAL	72851		128627			
ANNUAL MEAN	200		352		247	
HIGHEST ANNUAL MEAN					442	1949
LOWEST ANNUAL MEAN					87.0	1981
HIGHEST DAILY MEAN	1640 Mar	4	5040	Mar 21	11700	Jun 21 1972
LOWEST DAILY MEAN	42 aSep	7	40	Sep 16	10	bJan 14 1959
ANNUAL SEVEN-DAY MINIMUM	45 Sep	3	42	Sep 12	11	Jan 14 1959
INSTANTANEOUS PEAK FLOW			7730	Mar 20	24500	Jun 21 1972
INSTANTANEOUS PEAK STAGE			9.14	Mar 20	c15.60	Jun 21 1972
INSTANTANEOUS LOW FLOW			39	dSep 15	f8.0	Jan 19 1959
ANNUAL RUNOFF (CFSM)	.78		1.37		.96	
ANNUAL RUNOFF (INCHES)	10.54		18.62		13.07	
10 PERCENT EXCEEDS	479		846		500	
50 PERCENT EXCEEDS	108		126		136	
90 PERCENT EXCEEDS	49		48		51	

a Also Sept. 8, 1997.
b Also Jan. 15, 18, 19, 1959.
c From high-water mark in gage house.
d Also Sept. 16, 17, 1998.
f Result of freezeup.

02054510 ROANOKE RIVER NEAR WABUN, VA

LOCATION.--Lat 37°14'48", long 87°09'55", Roanoke County, Hydrologic Unit 03010101, on right bank 150 ft downstream from mouth of Dry Hollow, 0.7 mi downstream from bridge on State Highway 5800, 3 mi upstream from Dry Branch, and 5.9 mi southwest of Salem.

DRAINAGE AREA. -- 273 mi².

PERIOD OF RECORD. -- April 1994 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 1,140 ft above sea level, from topographic map.

REMARKS.--Records good except those for periods of doubtful or no gage-height record, Oct. 23, Dec. 8, Mar. 14, 15, and period with ice effect, Dec. 30 to Jan. 1, which are fair. Water is withdrawn upstream for municipal use by Roanoke County, amount unknown. Roanoke County gage-height transmitter at station. Maximum discharge, 15,900 ft³/s, from rating curve extended above 1,660 ft³/s. Minimum discharge, 24 ft³/s, Dec. 30, 1995, gage height, 2.57 ft, result of freezeup. Several observations of water temperature were made during the year.

COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Apr. 21, 1992, reached a stage of 13.69 ft, from high-water marks in the gage vicinity, from information by local resident, discharge not determined.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 3,500 ft^3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 8	0930	10,400	10.12	Mar. 20	2215	*10,600	*10.19
Feb. 4	1500	8,370	9.32	Apr. 19	2245	6,170	8.34
Feb 17	1830	6 070	8 29	=			

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Minimum discharge, 41 ft³/s, Sept. 15-18.

					Di	AILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	62	62	72	e69	623	495	302	511	257	167	71	49
2	57	107	71	78	512	413	278	800	275	151	70	48
3	53	126	67	95	545	363	256	605	564	139	65	47
4	52	92	68	103	4850	322	558	840	350	130	61	47
5	51	79	70	127	3630	285	641	772	328	146	58	47
6	50	71	66	152	2700	255	482	576	311	111	57	45
7	49	70	63	171	1690	257	410	492	267	100	56	44
8	49	70	e62	4020	1120	286	367	548	223	103	63	43
9	47	70	61	962	902	474	510	495	205	118	116	43
10	47	68	64	449	736	536	504	437	231	130	111	43
11	47	66	73	286	686	419	452	841	215	121	120	43
12	49	65	72	234	812	353	395	669	314	109	83	44
13	49	63	66	226	840	316	347	539	281	91	71	44
14	48	67	64	192	660	e305	334	426	242	87	68	44
15	49	74	62	490	528	e275	312	371	263	81	66	43
16	49	72	58	1060	484	238	294	344	225	83	148	41
17	51	67	58	626	2940	218	1160	314	196	82	172	41
18	56	65	60	410	2700	220	880	256	177	85	103	43
19	57	63	59	352	1300	1250	1930	228	175	85	82	44
20	54	62	59	270	985	3330	3140	211	177	84	72	45
21	52	70	59	217	797	6740	1330	199	169	78	67	46
22	52	136	64	192	640	2150	885	189	149	78	63	63
23	e50	122	86	324	806	1220	687	239	141	87	58	54
24	52	76	81	476	882	860	588	277	133	81	56	50
25	65	67	104	490	668	645	504	374	169	79	55	48
26	68	72	113	385	574	542	440	316	154	78	54	47
27	87	70	105	329	516	477	378	601	140	77	51	46
28	81	68	121	1390	502	442	344	602	131	76	50	46
29	67	66	91	1300		396	309	425	197	73	50	44
30	62	66	e95	1120		350	287	340	165	70	50	46
31	59		e90	821		321		344		68	50	
TOTAL	1721	2292	2304	17416	34628	24753	19304	14181	6824	3048	2317	1378
MEAN	55.5	76.4	74.3	562	1237	798	643	457	227	98.3	74.7	45.9
MAX	55.5 87	136	121	4020	4850	6740	3140	841	564	98.3 167	172	45.9 63
	8 / 47	136 62	58		4850	218	3140 256	189	131	68	50	
MIN CFSM	.20	.28	.27	69 2.06	4.53	2.92	2.36	1.68	.83	.36	.27	41 .17
				2.06								
IN.	.23	.31	.31	2.37	4.72	3.37	2.63	1.93	.93	.42	.32	.19

e Estimated.

02054510 ROANOKE RIVER NEAR WABUN, VA--Continued

STATIS	TICS OF M	ONTHLY MEAN	מדמת ז	FOR WATER	VEAR 19	94 .	_ 1998	BY WATER	YEAR (WAZ)					
0111110	1100 01 11	OIVIIIDI PIDIN	. DIIIII	TOIC WITTER	111111111111111111111111111111111111111	<i>-</i> 1	1000	, DI WILLE	C ILIIC (Wy)					
	OCT	NOV	DEC	JAN	FEE	}	MAR	APR	MAY	JUN	JUL	AUG		SEP
MEAN	98.2	156	256	550	647		510	307	266	269	131	157		169
MAX	165	352	679	747	1237		798	643	457	373	183	289		599
(WY)	1997	1997	1997	1996	1998		1998	1998	1998	1995	1995	1996		.996
MIN	55.5	76.4	74.3	392	335		288	104	135	112	86.6	62.8	4	15.9
(WY)	1998	1998	1998	1997	1995		1995	1995	1995	1994	1997	1997	1	998
SUMMAR	Y STATIST	ICS	FOR	1997 CAL	ENDAR YE	AR		FOR 1998	WATER YEAR		WATER YE	EARS 1994	- 1	.998
ANNUAL	TOTAL			74096				130166						
ANNUAL	MEAN			203				357			293			
HIGHES	T ANNUAL	MEAN									357		1	998
LOWEST	ANNUAL M	EAN									192		1	995
HIGHES	T DAILY M	EAN		1830	Mar	4		6740	Mar 21		7790	Jan	19 1	996
LOWEST	DAILY ME.	AN		44	aSep	6		41	bSep 16		41	bSep	16 1	998
ANNUAL	SEVEN-DA	Y MINIMUM		47	Sep			43	cSep 11		43	cSep		
INSTAN	TANEOUS P	EAK FLOW						10600	Mar 20		15900	Sep		
INSTAN	TANEOUS P	EAK STAGE						10	.19 Mar 20		12.45	_		
INSTAN	TANEOUS L	OW FLOW						41	dSep 15		24	fDec		
ANNUAL	RUNOFF (CFSM)			74			1.	-		1.07	7		
	RUNOFF (10.	10			17			14.60)		
	CENT EXCE			460	-			798			531	-		
	CENT EXCE			113				131			149			
90 PER	CENT EXCE	EDS		52				49			63			

a Also Sept. 7, 9, 1997. b Also Sept. 17, 1998. c Also Sept. 12, 13, 1998. d Also Sept. 16, 17, 18, 1998. f Result of freezeup.

02054530 ROANOKE RIVER AT GLENVAR, VA

LOCATION.--Lat 37°16'04", long 80°08'23", Roanoke County, Hydrologic Unit 03010101, on left bank 150 ft downstream from bridge on State Highway 1154, 0.2 mi downstream from mouth of Callahan Branch, 0.3 mi south of Glenvar, and 2.5 mi upstream from mouth of Mill Creek.

DRAINAGE AREA. -- 284 mi².

PERIOD OF RECORD. -- December 1991 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 1,100 ft above sea level, from topographic map.

REMARKS.--Records good except those for periods with ice effect, Jan. 1, Mar. 14, and periods of doubtful gage-height record, July 6, 7, and Aug. 17, which are fair. Water is withdrawn upstream for municipal use by Roanoke County, amount unknown. Roanoke County gage-height transmitter at station. Maximum discharge, 19,800 ft³/s, from rating curve extended above 10,900 ft³/s. Several observations of water temperature were made during the year.

COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of June 21, 1972, reached a stage of about 20.2 ft, from information by local resident, discharge, about 25,000 $\rm ft^3/s$, from rating curve extended above 10,900 $\rm ft^3/s$.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 3,500 ft^3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 8	1015	10,200	12.25	Mar. 20	2330	*11,400	*12.93
Feb. 4	1730	9,030	11.55	Apr. 19	2245	6,240	9.75
Feb. 17	2015	6.770	10 12	=			

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Minimum discharge, 40 ft³/s, Sept. 16, 17.

					Di	AILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	67	66	73	e69	678	552	338	537	293	162	77	52
2	60	99	72	76	547	464	314	905	255	138	74	51
3	57	117	68	92	563	409	291	655	643	130	68	50
4	55	90	70	98	5340	365	586	921	367	125	65	51
5	53	78	72	120	4170	329	703	848	349	138	63	49
6	52	73	68	146	3060	298	521	634	331	e108	62	48
7	51	71	65	171	1950	296	447	538	285	e100	60	47
8	51	72	63	4240	1270	326	401	601	237	105	67	46
9	50	73	63	1080	1010	524	543	541	217	119	121	45
10	50	69	67	482	821	614	541	477	247	129	114	46
11	50	67	75	310	760	477	485	914	230	118	127	45
12	50	66	73	254	890	403	426	746	330	108	93	45
13	50	65	68	244	936	359	372	595	303	93	80	44
14	49	70	65	214	742	e345	356	477	258	90	77	43
15	51	75	63	470	585	326	336	414	280	87	75	42
16	51	74	60	1150	533	282	321	379	240	90	145	41
17	53	69	61	682	3420	263	1230	353	205	88	e181	41
18	58	66	62	443	3190	264	975	296	181	91	116	43
19	61	65	61	371	1520	1340	1930	265	182	89	95	46
20	58	64	60	295	1120	3430	3550	247	185	91	83	46
21	54	71	60	242	904	7690	1520	234	169	84	76	46
22	54	119	67	216	722	2500	982	222	151	83	71	65
23	52	113	83	337	899	1400	759	268	139	93	68	57
24	54	79	80	501	1010	969	647	314	132	87	65	50
25	66	69	96	521	763	727	548	409	169	86	63	48
26	72	74	107	416	651	603	480	349	146	84	61	48
27	84	72	102	352	579	528	416	635	136	81	59	47
28	81	69	113	1500	562	487	379	672	132	84	57	45
29	69	67	93	1460		445	345	469	201	78	55	44
30	63	67	98	1250		389	327	372	163	74	53	47
31	60		94	901		358		375		73	52	
TOTAL	1786	2289	2322	18703	39195	27762	21069	15662	7156	3106	2523	1418
MEAN	57.6	76.3	74.9	603	1400	896	702	505	239	100	81.4	47.3
MAX	84	119	113	4240	5340	7690	3550	921	643	162	181	65
MIN	49	64	60	69	533	263	291	222	132	73	52	41
CFSM	.20	.27	.26	2.12	4.93	3.15	2.47	1.78	.84	.35	.29	.17
IN.	.23	.30	.30	2.45	5.13	3.64	2.76	2.05	.94	.41	.33	.19

e Estimated.

02054530 ROANOKE RIVER AT GLENVAR, VA--Continued

STATIST	TICS OF M	ONTHLY MEAN	DATA	FOR WATER	YEAR 19	92	- 1998,	BY WATE	R YE	CAR (WY)				
	OCT	NOV	DEC	JAN	FEB		MAR	APR		MAY	JUN	JUL	AUG	SEP
MEAN	90.2	153	284	545	651		742	468		334	324	142	141	144
MAX	170	355	715	784	1400		1667	839		610	660	195	295	586
(WY)	1997	1997	1997	1996	1998		1993	1992		1992	1992	1995	1996	1996
MIN	57.6	76.3	74.9	410	339		313	120		154	116	90.7	65.5	47.3
(WY)	1998	1998	1998	1997	1992		1995	1995		1995	1994	1997	1997	1998
SUMMAR	Y STATIST	ICS	FOR	1997 CAL	ENDAR YE	AR		FOR 1998	WAT	ER YEAR		WATER Y	EARS 1992	- 1998
ANNUAL	TOTAL			78308				142991						
ANNUAL	MEAN			215				392				330		
HIGHES	T ANNUAL	MEAN										392		1998
LOWEST	ANNUAL M	EAN										209		1995
HIGHEST	T DAILY M	EAN		2050	Mar	4		7690		Mar 21		8380	Apr :	22 1992
LOWEST	DAILY ME.	AN		47	Sep	7		41		aSep 16		41	aSep :	16 1998
ANNUAL	SEVEN-DA	Y MINIMUM		50	b0ct	8		43		cSep 12		43	cSep :	12 1998
INSTAN	TANEOUS P	EAK FLOW						11400		Mar 20		19800	Apr	21 1992
INSTAN	TANEOUS P	EAK STAGE						12	.93	Mar 20		17.7	3 Apr	21 1992
INSTAN	TANEOUS L	OW FLOW						40		aSep 16		d40	fDec	30 1995
ANNUAL	RUNOFF (CFSM)		- '	76			1	.38			1.1	б	
ANNUAL	RUNOFF (INCHES)		10.	26			18	.73			15.8	0	
10 PER	CENT EXCE	EDS		476				894				647		
50 PER	CENT EXCE	EDS		113				129				167		
90 PER	CENT EXCE	EDS		55				51				67		

a Also Sept. 17, 1998. b Also Oct. 9, 1997. c Also Sept. 13, 14, 1998. d Also Sept. 16, 17, 1998. f Result of freezeup.

02056900 BLACKWATER RIVER NEAR ROCKY MOUNT, VA

LOCATION.--Lat 37°02'42", long 79°50'40", Franklin County, Hydrologic Unit 03010101, on right bank 45 ft downstream from bridge on State Highway 122, 3.0 mi northeast of Rocky Mount, and 4.1 mi upstream from Maggodee Creek.

DRAINAGE AREA. -- 115 mi².

PERIOD OF RECORD. -- October 1976 to current year.

GAGE.--Water-stage recorder. Datum of gage is 876.45 ft above sea level.

REMARKS.--Records good except those for period with ice effect, Jan. 1-3, and periods of doubtful gage-height record, Mar. 23 and Sept. 20, which are fair. American Electric Power gage-height transmitter at station with recorder at Roanoke. Maximum discharge, 20,800 ft³/s, from rating curve extended above 7,000 ft³/s on basis of slope-area measurement of peak flow. Minimum gage height, 1.13 ft, July 21, 1986. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location by the Virginia Department of Environmental Quality - Water Division.

COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 1,500 ${\rm ft}^3/{\rm s}$ and maximum (*):

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 8 Jan. 28	1230 0400	2,630 2,770	8.00 8.26	Feb. 17 Mar. 21	1530 0100	2,270 2,550	7.37 7.87
Feb. 4	1600	*4,850	*11.63	Mar. 21 Apr. 19	2300	1,660	6.22

Minimum discharge, 18 ft³/s, Sept. 9-15, 29.

					DA	ILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	41	60	49	e49	230	225	191	247	112	66	38	25
2	37	108	47	e52	195	208	179	329	105	62	37	25
3	36	84	45	e60	184	193	168	198	111	61	33	25
4	36	59	48	62	2390	182	259	188	104	61	30	28
5	35	52	49	66	1190	174	236	190	114	64	28	29
6	33	49	46	68	708	166	195	173	117	60	27	26
7	32	56	44	86	506	161	182	171	107	57	25	25
8	31	57	42	1110	389	275	175	227	99	58	141	23
9	31	54	43	593	312	667	251	183	96	65	154	21
10	32	50	46	249	264	396	233	168	109	70	62	20
11	32	48	49	160	246	284	197	260	106	58	57	21
12	33	46	48	130	352	241	180	212	136	55	49	21
13	33	46	45	131	266	217	171	185	109	52	44	21
14	35	55	44	111	237	204	168	170	97	50	42	20
15	45	61	44	164	213	191	164	159	99	48	42	21
16	44	53	43	361	205	180	158	155	99	47	55	23
17	38	49	43	199	1290	175	468	156	107	111	94	25
18	38	47	43	151	912	182	275	137	88	65	68	27
19	43	46	42	135	527	232	568	129	84	52	50	31
20	43	47	42	121	415	618	809	123	86	50	44	e28
21	38	47	42	104	341	1400	419	120	78	44	41	43
22	36	66	47	98	287	624	324	116	77	41	39	90
23	36	70	59	335	579	e430	282	125	75	47	38	39
24	36	56	55	258	479	352	264	146	72	45	35	30
25	47	49	83	217	350	298	226	152	73	42	34	28
26	58	48	77	162	296	266	206	131	70	41	32	27
27	82	48	67	288	265	244	193	180	66	41	31	27
28	57	46	86	2050	245	226	187	182	63	46	30	24
29	47	46	74	702		210	175	142	76	42	29	22
30	44	47	71	397		198	171	127	75	36	27	23
31	43		62	291		188		122		34	26	
TOTAL	1252	1650	1625	8960	13873	9607	7674	5303	2810	1671	1482	838
MEAN	40.4	55.0	52.4	289	495	310	256	171	93.7	53.9	47.8	27.9
MAX	82	108	86	2050	2390	1400	809	329	136	111	154	90
MIN	31	46	42	49	184	161	158	116	63	34	25	20
CFSM	.35	.48	.46	2.51	4.31	2.69	2.22	1.49	.81	.47	.42	.24
IN.	.40	.53	.53	2.90	4.49	3.11	2.48	1.72	.91	.54	.48	. 27

e Estimated.

02056900 BLACKWATER RIVER NEAR ROCKY MOUNT, VA--Continued

STATIS	TICS OF M	ONTHLY MEAN	DATA F	OR WATER	YEARS 1977	- 1998,	BY WATER	YEAR (WY)				
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	104	120	116	166	177	235	249	145	132	86.5	70.4	96.6
MAX	544	584	272	349	495	585	821	346	416	261	205	375
(WY)	1977	1986	1997	1996	1998	1993	1987	1978	1992	1989	1985	1979
MIN	26.5	29.1	47.9	47.0	66.1	60.1	65.3	53.6	38.2	24.6	12.4	23.0
(WY)	1992	1982	1982	1981	1989	1981	1981	1981	1981	1977	1981	1983
SUMMAR	Y STATIST	ICS	FOR	1997 CALE	NDAR YEAR	F	OR 1998 W	ATER YEAR		WATER YEA	ARS 1977	- 1998
ANNUAL	TOTAL			40721			56745					
ANNUAL	MEAN			112			155			141		
HIGHES	T ANNUAL I	MEAN								234		1987
LOWEST	ANNUAL M	EAN								46.1		1981
HIGHES	T DAILY M	EAN		632	Jun 2		2390	Feb 4		5410	Nov	5 1985
LOWEST	DAILY ME.	AN		24	Aug 31		20	aSep 10		7.4	bAug	28 1981
ANNUAL	SEVEN-DA	Y MINIMUM		28	Sep 3		21	Sep 9		7.8	Aug	25 1981
INSTAN	TANEOUS P	EAK FLOW					4850	Feb 4		20800	Nov	5 1985
INSTAN	TANEOUS P	EAK STAGE					11.6	3 Feb 4		21.92	Nov	5 1985
INSTAN	TANEOUS L	OW FLOW					18	cSep 9		6.6	Jul	21 1986
ANNUAL	RUNOFF (CFSM)		.9	7		1.3	5		1.23		
ANNUAL	RUNOFF (INCHES)		13.1	7		18.3	6		16.69		
10 PERG	CENT EXCE	EDS		200			297			240		
50 PER	CENT EXCE	EDS		88			73			92		
90 PER	CENT EXCE	EDS		35			31			38		

a Also Sept. 14, 1998.
b Also Aug. 29, 1981.
c Also Sept. 10-15, 29, 1998.

02059500 GOOSE CREEK NEAR HUDDLESTON, VA

LOCATION.--Lat 37°10'23", long 79°31'14", Bedford County, Hydrologic Unit 03010101, on left bank 0.3 mi upstream from Haden Bridge on State Highway 732, 0.4 mi upstream from Rockcastle Creek, and 3.5 mi northwest of Huddleston.

DRAINAGE AREA. -- 188 mi².

PERIOD OF RECORD. -- March 1925 to August 1928 (gage heights only), September 1930 to current year.

REVISED RECORDS.--WSP 892: 1933, 1935(M), 1939. WSP 972: 1931-32(M), 1934(M), 1935-38, 1940, 1941(M). WSP 1082: 1940(P). WSP 1142: 1938-40(M). WSP 2104: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 592.91 ft above sea level. Mar. 15, 1925, to Aug. 4, 1928, nonrecording gage at site 1,300 ft downstream at different datum.

REMARKS.--Records good except those for period with ice effect, Jan. 1-3, and periods of doubtful gage-height record, Mar. 29 to Apr. 20, Aug. 20-24, which are fair. Prior to October 1954, diurnal fluctuation at low flow caused by mill upstream from station. American Electric Power gage-height transmitter at station with recorder at Roanoke. Maximum discharge, 53,200 ft³/s, from rating curve extended above 11,000 ft³/s on basis of slope-area measurements at gage heights 19.25 ft, 24.1 ft, 24.89 ft, and 37.49 ft. Minimum discharge, 3.0 ft³/s, Aug. 31, 1932, and Jan. 30, 1934, result of freezeup. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division.

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 8	0945	5,520	8.28	Feb. 17	1615	3,830	6.56
Jan. 28	0530	*11,400	*13.06	Mar. 21	0345	6,970	9.57
Feb. 4	1900	11,300	12.97				

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Minimum discharge, 31 ft³/s, Sept. 14-17.

DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4	57 54 53 55	156 199 112 83	75 70 66 81	e75 e86 e98 101	383 288 258 5400	251 235 219 205	e218 e218 e206 e495	250 377 273 296	122 115 114 110	92 86 87 86	63 55 51 48	43 42 42 45
5	54	71	80	109	3100	195	e458	288	118	114	46	43
6 7 8 9	53 53 51 51 51	71 134 110 86 78	72 68 69 69 72	112 137 1740 664 340	1340 969 612 444 352	185 180 327 810 533	e317 e285 e261 e399 e451	252 233 305 251 210	118 109 104 104 129	94 88 90 100 97	45 44 149 229 83	40 41 41 36 35
11 12 13 14 15	50 49 50 54 66	73 70 69 83 88	80 72 70 67 66	207 164 166 144 413	328 618 427 325 269	344 274 238 226 211	e303 e278 e260 e257 e245	374 387 276 232 207	121 163 133 113 143	81 75 75 73 69	112 81 67 62 63	34 34 32 31 33
16 17 18 19 20	60 58 64 63 60	74 70 68 67 68	69 72 65 62 63	783 400 251 207 197	245 2090 1140 586 443	197 191 199 291 1100	e260 e1760 e726 e1640 e1850	187 182 173 154 145	147 158 121 119 124	76 127 84 81 95	85 196 100 76 e70	31 31 35 43 40
21 22 23 24 25	56 54 54 55 76	70 113 99 82 74	62 70 80 76 112	165 152 692 575 466	350 284 617 668 471	3700 1010 561 412 327	767 544 443 372 301	141 131 155 184 179	109 108 107 120 103	73 71 74 90 75	e66 e64 e61 e59 54	42 63 44 37 37
26 27 28 29 30 31	89 100 75 63 62 60	71 72 67 67 70	102 98 137 116 118 97	300 792 6020 1550 800 552	371 316 281 	284 261 240 e225 e237 e218	265 237 221 203 198	153 216 202 154 136 125	97 91 93 128 111	74 73 76 68 62 58	52 51 49 48 46 44	38 37 36 35 36
TOTAL MEAN MAX MIN CFSM IN.	1850 59.7 100 49 .32 .37	2615 87.2 199 67 .46	2476 79.9 137 62 .42 .49	18458 595 6020 75 3.17 3.65	22975 821 5400 245 4.36 4.55	13886 448 3700 180 2.38 2.75	14438 481 1850 198 2.56 2.86	6828 220 387 125 1.17 1.35	3552 118 163 91 .63	2564 82.7 127 58 .44 .51	2319 74.8 229 44 .40 .46	1157 38.6 63 31 .21

e Estimated.

02059500 GOOSE CREEK NEAR HUDDLESTON, VA--Continued

STATISTICS OF	MONTHLY	MEAN	DATA	FOR	WATER	YEARS	1931	-	1998,	BY	WATER	YEAR	(WY)	

.77

10.42

261 112

50

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	134	138	174	232	253	291	266	201	154	116	134	130
MAX	719	642	616	772	821	909	1320	780	802	466	822	1229
(WY)	1938	1986	1949	1936	1998	1975	1987	1989	1995	1949	1940	1987
MIN	27.9	32.9	45.2	46.6	48.5	80.1	73.2	56.8	50.7	26.3	22.9	28.8
(WY)	1932	1932	1966	1966	1934	1981	1942	1981	1932	1966	1932	1933
SUMMARY STATISTICS		FOR :	1997 CALE	NDAR YEAR	F	OR 1998 W	ATER YEAR		WATER YEA	RS 1931	- 1998	
ANNUAL	TOTAL			52661			93118					
ANNUAL MEAN			144			255			185			
HIGHEST ANNUAL MEAN									393		1987	
LOWEST ANNUAL MEAN										66.8		1981
HIGHEST DAILY MEAN				901	Feb 15		6020	Jan 28		e26000	Sep	8 1987
LOWEST DAILY MEAN				36	aSep 5		31	bSep 14		6.0	Aug :	28 1932
ANNUAL SEVEN-DAY MINIMUM				38	Sep 3		32	Sep 11		9.4	Aug :	25 1932
INSTANTANEOUS PEAK FLOW							11400	Jan 28		53200	Sep	8 1987
INSTANT	TANEOUS PI	EAK STAGE					13.06	6 Jan 28		c37.49	Sep	8 1987

31 dSep 14

1.36

18.43

461

109

49

3.0

13.36

325

113

48

.98

fAug 31 1932

INSTANTANEOUS LOW FLOW

ANNUAL RUNOFF (INCHES)

ANNUAL RUNOFF (CFSM)

10 PERCENT EXCEEDS 50 PERCENT EXCEEDS

90 PERCENT EXCEEDS

a Also Sept. 7, 1997.
b Also Sept.16, 17, 1998.
c From floodmarks.
d Also Sept. 15-17, 1998.
e Estimated.
f Also Jan. 30, 1934, result of freezeup.

02061500 BIG OTTER RIVER NEAR EVINGTON, VA

LOCATION.--Lat 37°12'30", long 79°18'14", Campbell County, Hydrologic Unit 03010101, on right bank 60 ft upstream from bridge on State Highway 682, 2.0 mi southwest of Evington, and 2.1 mi upstream from Flat Creek.

DRAINAGE AREA. -- 320 mi².

PERIOD OF RECORD.--October 1936 to current year. Monthly discharge only for some periods, published in WSP 1303. Prior to October 1965, published as Otter River near Evington.

REVISED RECORDS.--WSP 852: 1937. WSP 892: 1938-39(M). WSP 972: 1937-39. WSP 1032: 1940. WSP 2104: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 544.02 ft above sea level.

REMARKS.--Records good except those for periods with doubtful or no gage-height record, Oct. 4-6, Dec. 1, Feb. 18, and period with ice effect, Jan. 1, 2, which are fair. Maximum discharge, 65,600 ft³/s, from rating curve extended above 24,000 ft³/s on basis of slope-area measurements of 24.96 ft and 29.93 ft. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION. -- Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES OUTSIDE PERIOD OF RECORD.—Floods in October 1937 and August 1939 reached a stage of 23.1 ft, discharge, $27,500 \, \mathrm{ft}^3/\mathrm{s}$, from rating curve extended above $7,000 \, \mathrm{ft}^3/\mathrm{s}$ on basis of unit hydrograph and flood-routing studies by U.S. Army Corps of Engineers, and records for other stations in Roanoke River Basin.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of $4,000~{\rm ft}^3/{\rm s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 9	0300	5,380	11.90	Mar. 21	0300	5,830	12.77
Jan. 28	1200	*8,260	*15.78	Apr. 17	1200	4,890	10.92
Feb. 4	2100	7,480	15.11	Apr. 20	0100	5,390	11.91
Feb. 17	1900	5,300	11.73	_			

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Minimum discharge 42 ft^3/s , Sept. 17.

	DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1	74	178	e134	e140	720	637	575	614	310	172	102	63	
2	68	456	125	e155	639	615	575	942	281	157	97	62	
3	66	218	118	197	606	596	565	624	276	149	89	60	
4	e71	135	160	208	3730	581	1160	608	269	149	85	62	
5	e69	113	172	216	3160	566	1010	645	277	285	82	60	
6	e66	105	137	242	1660	533	735	517	278	186	80	56	
7	66	370	126	541	1340	515	654	509	262	156	78	55	
8	65	280	119	3160	1020	821	612	750	244	157	222	52	
9	65	186	122	2940	839	2120	816	720	241	169	578	49	
10	66	148	130	900	741	1110	907	595	306	153	185	47	
11	64	130	154	598	697	823	728	681	287	140	156	48	
12	63	120	137	475	1090	730	655	705	303	130	124	49	
13	64	115	126	451	819	674	607	602	279	127	105	47	
14	65	136	122	425	729	642	599	546	247	125	138	45	
15	70	152	117	401	662	601	586	507	268	123	153	45	
16	73	127	116	1910	622	582	562	471	285	120	122	44	
17	72	118	118	877	2730	579	2730	494	256	164	199	43	
18	78	112	118	615	e1800	594	1290	468	223	136	166	70	
19	85	109	114	516	1150	731	1580	415	221	117	123	73	
20	81	108	113	509	953	1310	2880	386	240	115	104	61	
21	75	111	112	443	849	3910	1210	370	217	111	95	65	
22	72	200	121	399	759	1510	950	355	216	109	91	140	
23	69	198	151	1310	1150	1030	846	386	224	123	87	92	
24	69	149	143	1160	1170	878	752	455	209	131	83	87	
25	84	130	234	893	849	781	680	457	189	126	81	85	
26	103	124	223	650	751	723	625	391	189	118	77	87	
27	162	120	195	972	707	682	583	447	185	124	74	81	
28	119	114	279	6850	678	650	559	493	177	134	72	74	
29	95	113	242	2240		617	536	391	268	122	70	70	
30	89	117	239	1140		592	513	356	230	109	67	72	
31	86		198	860		578		384		102	65		
TOTAL	2414	4792	4715	32393	32620	27311	27080	16284	7457	4339	3850	1944	
MEAN	77.9	160	152	1045	1165	881	903	525	249	140	124	64.8	
MAX	162	456	279	6850	3730	3910	2880	942	310	285	578	140	
MIN	63	105	112	140	606	515	513	355	177	102	65	43	
CFSM	. 24	.50	.48	3.27	3.64	2.75	2.82	1.64	.78	.44	.39	.20	
IN.	.28	.56	.55	3.77	3.79	3.17	3.15	1.89	.87	.50	.45	.23	
TIN.	. 40	. 50		3.11	3.19	3.1/	3.13	1.00	. 0 /	. 50	. 40	. 43	

e Estimated.

02061500 BIG OTTER RIVER NEAR EVINGTON, VA--Continued

STATIST	rics of M	ONTHLY MEAN	DATA E	FOR WATER	YEARS 1937	- 1998,	BY WATER	YEAR (WY)					
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
MEAN	232	258	340	421	497	550	491	382	314	216	241	205	
MAX	1163	1200	1192	1045	1165	1332	2062	1335	2124	925	1412	1150	
(WY)	1991	1986	1949	1998	1998	1993	1987	1989	1995	1949	1940	1996	
MIN	52.5	68.7	68.6	95.7	193	153	127	106	71.0	27.9	33.3	29.9	
(WY)	1964	1966	1966	1966	1968	1981	1966	1981	1966	1966	1963	1968	
SUMMARY	Y STATIST	ICS	FOR	1997 CALE	ENDAR YEAR	F	OR 1998 WA	TER YEAR		WATER YE	EARS 1937	- 1998	
ANNUAL	TOTAL			100496			165199						
ANNUAL	MEAN			275			453			345			
HIGHEST	r annual i	MEAN								635		1949	
LOWEST	ANNUAL M	EAN								139		1981	
HIGHEST	r DAILY M	EAN		1790	Feb 15		6850	Jan 28		35700	Jun	23 1995	
LOWEST	DAILY ME	AN		55	Sep 8		43	Sep 17		12	aJul	28 1966	
ANNUAL	SEVEN-DA	Y MINIMUM		60	Sep 3		46	Sep 11		13	Sep	7 1966	
INSTANT	TANEOUS P	EAK FLOW					8260	Jan 28		65600	Jun	23 1995	
INSTANT	TANEOUS P	EAK STAGE					15.78	Jan 28		29.93	3 Jun	23 1995	
INSTANT	TANEOUS LO	OW FLOW					42	Sep 17		12	bJul	28 1966	
ANNUAL	RUNOFF (CFSM)		. 8	36		1.41			1.08	3		
ANNUAL	RUNOFF (INCHES)		11.6	58		19.20			14.63	3		
10 PERG	CENT EXCE	EDS		557			921			630			
50 PERG	CENT EXCE	EDS		198			216			220			
90 PERG	CENT EXCE	EDS		72			70			82			

a Also Sept. 12, 13, 1966. b Also Sept. 12-14, 1966.

02064000 FALLING RIVER NEAR NARUNA, VA

LOCATION.--Lat 37°07'36", long 78°57'36", Campbell County, Hydrologic Unit 03010102, on left bank at upstream side of bridge on State Highway 643, 2.7 mi northeast of Naruna, and 3.2 mi upstream from Little Falling River.

DRAINAGE AREA. -- 173 mi².

PERIOD OF RECORD.--July 1929 to January 1935, September 1941 to current year.

REVISED RECORDS.--WSP 1333: 1930, 1931-34(M), 1935. WSP 2104: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 412.32 ft above sea level. Prior to Jan. 15, 1935, nonrecording gage at same site and datum.

REMARKS.--Records good except those for period with ice effect, Jan. 1, 2, and periods of doubtful gage-height record, Mar. 23-27, May 14, 15, and Aug. 18, which are fair. Small diurnal fluctuation caused by gristmill at Spring Mills. Maximum discharge, 62,800 ft³/s, from rating curve extended above 7,100 ft³/s on basis of slope-area measurements at gage heights 23.9 ft, 26.5 ft, 29.2 ft, and 36.1 ft. Minimum gage height, 2.18 ft, Oct. 9, 1932. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in August 1940 reached a stage of 26.5 ft, from floodmarks, discharge, $22,000~{\rm ft}^3/{\rm s}$, by slope-area measurement.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 2,300 ${\rm ft}^3/{\rm s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 28	0515	4,280	13.21	Mar. 21	0015	*6,470	*16.36
Feb. 4	1815	3,600	11.94	Apr. 17	1200	3,210	11.15
Feb. 17	1930	3,470	11.68	May 8	0100	2,720	10.10
Mar. 9	1130	2,360	9.28	May 8	1445	3,290	11.32

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Minimum daily discharge, $39 \text{ ft}^3/\text{s}$, Sept. 17.

		DISCIE	AKGE, IN	CODIC FEE		AILY MEAN		JOBER 199	/ IO DEFI	יככו אם מחים	5	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	55	278	131	e92	367	251	204	237	167	89	67	54
2	51	287	98	e102	330	240	204	342	154	83	60	53
3	52	201	86	118	321	228	185	237	152	79	55	53
4	52	123	168	140	1930	209	892	242	155	83	52	59
5	51	97	154	135	1300	200	603	763	164	108	50	53
6	49	92	114	127	868	192	325	329	155	86	47	49
7	48	477	97	169	585	188	261	614	150	80	47	48
8	48	250	89	994	384	654	236	2270	144	78	111	46
9	48	162	87	541	301	1550	253	791	142	100	464	44
10	48	120	97	285	257	618	265	427	186	195	164	43
11	48	100	118	213	257	360	223	297	165	107	111	44
12	47	90	98	180	961	291	202	260	164	92	84	43
13	48	85	89	191	420	254	192	240	157	88	73	42
14	50	110	87	182	308	240	193	e215	143	86	69	41
15	73	111	152	547	257	218	193	e194	158	82	68	40
16	66	92	80	997	240	206	182	175	153	79	89	40
17	73	82	77	415	1800	201	1790	861	136	90	198	39
18	213	79	75	285	1200	242	681	269	125	86	e160	41
19	109	76	73	238	519	916	536	200	151	74	100	52
20	83	74	72	226	376	1320	1100	180	171	72	79	50
21	69	77	73	191	328	4010	453	174	133	67	73	48
22	63	154	79	174	277	1080	331	162	120	64	70	81
23	57	132	97	1110	503	e560	291	187	116	66	67	59
24	56	102	91	780	515	e430	261	222	128	84	64	47
25	68	88	195	557	332	e365	238	206	111	72	63	45
26	128	83	158	331	278	e295	224	179	102	67	60	45
27	187	81	143	666	255	e240	213	225	95	85	60	44
28	105	76	185	3880	244	227	210	250	92	121	60	42
29	79	75	160	1480		212	210	196	121	83	57	40
30	72	87	156	688		202	198	180	100	71	56	40
31	69		136	477		196		199		66	55	
TOTAL	2265	3941	3515	16511	15713	16395	11349	11323	4210	2683	2833	1425
MEAN	73.1	131	113	533	561	529	378	365	140	86.5	91.4	47.5
MAX	213	477	195	3880	1930	4010	1790	2270	186	195	464	81
MIN	47	74	72	92	240	188	182	162	92	64	47	39
CFSM	.42	.76	.66	3.08	3.24	3.06	2.19	2.11	.81	.50	.53	.27
IN.	.49	.85	.76	3.55	3.38	3.53	2.44	2.43	.91	.58	.61	.31
TIM.	. 40	.05	. / 0	3.33	3.30	3.33	2.77	4.43	. 21	. 50	.01	

e Estimated.

02064000 FALLING RIVER NEAR NARUNA, VA--Continued

STATISTICS	OF	MONTHLY	MEAN	DATA	FOR	WATER	YEARS	1930 -	1934.	1942 -	- 1998.	BY	WATER	YEAR	(WY)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	105	126	161	203	237	265	218	166	123	91.4	83.0	123
MAX	399	639	487	636	683	844	552	606	898	334	400	1475
(WY)	1973	1986	1997	1978	1979	1975	1987	1971	1972	1972	1985	1996
MIN	24.5	32.2	44.0	47.9	56.5	62.9	60.2	50.7	25.4	29.9	23.9	20.1
(WY)	1970	1970	1966	1966	1931	1981	1966	1981	1970	1970	1932	1970
SUMMARY	STATIST	ics	FOR 1	1997 CALEI	NDAR YEAR	F	OR 1998 WA	ATER YEAR		WATER YE		- 1934 - 1998
ANNUAL	TOTAL			58530			92163					
ANNUAL	MEAN			160			253			158		
HIGHEST	' ANNUAL N	MEAN								322		1996
LOWEST	ANNUAL M	EAN								60.9		1970
HIGHEST	DAILY ME	EAN		1010	Feb 15		4010	Mar 21		e20000	Sep	6 1996

HIGHEST ANNUAL MEAN					322	1	L996
LOWEST ANNUAL MEAN					60.9	1	L970
HIGHEST DAILY MEAN	1010 Feb	15	4010	Mar 21	e20000	Sep 6 1	L996
LOWEST DAILY MEAN	37 aAug	18	39	Sep 17	5.0	bSep 27 1	L932
ANNUAL SEVEN-DAY MINIMUM	40 Sep	2	41	Sep 12	7.7	Jul 22 1	L966
INSTANTANEOUS PEAK FLOW			6470	Mar 21	32600	Jun 22 1	L972
INSTANTANEOUS PEAK STAGE			16.36	Mar 21	c36.14	Sep 6 1	L996
INSTANTANEOUS LOW FLOW			39	dSep 15	3.0	Oct 9 1	L932
ANNUAL RUNOFF (CFSM)	.93		1.46		.91		
ANNUAL RUNOFF (INCHES)	12.59		19.82		12.41		
10 PERCENT EXCEEDS	298		538		269		
50 PERCENT EXCEEDS	117		144		95		
90 PERCENT EXCEEDS	50		52		38		

a b c d e

Also Sept. 8, 1997.
Also Oct. 9, 14, 1932.
From high-water mark on gage house.
Also Sept. 16, 17, 29, 30, 1998.
Estimated.

02065500 CUB CREEK AT PHENIX, VA

LOCATION.--Lat 37°04'45", long 78°45'50", Charlotte County, Hydrologic Unit 03010102, on right bank 5 ft upstream from bridge on State Highway 40, 0.9 mi west of Phenix, 1.9 mi downstream from Rough Creek, and 6.4 mi upstream from Louse Creek.

DRAINAGE AREA. -- 98.0 mi².

PERIOD OF RECORD. -- August 1946 to current year.

REVISED RECORDS.--WSP 1333: 1947(M), 1948, 1949(M). WSP 2104: Drainage area. WDR VA-76-1: 1975.

GAGE.--Water-stage recorder. Datum of gage is 370.19 ft above sea level. Prior to July 14, 1950, nonrecording gage at same site and datum.

REMARKS.--Records good except for period with ice effect, Jan. 1, which is fair. Maximum discharge, 15,200 ft³/s, from rating curve extended above 5,400 ft³/s on basis of contracted-opening measurement of peak flow. Minimum gage height, 0.74 ft, Oct. 6, 1970. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION. -- Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of August 1940 reached a stage of 17.5 ft, from floodmarks, discharge not determined.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 1,000 ${\rm ft}^3/{\rm s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 24	1630	1,130	7.63	Mar. 21	1800	2,190	10.21
Jan. 28	2230	*2,690	*11.39	Apr. 5	1030	1,160	7.72
Feb. 5	1130	1,570	9.00	Apr. 18	0530	1,440	8.72
Feb. 18	0930	2,020	9.90	May 9	0400	2,410	10.58
Mar 20	0200	1 560	8 99	*		•	

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Minimum daily discharge, 26 ft³/s, Sept. 29, 30.

					DAIL	Y MEAN VA	LUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	32 30 30 30 30	77 115 72 55 48	91 78 69 96 105	e76 78 80 83 82	166 146 136 313 1170	139 146 147 130 123	131 166 135 251 843	133 171 137 127 282	102 91 88 91 93	61 58 58 58 71	48 45 43 43	38 37 37 40 38
6 7 8 9 10	29 28 28 28 28	46 145 217 112 89	82 73 70 68 74	80 92 155 212 123	757 475 279 182 156	119 117 181 478 695	355 180 160 161 160	491 184 751 1720 530	90 87 82 81 109	63 58 58 66 147	41 41 45 174 108	35 35 34 32 32
11 12 13 14 15	28 28 28 29 40	77 70 68 87 87	95 79 72 69 67	97 88 92 94 151	147 260 261 162 141	260 163 146 139 132	144 133 127 127 130	209 172 157 141 130	99 95 90 82 82	77 62 59 57 56	66 57 53 51 50	32 31 31 30 30
16 17 18 19 20	39 38 144 81 54	73 67 64 63 63	65 65 64 63	420 498 174 135 132	133 400 1440 562 218	126 123 161 751 1150	124 400 1060 332 343	122 268 332 141 121	94 83 75 82 108	55 73 64 55 53	59 84 149 74 57	30 29 30 31 32
21 22 23 24 25	43 38 35 35 42	64 113 106 81 71	63 67 82 75 119	112 102 266 865 595	181 154 177 288 188	1450 977 356 205 173	368 189 168 158 144	115 106 112 133 127	81 75 77 89 74	51 50 58 59 55	52 50 48 46 46	32 32 32 29 28
26 27 28 29 30 31	72 111 63 47 43 41	69 67 64 64 70	109 95 121 104 101 94	251 208 1250 1990 661 235	152 142 139 	158 152 146 141 136 132	135 127 124 121 120	109 150 161 123 111 110	69 65 63 73 66	52 51 59 54 50 48	44 43 43 41 40 39	29 28 27 26 26
TOTAL MEAN MAX MIN CFSM IN.	1372 44.3 144 28 .45	2464 82.1 217 46 .84 .94	2538 81.9 121 63 .84	9477 306 1990 76 3.12 3.60	8925 319 1440 133 3.25 3.39	9452 305 1450 117 3.11 3.59	7116 237 1060 120 2.42 2.70	7676 248 1720 106 2.53 2.91	2536 84.5 109 63 .86	1896 61.2 147 48 .62	1822 58.8 174 39 .60	953 31.8 40 26 .32

e Estimated.

02065500 CUB CREEK AT PHENIX, VA--Continued

STATISTICS	OF	MONTHLY	MEAN	DATA	FOR	WATER	YEARS	1947	-	1998,	BY	WATER	YEAR	(WY)	
------------	----	---------	------	------	-----	-------	-------	------	---	-------	----	-------	------	------	--

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	69.1	92.9	105	133	150	165	145	104	77.8	57.6	54.1	69.5
MAX	293	429	279	478	447	443	354	261	518	192	257	572
(WY)	1972	1986	1997	1978	1979	1975	1983	1971	1972	1972	1985	1996
MIN	14.0	22.7	27.9	35.1	56.4	51.7	50.4	37.8	15.7	19.5	16.2	8.03
(WY)	1971	1970	1966	1966	1968	1981	1966	1981	1970	1966	1964	1968
CIIMMADA	Z OMANICO	Tag	FOR	1007 GNI EN	ממש ממח		EOD 1000	MARIED MEAD		WARRED WE	NDG 1045	1000
SUMMAR	Y STATIST	ICS	FOR .	L997 CALEN	NDAR YEAR	1	FOR 1998	WATER YEAR		WATER YEA	ARS 1947	- 1998
ANNUAL	TOTAL			39417			56227					
ANNUAL	MEAN			108			154			102		
HIGHEST	r annual i	MEAN								188		1972
LOWEST	ANNUAL M	EAN								36.1		1970
HIGHEST	r daily M	EAN		763	Apr 29		1990	Jan 29		6920	Sep	6 1996
LOWEST	DAILY ME.	AN		26	Sep 8		26	aSep 29		2.8	b0ct	6 1970
ANNUAL	SEVEN-DA	Y MINIMUM		28	Sep 3		28	Sep 24		3.2	Oct	5 1970
INSTAN	FANEOUS P	EAK FLOW					2690	Jan 28		15200	Sep	6 1996
INSTANT	TANEOUS P	EAK STAGE					11.	39 Jan 28		21.89	Sep	6 1996
INSTANT	TANEOUS L	OW FLOW					26	aSep 29		2.6	Oct	6 1970
ANNUAL	RUNOFF (CFSM)		1.10)		1.	57		1.04		
ANNUAL	RUNOFF (INCHES)		14.96	5		21.	34		14.08		
10 PERG	CENT EXCE	EDS		194			272			174		
50 PERG	CENT EXCE	EDS		78			87			65		

90 PERCENT EXCEEDS

a Also Sept. 30, 1998. b Also Oct. 7, 1970.

02069700 SOUTH MAYO RIVER NEAR NETTLERIDGE, VA

LOCATION.--Lat 36°34'15", long 80°07'47", Patrick County, Hydrologic Unit 03010103, on right bank 60 ft downstream from bridge on State Highway 700, 1.2 mi southeast of Nettleridge, 1.4 mi downstream from Russell Creek, and 3.6 mi upstream from Spoon Creek.

DRAINAGE AREA. -- 84.6 mi².

PERIOD OF RECORD. -- October 1962 to current year.

REVISED RECORDS.--WSP 2104: Drainage area. WDR VA-74-1: 1972(M).

GAGE.--Water-stage recorder. Datum of gage is 871.60 ft above sea level. Prior to Oct. 9, 1964, nonrecording gage and crest-stage gage at same site and datum.

REMARKS.--Records good except those for period with ice effect, Jan. 1, 2, and periods of doubtful gage-height record, Mar. 23-25, and Aug. 10, which are fair. Maximum discharge, 20,600 ft³s, from rating curve extended above 2,900 ft³/s on basis of contracted-opening measurements at gage heights 18.32 ft and 22.00 ft. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location by the Virginia Department of Environmental Quality - Water Division.

COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 1,300 ${\rm ft}^3/{\rm s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Apr. 17	1030	*1,680	*7.95	Apr. 19	2000	1,470	7.48
Minimum	discharge,	33 ft ³ /s, Sept.	17, 29.				

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAY JUN JUL AUG SEP e52 e56 e86 e160 e145 e132 ------------------TOTAL 56.7 MEAN 48.1 53.7 91.2 61.4 69.7 38.9 MAX MTN .64 .73 CFSM . 57 .67 2.06 2.74 2.02 2.22 2.09 1.08 .82 . 46 .77 TN .71 2.38 2 85 2.33 2 47 2 41 1 20 .84 .51

e Estimated.

02069700 SOUTH MAYO RIVER NEAR NETTLERIDGE, VA--Continued

STATIST	rics of M	ONTHLY MEAN	DATA F	OR WATER	YEARS 1963	- 1998,	BY WATER	YEAR (WY)				
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	102	108	119	144	156	189	184	151	130	110	99.2	92.5
MAX	304	339	240	261	352	423	497	295	435	303	407	417
(WY)	1990	1986	1997	1993	1990	1993	1987	1990	1972	1989	1985	1979
MIN	37.1	45.0	55.5	48.6	77.6	65.0	69.7	56.5	45.4	43.2	28.0	38.9
(WY)	1964	1982	1981	1981	1981	1981	1967	1981	1986	1977	1981	1998
SUMMARY	Y STATIST	ICS	FOR	1997 CALE	NDAR YEAR	F	OR 1998 WA'	TER YEAR		WATER YEA	RS 1963	- 1998
ANNUAL	TOTAL			42400			41139					
ANNUAL	MEAN			116			113			132		
HIGHEST	r annual i	MEAN								206		1990
LOWEST	ANNUAL M	EAN								59.3		1981
HIGHEST	r daily M	EAN		835	Apr 29		853	Jan 28		6820	Jun 2	21 1972
LOWEST	DAILY ME	AN		41	aOct 7		33	Sep 29		21		9 1981
ANNUAL	SEVEN-DA	Y MINIMUM		42	Oct 6		35	Sep 11		22	Aug 2	25 1981
INSTANT	FANEOUS P	EAK FLOW					1680	Apr 17		20600	Sep 2	22 1979
INSTANT	raneous p	EAK STAGE					7.95	Apr 17		22.00	Sep 2	22 1979
INSTANT	FANEOUS L	OW FLOW					33	Sep 17		20	cAug 2	29 1981
ANNUAL	RUNOFF (CFSM)		1.3	37		1.33			1.56		
ANNUAL	RUNOFF (INCHES)		18.6	4		18.09			21.18		
	CENT EXCE			195			205			217		
	CENT EXCE			101			78			100		
90 PERG	CENT EXCE	EDS		47			42			52		

a Also Oct. 8, 9, 1997. b Also Aug. 30, 1981. c Also Sept. 9, 1997.

02070000 NORTH MAYO RIVER NEAR SPENCER, VA

LOCATION.--Lat 36°33'58", long 79°59'14", Henry County, Hydrologic Unit 03010103, on left bank 800 ft downstream from bridge on State Highway 629 at Moores Mill, 2.1 mi downstream from Horse Pasture Creek, and 3.8 mi southeast of Spencer.

DRAINAGE AREA. -- 108 mi².

PERIOD OF RECORD.--October 1928 to current year. Monthly discharge only for some periods, published in WSP 1303.

REVISED RECORDS.--WSP 1303: 1929-32(M), 1934(M).

GAGE.--Water-stage recorder. Datum of gage is 730.94 ft above sea level (levels by U.S. Army Corps of Engineers). Prior to Jan. 23, 1936, nonrecording gage at site 800 ft upstream at datum 1.50 ft higher. July 25 to Sept. 27, 1936, nonrecording gage at present site and datum.

REMARKS.--Records good except those for periods of doubtful or no gage-height record, Nov. 3, and Aug. 30 to Sept. 30, which are fair. Maximum discharge, 17,200 ft³/s, from rating curve extended above 7,200 ft³/s on basis of slope-area measurement at gage height 13.41 ft and velocity-area study. Minimum gage height, 1.08 ft, Oct. 8, 1954. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION .-- Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 1,400 ${\rm ft}^3/{\rm s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 28	0600	*2,650	*6.48	Apr. 17	1400	2,390	6.16
Feb. 4	1700	1,640	5.13	Apr. 19	2400	1,970	5.61
Feb. 17	1530	1,680	5.19	May 7	2330	1,450	4.83

Minimum daily discharge, 44 ${\rm ft}^3/{\rm s}$, Sept. 15, 16.

		DISCH	ARGE, IN O	CUBIC FEET		OND, WATER		FOBER 1997	7 TO SEPT	EMBER 199	3	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	56	62	66	69	146	139	119	171	133	89	61	e54
2	54	79	61	71	131	131	119	193	123	85	57	e53
3	54	e90	60	72	140	124	112	151	120	85	54	e52
4	54	63	68	77	1100	117	137	172	133	82	52	e74
5	54	61	65	77	888	114	122	157	153	85	51	e58
6	53	60	61	75	328	111	113	137	137	81	50	e55
7	53	63	60	84	218	110	110	403	125	79	49	e53
8	52	62	60	529	177	392	110	752	116	90	98	e53
9	52	61	61	239	154	914	121	279	116	142	191	e51
10	53	60	63	128	137	366	116	203	131	88	94	e49
11	53	60	65	102	134	221	112	308	123	80	96	e47
12	53	60	62	92	306	179	107	228	117	77	72	e46
13	53	61	61	93	175	162	105	183	115	78	67	e45
14	53	77	60	87	145	151	106	165	109	76	64	e45
15	56	73	60	330	130	140	106	152	112	73	63	e44
16	55	63	60	434	144	134	105	146	119	71	301	e44
17	54	61	60	171	1010	132	1310	454	119	78	307	e46
18	56	60	60	124	527	134	391	182	107	71	111	e51
19	62	60	59	110	254	184	609	149	106	68	85	e48
20	63	60	59	101	200	217	868	139	108	66	75	e50
21	57	61	59	95	172	361	300	133	101	62	71	e55
22	56	73	68	92	152	235	222	128	100	60	69	e65
23	54	70	83	401	336	179	191	166	99	59	67	e56
24	55	62	72	261	299	159	172	221	100	100	65	e52
25	62	61	110	172	194	145	158	178	97	71	64	e50
26	68	61	88	129	166	139	147	147	92	65	61	e48
27	101	61	95	449	153	134	140	237	89	64	59	e47
28	68	60	118	1740	147	130	136	203	87	68	59	e46
29	61	60	92	460		126	131	157	98	63	58	e45
30	60	62	86	235		121	130	141	95	59	e56	e48
31	59		76	174		118		163		59	e55	
TOTAL	1794	1927	2178	7273	8063	6019	6725	6598	3380	2374	2682	1530
MEAN	57.9	64.2	70.3	235	288	194	224	213	113	76.6	86.5	51.0
MAX	101	90	118	1740	1100	914	1310	752	153	142	307	74
MIN	52	60	59	69	130	110	105	128	87	59	49	44
CFSM	.54	.59	.65	2.17	2.67	1.80	2.08	1.97	1.04	.71	.80	.47
IN.	.62	.66	.75	2.51	2.78	2.07	2.32	2.27	1.16	.82	.92	.53

e Estimated.

16.49

202

96

52

ROANOKE RIVER BASIN

02070000 NORTH MAYO RIVER NEAR SPENCER, VA--Continued

STATISTICS	OF	W.THTI.V	MEΔN	בדעת	FOR	MATER	VEARS	1929 -	1935	1937 -	1998	RY	$W \Delta TEE$	VEAR	(WV)

15.57

192

101

59

O	CT NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN 1	15 107	124	147	159	184	167	137	125	106	99.7	104
MAX 4	98 392	256	368	364	479	523	329	470	320	446	462
(WY) 19	38 1986	1997	1937	1960	1993	1987	1972	1972	1989	1985	1987
MIN 30	.4 33.8	43.5	40.6	49.6	85.5	67.1	58.0	45.0	35.2	26.0	25.7
(WY) 19	32 1932	1956	1956	1931	1981	1967	1956	1956	1956	1981	1954
SUMMARY STA	TISTICS	FOR 1	1997 CALE	NDAR YEAR	F	OR 1998	WATER YEAR		WATER YEA	RS 1929	- 1935
										1937	- 1998
ANNUAL TOTA	т		45216			50543					
			124			138			131		
ANNUAL MEAN			124			138					1007
HIGHEST ANN									218		1987
LOWEST ANNU.									62.6		1956
HIGHEST DAI			1400	Apr 29		1740	Jan 28		7460		.8 1985
LOWEST DAIL	Y MEAN		52	aAug 19		e44	bSep 15		15	_	.5 1956
ANNUAL SEVE	N-DAY MINIMUM		53	cOct 6		e45	Sep 11		18	Aug	9 1956
INSTANTANEO	US PEAK FLOW					2650	Jan 28		17200	Oct	9 1947
INSTANTANEO	US PEAK STAGE					6.	.48 Jan 28		15.80	Oct	9 1947
INSTANTANEO	US LOW FLOW					((d) fSep 15		15	gAug 1	1 1956
ANNUAL RUNO	FF (CFSM)		1.1	5		1.	. 28		1.21		
				_							

17.41

235

92

54

10 PERCENT EXCEEDS

50 PERCENT EXCEEDS 90 PERCENT EXCEEDS

ANNUAL RUNOFF (INCHES)

a Also Sept. 8, Oct. 8, 9, 1997. b Also Sept. 16, 1998. c also Oct. 7, 8, 1997. d Not determined. e Estimated. f Also Sept. 16, 1998. g Also Aug. 15, 1956.

02073000 SMITH RIVER AT MARTINSVILLE, VA

LOCATION.--Lat 36°39'40", long 79°52'51", Henry County, Hydrologic Unit 03010103, on right bank at south edge of Martinsville, 800 ft downstream from bridge on U.S. Highways 58 and 220, and 5.0 mi downstream from Beaver

DRAINAGE AREA. -- 380 mi².

PERIOD OF RECORD. -- August 1929 to current year.

REVISED RECORDS.--WSP 1032: 1933-35(M), 1936-39, 1940-41(P). WSP 2104: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 657.22 ft above sea level.

REMARKS.--No estimated daily discharges. Records good. Flow regulated since August 1950 by Philpott Lake (station 02071900) 19.6 mi upstream from station. Some additional regulation by powerplant 1,000 ft upstream from station. Maximum discharge, 39,000 ft³/s, from rating curve extended above 17,000 ft³/s on basis of computations of flow over dam at gage heights 16.76 ft and 21.50 ft. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 6,010 $\rm ft^3/s$, Apr. 19, gage height, 6.75 $\rm ft;$ minimum, 40 $\rm ft^3/s$, Oct. 16, result of regulation; minimum daily, 83 $\rm ft^3/s$, Dec. 13, result of regulation.

		DIS	CHARGE, IN	CUBIC FE	EET I		OND, WATE			OBER 1997	TO SEPT	EMBER 1	998		
DAY	OCT	NO	V DEC	JAI	1	FEB	MAR		APR	MAY	JUN	JU	L	AUG	SEP
1	337	25	0 278	270)	266	271		645	922	504	61	8	138	473
2	335	23	3 265	273	3	670	950		549	569	821	64	3	153	368
3	343	30				1010	1040		595	332	799	43		405	394
4	165	34				2440	1060		531	847	824	27		421	377
5											784			421	
5	160	33	5 273	330	J	1680	1060		285	1280	784	28	1	421	161
6	339	33				1390	1070		740	1170	500	52		404	147
7	320	35	7 151	346	5	1140	404		719	1470	266	66	0	394	323
8	342	23	2 259	1350)	1140	729		738	1800	456	78	9	435	392
9	230	16	8 263	498	3	1120	1940		763	1880	448	55	7	258	359
10	424	27	8 280	233	3	1090	1280		727	1300	526	50	8	556	354
11	145	27	4 274	200)	1150	1870		236	672	571	19	5	518	319
12	150	27				1430	1820		246	449	497	21		495	210
13	323	29				1180	1800		657	315	335	51		433	130
14	321	33				490	583		671	327	263	46		371	344
15	437	18				260	273		634	342	521	47		107	299
1.5	437	18	4 258	794	±	200	2/3		034	342	521	4 /	8	107	299
16	228	16				735	698		700	335	545	59	9	357	315
17	330	27	2 257	277	7	2320	331	2	620	313	568	57		1030	438
18	146	27	3 256	228	3	1580	384	1	060	686	526	30	9	566	374
19	195	27	3 256	420)	1880	529	2	800	841	511	19	5	518	133
20	277	27	2 148	317	7	1790	1280	2	660	850	271	49	3	450	120
21	327	27	5 146	329	9	1150	1100	1	910	849	258	41	7	378	302
22	326	20				975	1480		810	744	543	48		119	342
23	320	17				1780	1830		760	318	718	59		162	344
24	324	27				1380	1050		250	438	711	53		432	336
							988			453	709				
25	237	26	8 383	307	/	1190	988		394	453	709	24	U	530	334
26	222	26				1130	751		284	402	705	17		510	144
27	348	26				1140	635		619	951	429	46		464	119
28	345	26		3160)	439	228		411	822	235	54		394	317
29	330	15	7 314	1160)		260		817	762	474	53	0	128	363
30	331	16	7 308	1000)		407		774	353	593	47	6	142	431
31	328		- 287	498	3		574			271		36	7	366	
TOTAL	8985	776	9 7899	17800)	33945	28675	28	605	23063	15911	1415	1	12055	9062
MEAN	290	25	9 255	574	1	1212	925		954	744	530	45	6	389	302
MAX	437	35				2440	1940		800	1880	824	78		1030	473
MIN	145	15				260	228		236	271	235	17		1030	119
(†)	-2687 203	-63 23				+2037 1285	-176 919		116 950	+630 764	-1124 493	-314 35		-862 361	-4089 166
MEAN‡ CFSM‡	.53	.6				3.38	2.42		.50	2.01	1.30	.9		.95	.44
IN. ‡	.62	.7				3.52	2.42		.79	2.32	1.45	1.0		1.10	.49
CAL YR		TOTAL	190540	MEAN	522	MAX	2900	MIN	83	MEAN‡	492	CFSM‡	1.30		17.60
WTR YR	1998	TOTAL	207920	MEAN	570	MAX	3160	MIN	83	MEAN‡	570	CFSM‡	1.50	0 IN.‡	20.35

[†] Total change in contents, equivalent in cubic feet per second, per month, in Philpott Lake; provided by U.S. Army Corps of Engineers. ‡ Adjusted for monthly change in contents.

02073000 SMITH RIVER AT MARTINSVILLE, VA--Continued

				-				,				
STATIS	TICS OF MO	ONTHLY MEAN	DATA	FOR WATER	YEARS 1930	- 1950,	BY WATER	YEAR (WY)	[UNREG	GULATED]a		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	459	394	446	567	FEB 517	569	539	483	410	443	435	393
MAX	1828	940	975	1415	1048	907	953	964	788	1205	1778	1258
(WY)	1938	1933	1933	1937	1939	1936	1936	1949	1949	1949	1940	1945
	107	113	188	200	160	309	275	227	211	123 1930	111	83.1
(WY)	1932	1932	1934	1934	517 1048 1939 160 1931	1940	1942	1934	1931	1930	1932	1932
SUMMAR	Y STATIST	ICS		WATER YEAR	S 1930 - 1	950						
ANNUAL HIGHES	י באזאזוב י	MEAN		471 752	1	949						
LOWEST	ANNUAL MI	EAN		264	Aug 14 1 Oct 6 1 Sep 17 1 Oct 19 1 Oct 19 1 May 20 1	931						
HIGHES	T DAILY MI	EAN		18500	Aug 14 1	940						
LOWEST.	DAILY MEA	AIN V MINITMIIM		PE3	OCT 6 1	935 935						
TNSTAN	TANEOUS PI	EAK ELOW		39000	Oct 19 1	937						
INSTAN	TANEOUS PI	EAK STAGE		21.50	Oct. 19 1	937						
INSTAN	TANEOUS LO	OW FLOW		b5.0	May 20 1	934						
ANNUAL	RUNOFF (CFSM)		1.24								
ANNUAL	RUNOFF (INCHES)		16.85								
10 PER	CENT EXCE	EDS		760 346								
0 0 L L	CENT EXCEI CENT EXCEI			164								
JU FER	CENT EXCE	200		104								
STATIS	TICS OF MO	ONTHLY MEAN	I DATA	FOR WATER	YEARS 1951	- 1998,	BY WATER	YEAR (WY)	[REGULA	TED, UNADJ	USTED]	
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	400	392	438	507	531 1212	635	657	533	488	418	409	435
MAX	1389	1266	988	1000	1212	1735	2206	1138	1467	1174	1032	1624
(WY)	1990	1986	1997	1991	1998	1993	1987	1978 164	1992	1989	1985	1987
MIN	163	162	203	206	233	233	206	164	144		165	205
(WY)	1952	1953	1996	1957	1998 233 1968	1981	1969	1964	1964	1981	1953	1951
SUMMAR	Y STATIST	ics	FOF	R 1997 CALE	NDAR YEAR	F	OR 1998 WA	TER YEAR		WATER YE	ARS 1951	- 1998
7 MMT 17 T	TOTAL			190540			207920					
ANNUAL				522			570			487		
	T ANNUAL I	ME AN		322			370			817		1987
	ANNUAL M									243		1953
	T DAILY MI	ZAM ZAM		2000	Apr 29		3160	Jan 28		11300	Con	8 1987
							83			24	_	2 1982
TOMEST	DAILI MEZ	AN Y MINIMUM		03	Dec 13		217	Dec 13		113		26 1964
				21/	Dec 13		6010	Dec 13		113	Jun	
	TANEOUS PI							Apr 19 Apr 19		34600 20.08	Sep	8 1987
	TANEOUS PI						40			3.8		8 1987
	TANEOUS LO			1.3	.7		1.50			1.28		19 1955
ANNUAL	RUNOFF (INCHES)		18.6			20.35			17.40		
7A TATET 7A T										1/.40		
ANNUAL	CONOFF (.	INCHES /			, ,					016		
10 PER	CENT EXCE	EDS		919	, ,		1150			916		
10 PER	CENT EXCEICENT EXCEICENT	EDS EDS			,5					916 364 168		

a Prior to regulation from Philpott Lake. b Result of regulation.

02074500 SANDY RIVER NEAR DANVILLE, VA

LOCATION.--Lat 36°37'10", long 79°30'16", Pittsylvania County, Hydrologic Unit 03010103, on right bank 200 ft downstream from Hickory Forest Creek, 400 ft upstream from bridge on State Highway 863 between Callahans Store and Mount Cross, 5.5 mi northwest of western city limits of Danville, and 5.8 mi upstream from mouth.

DRAINAGE AREA. -- 112 mi².

PERIOD OF RECORD. --October 1929 to current year. Monthly discharge only for some periods, published in WSP 1303.

REVISED RECORDS. -- WSP 972: 1930-41. WSP 2104: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 460.38 ft above sea level. Prior to June 26, 1942, at site 1,200 ft downstream at datum 5.57 ft lower.

REMARKS.--Records good except for period with ice effect, Jan. 1,2, which is fair. Diurnal fluctuation at low flow caused by small mill upstream from station. Maximum discharge, 23,000 ft³/s, from rating curve extended above 11,000 ft³/s. Minimum gage height, 0.40 ft, Sept. 29, 1930. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION. -- Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 1,500 ft³/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 8 Jan. 15 Jan. 28	1330 2130 0230	1,800 1,920 5,220	4.77 4.88 7.18	Mar. 21 Apr. 17	0130 0700 0200	2,890 3,250	5.75 6.00 4.64
Feb. 4 Feb. 17 Mar. 9	1330 1500 0930	2,570 2,570 1,900	7.18 5.53 5.53 4.95	Apr. 20 May 7 May 8	2400 1300	1,590 *6,020 3,250	*7.63 6.00

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Minimum daily discharge, $36 \text{ ft}^3/\text{s}$, Sept. 15, 16, 17, 29.

					DA	ILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	54	86	74	e60	144	133	122	145	99	73	51	43
2	52	84	58	e64	131	128	123	171	97	70	49	42
3	53	70	55	65	140	122	116	131	97	67	47	43
4	53	59	65	70	1670	117	151	137	99	65	45	59
5	52	54	61	69	772	115	134	155	107	71	44	48
6	51	53	55	68	305	112	120	124	99	68	44	43
7	50	70	52	108	206	111	117	859	96	65	44	42
8	50	61	51	829	171	306	116	2740	93	78	53	44
9	49	57	51	294	149	1080	124	400	92	102	83	42
10	49	54	55	145	136	282	119	209	100	96	75	41
11	49	52	57	105	139	175	115	196	95	77	81	41
12	47	51	53	89	454	150	112	177	93	72	61	40
13	47	54	51	85	191	138	109	156	91	70	56	38
14	47	78	50	79	153	132	113	144	88	68	54	37
15	53	68	49	783	135	125	112	134	87	65	53	36
16	52	58	48	886	144	121	111	128	88	63	66	36
17	52	54	48	246	1420	119	1720	130	87	70	131	36
18	70	51	48	161	559	128	345	121	84	64	75	64
19	81	51	47	139	221	207	403	113	82	60	62	46
20	81	50	47	122	179	591	758	111	83	63	56	40
21	57	53	47	102	160	1280	225	109	80	59	54	42
22	54	85	62	95	144	321	179	106	80	55	54	62
23	50	67	74	773	385	194	167	118	82	55	53	45
24	49	57	62	378	292	166	149	142	79	54	51	40
25	55	53	102	219	177	150	136	123	76	54	51	39
26	61	53	81	150	153	141	128	110	74	53	48	39
27	86	52	110	853	144	138	123	132	72	53	48	39
28	61	51	149	2990	139	132	119	124	70	59	48	37
29 30	56 53	50 65	99	486 220		129 125	115 116	110 104	75 74	54 51	44 44	36 37
31	53 52		88 75	168		123	116	102		49	44	37
J-												
TOTAL	1726	1801	2024	10901	9013	7291	6597	7761	2619	2023	1768	1277
MEAN	55.7	60.0	65.3	352	322	235	220	250	87.3	65.3	57.0	42.6
MAX	86	86	149	2990	1670	1280	1720	2740	107	102	131	64
MIN	47	50	47	60	131	111	109	102	70	49	43	36
CFSM	.50	.54	.58	3.14	2.87	2.10	1.96	2.24	.78	.58	.51	.38
IN.	.57	.60	.67	3.62	2.99	2.42	2.19	2.58	.87	.67	.59	.42

e Estimated.

02074500 SANDY RIVER NEAR DANVILLE, VA--Continued

STATISTICS	OF	MONTHLY	MEAN	DATA	FOR	WATER	YEARS	1930 -	1998.	BY	WATER	YEAR	(WY)	1

49

MAX 366 281 249 409 369 738 591 279 376 265 556 7 (WY) 1938 1958 1974 1936 1979 1975 1987 1971 1972 1989 1940 19 MIN 22.6 32.2 35.2 31.5 40.3 63.9 53.1 52.8 34.1 26.0 17.0 14	SEP
(WY) 1938 1958 1974 1936 1979 1975 1987 1971 1972 1989 1940 19 MIN 22.6 32.2 35.2 31.5 40.3 63.9 53.1 52.8 34.1 26.0 17.0 14	35.3
MIN 22.6 32.2 35.2 31.5 40.3 63.9 53.1 52.8 34.1 26.0 17.0 14	739
	1996
(WY) 1932 1932 1934 1934 1934 1967 1967 1986 1986 1986 1932 19	14.2
	1930
SUMMARY STATISTICS FOR 1997 CALENDAR YEAR FOR 1998 WATER YEAR WATER YEARS 1930 - 19	1998
ANNUAL TOTAL 39164 54801	
ANNUAL MEAN 107 150 111	
HIGHEST ANNUAL MEAN 191 19	1996
LOWEST ANNUAL MEAN 58.5 19	1981
HIGHEST DAILY MEAN 1910 Apr 29 2990 Jan 28 8340 Sep 6 19	L996
LOWEST DAILY MEAN 35 Aug 19 36 aSep 15 8.0 bAug 29 19	L932
ANNUAL SEVEN-DAY MINIMUM 39 Aug 13 38 Sep 11 8.6 Aug 27 19	L932
INSTANTANEOUS PEAK FLOW 6020 May 7 23000 Aug 14 19	L940
INSTANTANEOUS PEAK STAGE 7.63 May 7 c14.80 Aug 14 19	1940
INSTANTANEOUS LOW FLOW 36 dSep 15 3.0 Sep 29 19	L930
ANNUAL RUNOFF (CFSM) .96 1.34 .99	
ANNUAL RUNOFF (INCHES) 13.01 18.20 13.48	
10 PERCENT EXCEEDS 170 208 167	
50 PERCENT EXCEEDS 81 80 72	

47

35

90 PERCENT EXCEEDS

a Also Sept. 16, 17, 29, 1998. b Also Aug. 31 to Sept. 2, 1932. c From floodmarks, present datum. d Also Sept. 16-18, 29, 30, 1998.

KANAWHA RIVER BASIN

03167000 REED CREEK AT GRAHAMS FORGE, VA

LOCATION.--Lat $36^{\circ}56^{\circ}22^{\circ}$, long $80^{\circ}53^{\circ}13^{\circ}$, Wythe County, Hydrologic Unit 05050001, on left bank 20 ft downstream from bridge on State Highway 619 at Grahams Forge, 2.2 mi downstream from Glade Creek, and at mile 7.3.

DRAINAGE AREA. -- 247 mi².

PERIOD OF RECORD.--July 1908 to September 1916, January 1927 to current year. Monthly discharge only for some periods, published in WSP 1305.

REVISED RECORDS.--WSP 1235: 1912-13, 1915-16. WSP 1275: 1911, 1927-28(M), 1930-34(M). WSP 1705: 1913(M), 1916(M), 1957 calendar year runoff. WSP 1725: 1915 calendar year runoff. WDR VA-92-1: 1984-86(P), 1987, 1988-89(P), 1990-91.

GAGE.--Water-stage recorder. Datum of gage is 1,924.65 ft above sea level. Prior to Oct. 1, 1916, nonrecording gage at same site at datum 0.68 ft lower. Feb. 3, 1927, to Oct. 28, 1934, and June 11, 1974, to July 22, 1975, nonrecording gage, at present site and datum.

REMARKS.--Records good except those for period with ice effect, Dec. 31 to Jan. 2, and period of doubtful gage-height record, Jan. 23, which are fair. Occasional diurnal fluctuation at low flow caused by mills upstream from station. Maximum discharge, 17,500 $\rm ft^3/s$, from rating curve extended above 7,600 $\rm ft^3/s$ on basis of velocity-area study and slope-area measurement at gage heights 11.4 ft and 10.01 ft, respectively. Minimum discharge observed, about 5 $\rm ft^3/s$, Dec. 22, 1909, gage height, 0.49 ft, present datum, result of freezeup. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 2,300 ${\rm ft}^3/{\rm s}$ and maximum (*):

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
DAILY MEAN VALUES

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Apr. 19	1730	*2,400	*5.49	No othe		al to or greater lischarge	than

Minimum daily discharge, 62 ft^3/s , Dec. 20, 21.

					Di	ALLY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	74	76	77	e63	454	381	268	386	304	185	108	75
2	73	90	74	e68	398	348	257	1250	269	167	104	76
3	75	88	74	74	436	322	236	826	264	153	100	77
4	74	84	73	76	1570	301	282	1700	341	147	96	78
5	74	84	72	81	1860	282	308	1460	361	147	95	76
6	74	80	70	104	1190	265	287	993	305	143	94	76
7	73	76	67	130	906	253	264	801	274	138	95	77
8	73	73	65	1160	792	280	248	1100	251	142	141	77
9	74	75	66	689	790	459	321	1160	247	146	110	75
10	74	73	69	347	798	656	615	892	320	139	111	74
11	72	71	72	242	777	493	464	1090	473	132	119	76
12	74	72	74	200	812	396	367	1010	372	130	108	76
13	74	72	72	186	810	339	308	784	331	129	97	77
14	75	80	70	174	635	311	273	636	333	138	95	76
15	73	81	66	216	505	289	254	535	351	128	114	74
16	73	78	63	483	454	271	237	464	389	124	111	75
17	74	73	66	472	1010	261	1140	415	311	121	147	79
18	77	71	63	329	1800	269	1090	371	268	118	130	80
19	76	67	63	267	1140	1120	1440	337	244	116	112	109
20	75	67	62	244	866	1580	2100	312	236	115	97	101
21	75	75	62	222	701	1950	1290	321	216	110	92	91
22	73	97	75	205	582	1220	923	315	211	111	88	106
23	71	89	82	e337	565	847	724	397	204	116	85	97
24	77	78	84	555	647	632	604	690	197	114	83	88
25	77	71	103	432	597	505	500	672	185	113	79	83
26 27 28 29 30 31	91 103 88 78 75 73	70 69 67 67 68	106 100 98 88 82 e66	330 288 429 570 618 556	514 466 424 	436 385 347 319 294 272	436 393 365 332 313	589 691 736 543 416 348	175 167 162 162 158	114 112 109 105 103 106	79 78 79 76 77	82 82 80 80 93
TOTAL MEAN MAX MIN CFSM IN.	2362 76.2 103 71 .31	2282 76.1 97 67 .31 .34	2324 75.0 106 62 .30	10147 327 1160 63 1.33 1.53	22499 804 1860 398 3.25 3.39	16083 519 1950 253 2.10 2.42	16639 555 2100 236 2.25 2.51	22240 717 1700 312 2.90 3.35	8081 269 473 158 1.09 1.22	3971 128 185 103 .52 .60	3077 99.3 147 76 .40	2466 82.2 109 74 .33 .37

e Estimated.

KANAWHA RIVER BASIN

03167000 REED CREEK AT GRAHAMS FORGE, VA--Continued

STATISTICS	OF	MONTHLY	MEAN	DATA	FOR	WATER	YEARS	1909	_	1916.	1927	_	1998.	BY	WATER	YEAR	(WY)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	142	163	244	359	466	513	422	324	211	156	140	117
MAX	626	606	790	911	1411	1406	1374	731	732	867	517	488
(WY)	1938	1930	1973	1936	1957	1955	1987	1958	1992	1916	1916	1989
MIN	45.3	50.7	59.9	61.2	63.5	120	101	91.4	74.6	63.5	60.5	51.4
(WY)	1942	1942	1942	1942	1934	1988	1942	1941	1941	1930	1930	1941
SUMMARY	STATIST:	ICS	FOR 1	L997 CALE	NDAR YEAR	F	OR 1998 W	ATER YEAR		WATER YE	ARS 1909	- 1916
											1927	- 1998
ANNUAL	TOTAL			89137			112171					
ANNUAL	MEAN			244			307			270		
HIGHEST	ANNUAL I	MEAN								424		1972
LOWEST	ANNUAL MI	EAN								118		1941
HIGHEST	DAILY M	EAN		2010	Mar 4		2100	Apr 20		10600	Apr	5 1977
LOWEST	DAILY MEA	AN		62	aDec 20		62	aDec 20		22	Jan 3	0 1934
ANNUAL	SEVEN-DAY	Y MINIMUM		64	Dec 15		64	Dec 15		33	Feb 2	4 1942
INSTANT	CANEOUS PI	EAK FLOW					2400	Apr 19		17500	Jul 1	6 1916
INSTANT	ANEOUS PI	EAK STAGE					5.4	-		b11.40		6 1916
INSTANT	CANEOUS LO	OW FLOW					(c)	-		f5.0		2 1909
ANNUAL	RUNOFF (CFSM)		. 9	9		1.2			1.09		
ANNUAL		INCHES)		13.4			16.8			14.87		
	CENT EXCE			591	=		786	-		545		
10 I Dicc		220		331			700			5 15		

142

73

160

74

50 PERCENT EXCEEDS

90 PERCENT EXCEEDS

128

72

a Also Dec. 21, 1997.
b Present datum, from floodmarks.
c Not determined.
d Probably occurred Jan. 2, 1998, result of freezeup.
f Observed, result of freezeup.

03167000 REED CREEK AT GRAHAMS FORGE, VA

LOCATION.--Lat $36^{\circ}56'22$ ", long $80^{\circ}53'13$ ", Wythe County, Hydrologic Unit 05050001, on left bank 20 ft downstream from bridge on State Highway 619 at Grahams Forge, 2.2 mi downstream from Glade Creek, and at mile 7.3.

DRAINAGE AREA. -- 247 mi².

REMARKS.--Analyzed for pesticide schedules A and B, only detected compounds reported.

PERIOD OF RECORD. -- October 1996 to September 1998, discontinued.

DATE	TIME	GAGE HEIGHT (FEET) (00065)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (µS/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	E. COLI WATER WHOLE TOTAL UREASE (COL / 100 ML) (31633)
OCT 1997												
07 NOV	0805	1.44	76	352	8.1	14.5	14.4	715	8.9	93	99	110
03 DEC	1100	1.48	85	366	8.3	9.0	10.3	700	12.0	116	76	70
09	0815	1.41	70	351	8.1	1.0	3.6	705	9.3	76	K38	K28
JAN 1998 14 FEB	1300	1.79	174	331	8.2	4.0	5.9	713	11.3	97	200	160
05	0845	4.42	2030	180	7.7	6.0	4.7	696	11.7	100	1900	1600
12 MAR	0845	2.85	789	253	8.1	3.0	6.2	700	11.5	101	250	150
12 APR	0945	2.31	406	245	8.2	-5.0	1.7	718	13.6	103	K68	800
16	0810	1.96	235	284	8.0	16.0	14.8	703	8.6	92	120	140
20 MAY	1225	4.71	2130	162	7.7	11.5	10.4	710	10.7	102	K6000	K6100
07	0745	2.85	789	263	8.0	16.0	14.1	704	8.1	85	880	910
14 JUN	0800	2.68	656	279	8.1	17.0	15.4	710	8.2	88	280	260
04	0815	2.14	315	342	7.9	19.0	19.1	700	8.0	95	K4300	K2600
JUL	1030	1.62	121	371	8.2	23.0	22.2	708	8.9	110	150	110
17 AUG	1030	1.02	121	3/1	8.2	23.0	22.2	708	8.9	110	150	110
04 SEP	1010	1.51	92	359	8.2	24.0	17.9	720	10.1	113	95	81
04	1030	1.44	76	343	8.2	21.0	18.6	706	10.1	117	38	38

03167000 REED CREEK AT GRAHAMS FORGE, VA--Continued

DATE	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	HARD- NESS NONCARB DISSOLV FLD. AS CACO3 (MG/L) (00904)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM PERCENT (00932)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)
OCT 1997											
07 NOV	170		40	18	5.9	7	. 2	2.6			
03 DEC	190		44	18	6.5	7	. 2	3.0			
09 JAN 1998	170		41	18	5.9	7	. 2	2.0			
14 FEB	150	25	38	13	8.1	11	.3	2.0	146	2	124
05	73		19	5.9	6.3	16	.3	1.8			
12 MAR	110	13	28	9.1	5.8	10	. 2	1.6	115	<1	94
12 APR	110	9	28	9.7	5.2	9	. 2	1.4	122	<1	100
16	140	18	34	12	5.3	8	. 2	1.6	144	<1	118
20 MAY	73	6	20	5.8	2.8	7	.1	1.6	81	<1	66
07 14	120 130	13 21	31 35	10 11	4.1 4.6	7 7	.2	1.6 1.7	131 133	<1 2	108 113
JUN 04	160	21	39	15	5.6	7	. 2	2.5	169	<1	138
JUL											
17 AUG	180	27	43	18	6.0	7	. 2	2.8	190	<1	156
04 SEP	170	17	38	18	6.0	7	. 2	2.2	185	<1	152
04	170	23	37	18	5.7	7	. 2	2.3	174	<2	143
DATE	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)
OCT 1997	DIS- SOLVED (MG/L AS SO4) (00945)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)
OCT 1997 07 NOV	DIS- SOLVED (MG/L AS SO4) (00945)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)
OCT 1997 07 NOV 03 DEC	DIS- SOLVED (MG/L AS SO4) (00945)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TOMS PER DAY) (70302) 40.5	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015
OCT 1997 07 NOV 03 DEC 09 JAN 1998	DIS- SOLVED (MG/L AS SO4) (00945) 14 16	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955) 3.9 3.8	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTITUENTS, DIS- SOLVED (MG/L) (70301)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302) 40.5 49.7	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 <.010	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .581 .522	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.015 <.020
OCT 1997 07 NOV 03 DEC 09	DIS- SOLVED (MG/L AS SO4) (00945)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TOMS PER DAY) (70302) 40.5	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015
OCT 1997 07 NOV 03 DEC 09 JAN 1998 14 FEB 05	DIS- SOLVED (MG/L AS SO4) (00945) 14 16	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955) 3.9 3.8	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTITUENTS, DIS- SOLVED (MG/L) (70301)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302) 40.5 49.7	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 <.010	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .581 .522	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.015 <.020
OCT 1997 07 NOV 03 DEC 09 JAN 1998 14 FEB 05 12	DIS- SOLVED (MG/L AS SO4) (00945) 14 16 17 18	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 11 10 11	RIDE, DIS- SOLVED (MG/L AS F) (00950) .24 .14 .33 .17	DIS- SOLVED (MG/L AS SIO2) (00955) 3.9 3.8 1.4 6.3	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 198 218 199 190	SUM OF CONSTITUENTS, DIS- SOLVED (MG/L) (70301) 192 200 196 181	DIS- SOLVED (TONS PER AC-FT) (70303) .27 .30 .27 .26	DIS- SOLVED (TOMS PER DAY) (70302) 40.5 49.7 37.6 89.4	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 <.010 .017 <.010	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .581 .522 .503 1.03	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.015 <.020 <.020 .049
OCT 1997 07 NOV 03 DEC 09 JAN 1998 14 FEB 05 12 MAR 12	DIS- SOLVED (MG/L AS SO4) (00945) 14 16 17 18 9.3 10 9.7 9.9	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 11 10 11 17 12 12 10 9.2	RIDE, DIS- SOLVED (MG/L AS F) (00950) .24 .14 .33 .17 <.10 <.10	DIS- SOLVED (MG/L AS SIO2) (00955) 3.9 3.8 1.4 6.3 5.6 5.6	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 198 218 199 190 107 151 139	SUM OF CONSTITUENTS, DIS- SOLVED (MG/L) (70301) 192 200 196 181 101 134 132	DIS- SOLVED (TONS PER AC-FT) (70303) .27 .30 .27 .26 .15 .21	DIS- SOLVED (TONS PER DAY) (70302) 40.5 49.7 37.6 89.4 585 322 152 97.9	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 <.010 .017 <.010 <.010 <.010 <.010	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .581 .522 .503 1.03 .877 1.12 .748 .585	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.015 <.020 <.020 .049 <.020 <.020 .022
OCT 1997 07 NOV 03 DEC 09 JAN 1998 14 FEB 05 12 MAR 12	DIS- SOLVED (MG/L AS SO4) (00945) 14 16 17 18 9.3 10 9.7	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 11 10 11 17 12 12 10	RIDE, DIS- SOLVED (MG/L AS F) (00950) .24 .14 .33 .17 <.10 <.10	DIS- SOLVED (MG/L AS SIO2) (00955) 3.9 3.8 1.4 6.3 5.6 5.6	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 198 218 199 190 107 151	SUM OF CONSTITUENTS, DIS- SOLVED (MG/L) (70301) 192 200 196 181 101 134	DIS- SOLVED (TONS PER AC-FT) (70303) .27 .30 .27 .26 .15 .21	DIS- SOLVED (TONS PER DAY) (70302) 40.5 49.7 37.6 89.4 585 322	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 <.010 <.017 <.010 <.010 <.010 <.010	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .581 .522 .503 1.03 .877 1.12 .748	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.015 <.020 <.020 .049 <.020 <.020 <.020
OCT 1997 07 NOV 03 DEC 09 JAN 1998 14 FEB 05 12 MAR 12 APR 16 20 MAY 07	DIS- SOLVED (MG/L AS SO4) (00945) 14 16 17 18 9.3 10 9.7 9.9	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 11 10 11 17 12 12 10 9.2	RIDE, DIS- SOLVED (MG/L AS F) (00950) .24 .14 .33 .17 <.10 <.10	DIS- SOLVED (MG/L AS SIO2) (00955) 3.9 3.8 1.4 6.3 5.6 5.6	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 198 218 199 190 107 151 139	SUM OF CONSTITUENTS, DIS- SOLVED (MG/L) (70301) 192 200 196 181 101 134 132	DIS- SOLVED (TONS PER AC-FT) (70303) .27 .30 .27 .26 .15 .21	DIS- SOLVED (TONS PER DAY) (70302) 40.5 49.7 37.6 89.4 585 322 152 97.9	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 <.010 .017 <.010 <.010 <.010 <.010	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .581 .522 .503 1.03 .877 1.12 .748 .585	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.015 <.020 <.020 .049 <.020 <.020 .022
OCT 1997 07 NOV 03 DEC 09 JAN 1998 14 FEB 05 12 MAR 12 APR 20 MAY 07 14 JUN 04	DIS- SOLVED (MG/L AS SO4) (00945) 14 16 17 18 9.3 10 9.7 9.9 6.8 8.9	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 11 10 11 17 12 12 10 9.2 4.8 7.6	RIDE, DIS- SOLVED (MG/L AS F) (00950) .24 .14 .33 .17 <.10 <.10 .12	DIS- SOLVED (MG/L AS SIO2) (00955) 3.9 3.8 1.4 6.3 5.6 5.6 5.6	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 198 218 199 190 107 151 139 154 100	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 192 200 196 181 101 134 132 148 90	DIS- SOLVED (TONS PER AC-FT) (70303) .27 .30 .27 .26 .15 .21 .19 .21 .14	DIS- SOLVED (TONS PER DAY) (70302) 40.5 49.7 37.6 89.4 585 322 152 97.9 574	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .581 .522 .503 1.03 .877 1.12 .748 .585 .654 1.09	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.015 <.020 <.020 .049 <.020 <.020 .049 <.020 .049 <.020 .049 <.020
OCT 1997 07 NOV 03 DEC 09 JAN 1998 14 FEB 05 12 MAR 12 APR 16 20 MAY 07 14 JUN 04 JUL 17	DIS- SOLVED (MG/L AS SO4) (00945) 14 16 17 18 9.3 10 9.7 9.9 6.8 8.9 8.9	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 11 10 11 17 12 12 10 9.2 4.8 7.6 8.2	RIDE, DIS- SOLVED (MG/L AS F) (00950) .24 .14 .33 .17 <.10 <.10 .12 .11 <.10	DIS- SOLVED (MG/L AS SIO2) (00955) 3.9 3.8 1.4 6.3 5.6 5.6 5.6	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 198 218 199 190 107 151 139 154 100	SUM OF CONSTITUENTS, DIS- SOLVED (MG/L) (70301) 192 200 196 181 101 134 132 148 90	DIS- SOLVED (TONS PER AC-FT) (70303) .27 .30 .27 .26 .15 .21 .19 .21 .14	DIS- SOLVED (TONS PER DAY) (70302) 40.5 49.7 37.6 89.4 585 322 152 97.9 574 317 269	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 <.010 <.017 <.010 <.010 <.010 <.010 <.010 <.010 <.010	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .581 .522 .503 1.03 .877 1.12 .748 .585 .654 1.09 1.02	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.015 <.020 <.020 .049 <.020 <.020 .049 <.020 .041 .051
OCT 1997 07 NOV 03 DEC 09 JAN 1998 14 FEB 05 12 MAR 12 APR 16 20 MAY 07 14 JUN 04 JUL	DIS- SOLVED (MG/L AS SO4) (00945) 14 16 17 18 9.3 10 9.7 9.9 6.8 8.9 8.9	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 11 10 11 17 12 12 10 9.2 4.8 7.6 8.2	RIDE, DIS- SOLVED (MG/L AS F) (00950) .24 .14 .33 .17 <.10 <.10 .12 .11 <.10	DIS- SOLVED (MG/L AS SIO2) (00955) 3.9 3.8 1.4 6.3 5.6 5.6 5.6 5.8	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 198 218 199 190 107 151 139 154 100 149 152	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 192 200 196 181 101 134 132 148 90 139 147	DIS- SOLVED (TONS PER AC-FT) (70303) .27 .30 .27 .26 .15 .21 .19 .21 .14 .20 .21 .26	DIS- SOLVED (TONS PER DAY) (70302) 40.5 49.7 37.6 89.4 585 322 152 97.9 574 317 269	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 <.010 <.017 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .581 .522 .503 1.03 .877 1.12 .748 .585 .654 1.09 1.02 .972	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.015 <.020 <.020 .049 <.020 <.020 .049 <.020 .049 .051 .051 .034

03167000 REED CREEK AT GRAHAMS FORGE, VA--Continued

	NITRO-	NITRO-					PHOS-	PHOS-			
	GEN, AM-	GEN, AM-		NITRO-		PHOS-	PHORUS	PHATE,	ALUM-		MANGA-
	MONIA +	MONIA +	NITRO-	GEN	PHOS-	PHORUS	ORTHO,	ORTHO,	INUM,	IRON,	NESE,
	ORGANIC	ORGANIC	GEN,	DIS-	PHORUS	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-
	TOTAL	DIS.	TOTAL	SOLVED	TOTAL	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED
DATE	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(UG/L	(UG/L	(UG/L
	AS N)	AS N)	AS N)	AS N)	AS P)	AS P)	AS P)	AS PO4)	AS AL)	AS FE)	AS MN)
	(00625)	(00623)	(00600)	(00602)	(00665)	(00666)	(00671)	(00660)	(01106)	(01046)	(01056)
OCT 1997											
07	<.20	.27		.85	.059	E.044	.050	.15	14	18	4.1
NOV											
03	< .20	< .20			< .050	<.050	.024	.07	8.2	20	3.2
DEC											
09	<.10	<.10			<.050	<.050	<.010		6.1	17	<4.0
JAN 1998											
14	.12	.10	1.2	1.1	<.050	<.050	.021	.06	<10	18	7.9
FEB											
05	.26	.20	1.1	1.1	.071	E.043	.041	.13	13	33	4.3
12	.13	<.10	1.3		<.050	<.050	.023	.07	<10	11	7.3
MAR											
12	<.10	< .10			<.050	<.050	<.010		<10	15	4.4
APR											
16	.15	.19	.74	.77	<.050	<.050	<.010			42	10
20	.94	.20	1.6	.86	.125	E.035	.025	.08	18	41	6.1
MAY											
07	.15	.12	1.2	1.2	<.050	<.050	.014	.04	<10	360	7.3
14	.17	.12	1.2	1.1	<.050	<.050	.018	.06	12	20	6.3
JUN											
04	.47	.26	1.4	1.2	<.050	E.036	.034	.10	10	23	5.4
JUL											
17	.27	.20	1.1	.98	E.041	<.050	.022	.07	<10	23	7.4
AUG	0.1	1.77	0.0	0.0	T 024	. 050	026	1.1	.10	1.5	6.0
04 SEP	.21	.17	.92	.88	E.034	<.050	.036	.11	<10	15	6.9
04	.20	.14	.70	.64	E.045	<.050	.032	.10	E6.1	16	6.6
U4	. 20	.14	. 70	.04	E.045	<.050	.032	.10	F0.1	10	0.0

03167000 REED CREEK AT GRAHAMS FORGE, VA--Continued

DATE	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)	DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	METO- LACHLOR WATER DISSOLV (UG/L) (39415)	PRO- METON, WATER, DISS, REC (UG/L) (04037)	SI- MAZINE, WATER, DISS, REC (UG/L) (04035)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)	QUALITY ASSUR- ANCE DATA INDICA- TOR CODE *(99111)
OCT 1997											
07 NOV	1.5	<.20	.012	E.0069	.008	E.0045	E.0043	5	1.0	43	1
03	1.8	<.20	.013	E.0142	.009	E.0045	.0052	2	.46	50	1
DEC 09	1.4	<.20	.012	E.0057	.010	E.0047	<.0050	1	.19	50	40
JAN 1998			.012	2.0007	.010	2.0017		-	•	50	
14	2.0	<.20						3	1.4	35	1
FEB											
05	3.3	2.3						106	580	70	10
12	4.0	.90						17	36	96	1
MAR											
12	1.4	.20						5	5.5	67	1
APR											_
16	1.5	.30						9	5.7	53	1
20	3.0	2.5						100	574	93	1
MAY								0.0		0.4	-
07	1.5	.20						29	62	94	1
14	1.3	.70						21	37	93	1
JUN	1 0	. 40						45	38	0.3	1.0
04	1.8	.40						45	38	93	10
JUL 17	1.5	. 50						5	1.6	67	1
AUG	1.5	.50						5	1.0	67	1
04	1.4	. 30						4	.99	64	1
SEP	1.7	. 50						-		0.4	_
04	1.6	.30						3	.61	52	1
· · · · ·								9			-

E Estimated.

^{*} The values listed under parameter code 99111 indicate the type of quality-assurance sample associated with each environmental sample, where 1 denotes none, 10 denotes a blank sample, and 40 denotes a spike sample.

Special study and miscellaneous sites

Discharge measurements in the following table were made at special study and miscellaneous sites throughout the State. Data for miscellaneous sites provided by the Virginia Department of Environmental Quality - Water Division are noted by an "[a]".

Discharge measurements made at special study and miscellaneous sites during water year 1998 Measured Measurements Drainage previously Tributary to Location area (mi²) Date Discharge Stream (water (ft^3/s) years) POTOMAC RIVER BASIN Lat $38^{\circ}24'57"$, long $79^{\circ}34'24"$, 01605200 Strait Creek 1.50 1995-97 10-10-97 .271 Highland County, at Monterey sewage treatment plant discharge, West Strait 0.3 mi upstream from Burners Run, Creek [a] and 0.4 mi downstream from bridge on U.S. Highway 220. Lat $39^{\circ}15'06"$, long $78^{\circ}05'31"$, 01616200 1994-97 7-23-98 Hot Run 1.4 3.05 frederick County, upstream from W.S. Frey Company discharge, 0.04 mi downstream from U.S. Highway 11, and 0.4 mi southeast of Clear Clearbrook 9-30-98 1.52 Run [a] Brook. 01621100 Lat 38°27'58", long 78°58'33", 1963, 9- 3-98 2.15 Dry River Rockingham County, 60 ft upstream from Wampler and Longacre discharge, 350 ft 1976, 1979, Muddy Creek [a] 1981, downstream from bridge on 1991-94 U.S. Highway 33, and 0.2 mi 1997 west of Hinton. 1979, 01621210 Muddy Creek Lat 38°27'58", long 78°58'38", Rockingham County, 500 ft 12 5 9- 3-98 .840 1981. War Branch [a] upstream from mouth, and 1991-94, 0.3 mi west of Hinton. 1997 Lat 38°04'23", long 79°14'57", Augusta County, at Castaline Trout Farms-Middlebrook, 0.6 mi 01622220 Middle River 1.13 1994-97 6-24-98 2.44 Unnamed tribuupstream from bridge on State Highway 602, 0.7 mi upstream from mouth, and 2.4 mi north-west of Middlebrook. tary [a] Lat 38°07'58", long 79°13'30", Augusta County, 150 ft down-stream from Camp Shenandoah Lake, 0.4 mi upstream from mouth, and 0162222990 Middle River 0.99 1996-97 10-10-97 .791 Unnamed 6-24-98 1.65 tribu-9-10-98 .889 tary [a] 2.0 mi southwest of Swoope. Lat 38°16'57", long 79°13'47", Augusta County, at Whites Store, 200 ft upstream from Stoutameyer Branch, and 3.5 mi northwest of 10-10-97 01622468 Middle River 1996-97 .208 9.2 Jennings 7-16-98 .378 Branch [a] 9-22-98 .007 Lone Fountain. Lat 38°11'25", long 78°58'27", Augusta County, 500 ft up-stream from Staunton/Verona 01624350 North River 1991-93. 9- 3-98 61 3 Middle 1995. 1997 River [a] sewage treatment plant discharge, 1,500 ft upstream from Lewis Creek, and 2.0 mi

southwest of Verona.

a Provided by the Virginia Department of Environmental Quality - Water Division.

			Drainage	Measured previously	Mea	surements
Stream	Tributary to	Location	area (mi ²)	(water years)	Date	Discharge (ft ³ /s)
		POTOMAC RIVER BASI	NConti	nued		
01624880 Meadow Run [a]	Christians Creek	Lat 38°09'17", long 78°55'24", Augusta County, 0.2 mi down- stream from bridge on State Highway 254, 0.4 mi upstream from Coleytown Run, and 1.0 mi northwest of Hermitage.	11.83	1995-97	7-13-98 9-30-98	5.76 2.71
01624940 Unnamed tribu- tary [a] (No.3)	Middle River	Lat 38°14'54", long 78°57'37", Augusta County, at Mt. Sidney/ Fort Defiance sewage treatment plant, 100 ft upstream from Railroad bridge, 0.3 mi downst from culvert on U.S. Highway 1 and 0.7 mi south of Mount Sidn	1,	1996-97	10-10-97 6-23-98 9-30-98	.098 .858 .146
01625847 South River [a]	South Fork Shenandoah River	Lat 38°01'07", long 79°01'08", Augusta County, at Stuarts Draft sewage treatment plant, 0.8 mi downstream from bridge on State Highway 608, and 1.2 mi southeast of Stuarts Draft.	52.47	1997	7-13-98 9-29-98	20.6 8.98
01626575 Jones Hollow Run [a]	South River	Lat 38°03'45", long 78°52'24", Waynesboro City at culverts on Hunter Street in Waynesboro, 0.6 mi upstream from mouth, and 0.8 mi downstream from Jones Hollow Dam.	2.6	1997	7-13-98 9- 3-98	.762 .040
01626952 Porter- field Run [a]	South River	Lat 38°08'04", long 78°52'00", Augusta County, 0.3 mi up- stream from mouth, 0.5 mi downstream from culvert on State Highway 865, and 0.8 mi east of Madrid.	4.79	-	6-23-98 9- 3-98	1.84 .667
01628590 Unnamed tribu- tary [a] (No.2)	Cub Run	Lat 38°22'43", long 78°48'21", Rockingham County, at Lawyer Road sewage treatment plant, 0.4 mi upstream from mouth, and 0.5 mi south of Penn Laird	0.687	1994-97	6-23-98 9- 3-98	.250
01629945 Chub Run	Hawksbill Creek	Lat 38°34'31", long 78°27'32", Page County, at culvert on State Highway 689, 2.2 mi east of Stanley, and 3.1 mi upstream from mouth.	3.16	1994	1-15-98	5.71
01632700 Holmans Creek [a]	North Fork Shenandoah River	Lat 38°42'57", long 78°45'37", Shenandoah County, 100 ft downstream from Lake Wunder, 0.2 mi upstream from State Highway 728 and 1.4 mi west of Forestville.	4.96	1994-97	7-28-98 9-30-98	1.45 .720
01632970 Crooked Run	Mill Creek	Lat 38°45'44", long 78°41'06", Shenandoah County, at culvert on State Highway 263, 0.4 mi upstream from mouth and 2.3 mi west of Mt. Jackson.	6.49	1994	1-15-98	5.65
01633570 North Fork Shenandoal River [a]		Lat 38°49'34", long 78°32'03", Shenandoah County, upstream from Aileen, Inc. water intake 1.5 mi downstream from Stony Creek, and 1.7 mi east of Edinburg.	644	1993-95, 1997	7-28-98 9-30-98	154 95.7

a Provided by the Virginia Department of Environmental Quality - Water Division.

Stream			Orainage	Measured previously	Meas	surements
Stream	Tributary to	Location	area (mi ²)	(water years)	Date	Discharge (ft ³ /s)
		POTOMAC RIVER BASI	NConti	nued		
01633650 Pughs Run	Shenandoah River	Lat 38°55'48", long 78°32'43" Shenandoah County, on left upstream wingwall of culvert on State Highway 623, 4.0 mi northwest of Woodstock, and 5.4 mi upstream from mouth.	3.66	1996	1-8-98	41.2
01633730 Toms Brook [a]	North Fork Shenandoah River	Lat 38°56'42", long 78°26'32", Shenandoah County, at bridge on U.S. Highway 11, at Toms Brook.	9.35	1952-54, 1969-70, 1994-97	7-28-98	2.16
01636210 Happy Creek [a]	Shenandoah River	Lat 38°54'20", long 78°11'10", Warren County, at bridge on Criser Road (Kerfoot Avenue), at Front Royal, 2.3 mi up- stream from Leach Run, and 2.9 mi upstream from mouth.	14.0	1948-77‡, 1981-83, 1991-97	7- 9-98 9-14-98	5.54 .464
01636225 Unnambed tribu- tary [a]	Crooked Run	Lat 39°02'56", long 78°10'29", Frederick County, at culvert on State Highway 636, 1.5 mi upstream from mouth, and 2.4 mi north of Nineveh.	0.60	1993-97	7- 9-98	.090
01636228 Crooked Run [a]	Shenandoah River	Lat 38°59'14", long 78°11'00", Warren County, 0.7 mi upstream from bridge on State Highway 627, 0.7 mi north of Cedarville	29.88	1997	7- 9-98 9-14-98	3.18 1.98
01636240 Crooked Run [a]	Shenandoah River	Lat 38°57'22", long 78°11'53", Warren County, 100 ft down- stream from bridge on U.S. Highways 340 and 522, 0.6 mi north of Riverton, and 0.9 mi upstream from mouth.	-	1991-97	7- 9-98 9-14-98	8.37 3.17
01636266 Manassas Run [a]	Shenandoah River	Lat 38°54'49", long 78°05'58", Warren County, 100 ft upstream from bridge on State Highway 79 1.3 mi west of Linden.	5.25	1991-97	7- 9-98 9-14-98	2.39 .191
01636295 Roseville Run [a]	Spout Run	Lat 39°05'18", long 78°03'51", Clarke County, at Boyce sewage treatment plant discharge, at Boyce town boundary, and 100 ft downstream from bridge on U.S. Highway 340.	2.47	1995-97	7-23-98 9-14-98	.351 .077
01636345 Unnamed tribu- tary [a]	Wheat Spring Branch	Lat 39°07'26", long 77°54'54", Clarke County, at S.M. Perry discharge, 50 ft upstream from culvert on State High- way 612, 1.3 mi upstream from mouth, and 4.0 mi southeast of Berryville.	0.61	-	7-23-98	0
01652500 Fourmile Run	Potomac River	Lat 38°50'35", long 77°05'09", Arlington County, at bridge on Shirlington Road, 0.1 mi upstream from Interstate Highway 395, and 2.5 mi upstream from mouth.	13.8	1951-69‡, 1970-73, 1974-75‡, 1976-77c, 19079-82‡, 1983-92	9-10-98	3.21

 $[\]ddagger$ Operated as a continuous-record gaging station. a Provided by the Virginia Department of Environmental Quality - Water Division. c Prior to Sept. 28, 1973, at site 0.4 mi downstream at datum 6.02 ft lower.

		-	rainaco	Measured	Meas	surements
Stream	Tributary to	Location	rainage area (mi ²)	previously (water years)	Date	Discharge (ft ³ /s)
		POTOMAC RIVER BASI	NConti	nued		
01657865 Neabsco Creek trib utary	Neabsco Creek	Lat 38°39'13", long 77°17'48", Prince William County, in Dale City, 0.2 mi upstream from Prince William Parkway.	-	1997	10- 8-97	.02
		GREAT WICOMICO R	IVER BAS	IN		
01661800 Bush Mill Stream [b]	Great Wicomico River	Lat 37°52′36", long 76°29′40", Northumberland County, at bridge on State Highway 601, 2.2 mi northwest of Howland, 3.0 mi southwest of Heathsville and 3.5 mi upstream from mouth.	6.82	1964-69‡, 1970-86‡, 1987-93, 1996-97	6- 3-98	4.83
		RAPPAHANNOCK RI	VER BASI	N		
01661835 Unnamed tribu- tary [a]	Hickman Run	Lat 38°45'14", long 78°06'24", Rappahannock County, 50 ft upstream from culvert on State Highway 641, 0.8 mi southwest of Flint Hill.	0.125	1994-97	10-14-97 7-21-98 9-16-98	.017 .040 0
01662010 Unnamed tribu- tary [a] (No.8)	Rappahannock River	Lat 38°39'50", long 77°54'50", Culpeper County, at South Wales sewage treatment plant discharg 0.7 mi upstream from confluence with Rappahannock River, and 1. mi north of Jeffersonton.	е,	1995-97	10-14-97 7-21-98 9-16-98	<.001 <.001 <.001
01662050 Unnamed tribu- tary [a]	Great Run	Lat 38°43'00", long 77°48'57", Fauquier County, upstream from Warrenton sewage treat- ment plant discharge, at Warrenton, and 300 ft up- stream from bridge on U.S. Highway 211.	-	1993-97	10-14-97 7-21-98 9-16-98	.134 .310 .138
01662320 Thornton River [a]	Hazel River	Lat 38°39'29", long 78°13'13", Rappahannock County, at Sperry- ville, 0.25 mi upstream from co fluence with N.F. Thornton Rive and 0.3 mi downstream from brid on U.S. Highway 522.	n- r	1995-97	10-14-97 7-21-98 9-16-98	3.84 3.38 .575
01665050 Pony Mountain Branch	Mountain Run	Lat 38°27'04", long 77°57'24", Culpeper County, at culvert on State Highway 3, 0.3 mi upstream from mouth, and 2.7 mi southeast of Culpeper.	.30	1983, 1994	1-13-98	.17
01668300 Farmers Hall Creek	Rappahannock River	Lat 38°00'05", long 76°58'40", Essex County, at culvert on U.S Highway 17, 1.2 mi southeast of Champlain.		1969, 1991, 1996-97	5-18-98	1.93
		PIANKATANK RIV	ER BASIN			
01669800 My Ladys Swamp	Piankatank River	Lat 37°34'34", long 76°31'30", Middlesex County, at culvert on State Highway 629, 4.4 mi southeast of Saluda, and 1.45 upstream from mouth.	4.81	1996-97	6- 3-98	4.66

[†] Operated as a continuous-record gaging station.
< Less than.
a Provided by the Virginia Department of Environmental Quality - Water Division.
b Provided by both the U.S. Geological Survey and Virginia Department of Environmental Quality - Water Division.</pre>

Discharge measurements made at special study and miscellaneous sites during water year 1998--Continued

			Drainage	Measured	Mea	surements
Stream	Tributary to	Location	area (mi ²)	previously (water years)	Date	Discharge (ft ³ /s)
		YORK RIVER	BASIN			
01670180 Pamunkey Creek	Lake Anna	Lat 36°11'53", long 77°58'09", Orange County, at bridge on State Highway 669, 0.45 mi south of Lahore, and 3.8 mi upstream from Lake Anna.	40.5	1989-91, 1994, 1997	3-31-98	58.8
01670320 Freshwate: Creek [a]	Contrary Creek r	Lat 38°00'33", long 77°53'56", Louisa County, 20 ft upstream from Mineral sewage treatment plant, 600 ft upstream from culvert on State Highway 618, and 0.5 mi east of Mineral.	-	1991-97	10- 9-97 6-30-98 9- 1-98	.063 .322 0
01671270 Licking- hole Creek [a]	South Anna River	Lat 38°04'33", long 78°08'55", Louisa County, 700 ft down- stream from Izac Lake, 0.5 mi upstream from mouth, and 2.1 mi east of Boswells Tavern	2.73	-	10- 9-97 9- 1-98	.051 .012
01671925 Northeast Creek [a]	South Anna River	Lat 37°58'39", long 77°56'22", Louisa County, at Louisa WTP discharge, 300 ft downstream from culvert on U.S. Highway and 2.5 mi south of Mineral.	10.07	1994-97	10- 9-97 6-30-98 9- 1-98	.508 2.55 .051
01673610 Unnamed tribu- tary [a]	Clopton Swamp	Lat 37°33'05", long 77°06'22", New Kent County, at Kenwood Farmes sewage treatment plant discharge, 0.6 mi upstream fromouth, and 1.6 mi northeast of Quinton.		1994-97	10- 8-97 9- 1-98 9-28-98	.051 .117 .149
01674160 Polecat Creek [a]	Mattaponi River	Lat 37°58'09", long 77°32'20", Caroline County, 150 ft down- stream from culvert on State Highway 601, 0.7 mi northeast of Cedar Fork, and 2.1 mi west of Golansville.	1.15	1994-97	10-14-97 11-19-97 12- 9-97 1- 5-98 2- 3-98 3- 3-98 4- 7-98 5- 7-98 6- 2-98 7- 6-98 8- 5-98 9- 2-98	.002 .120 .193 .299 1.38 5.34 1.64 .680 .117 .011
01674171 Unnamed tribu- tary [a]	Polecat Creek	Lat 37°57'56", long 77°29'17", Caroline County, 200 ft up- stream from mouth, 1.2 mi sout of Golansville, and 2.4 mi north of Carmel Church.	3.94 :h	1994-97	10-14-97 11-19-97 12- 9-97 1- 5-98 2- 3-98 2- 6-98 3- 3-98 4- 7-98 5- 7-98 6- 2-98 7- 6-98 8- 5-98 9- 2-98	.006 1.24 2.41 1.73 8.24 42.4 13.6 12.1 6.09 3.74 .212 0

a Provided by the Virginia Department of Environmental Quality - Water Division.

			Drainage	Measured previously	Meas Date	surements
Stream	Tributary to	Location	area (mi ²)	(water years)	Date	Discharge (ft ³ /s)
		YORK RIVER BASI	INContinu	ıed		
01674172 Polecat Creek [a]	Mattaponi River	Lat 37°58'13", long 77°29'13", Caroline County, 150 ft upst from bridge on State Highway 0.5 mi upstream from Stevens Run, and 1.1 mi southeast of Golansville.	652,	1994-97	10-14-97 11-19-97 12- 9-97 1- 5-98 2- 3-98 3- 3-98 4- 7-98 5- 7-98 6- 2-98 7- 6-98 8- 5-98 9- 2-98	.002 4.35 4.71 5.62 21.1 44.0 26.5 18.8 6.58 .446 0
01674174 Stevens Mill Run [a]	Polecat Creek	Lat 37°59'20", long 77°29'50", Caroline County, 100 ft down from bridge on State Highway 0.6 mi north of Golansville, mi downstream from Lake Caro and 1.6 mi upstream from mou	601, 0.8 line,	1994-97	10-14-97 11-19-97 12- 9-97 1- 5-98 2- 3-98 3- 3-98 4- 7-98 4-27-98 5- 7-98 6- 2-98 7- 6-98 8- 5-98 9- 2-98	.394 4.24 3.03 5.68 65.2 37.7 27.2 8.37 14.8 2.00 .472 .166
01674180 Polecat Creek [a]	Mattaponi River	Lat 37°57'20", long 77°22'08", Caroline County, 200 ft upst from bridge on State Highway 0.25 mi southeast of Penola, 2.2 mi upstream from mouth.	601,	1994-97	10-14-97 11-19-97 12-9-97 1-5-98 2-3-98 2-6-98 3-3-98 4-7-98 5-7-98 6-2-98 7-6-98 8-5-98 9-2-98	.975 27.5 23.7 32.8 138 841 166 149 121 26.5 8.32 .406 .022
01674200 Reedy Creek	Mattaponi River	Lat 37°52′55″, long 77°21′35″, Caroline County, at bridge of U.S. Highway 301, 3.3 mi nor of Dawn and 11 mi south of Bowling Green.		1950, 1952-53, 1955-57, 1961, 1969, 1973-75, 1990-93, 1996-97	5-18-98	19.2
		JAMES RIVE	ER BASIN			
02011010 Warm Springs Run [a]	James River	Lat 38°02'57", long 79°47'43", Bath County, 100 ft upstream from Warm Springs sewage treatment plant, 0.2 mi down stream from unnamed tributar and 0.3 mi northwest of Warm Springs.	- Y,	1991-97	6-26-98 9-29-98	5.58 2.43
02011830 Hot Springs Run [a]	Cedar Creek	Lat 38°00'33", long 79°51'47", Bath County, 50 ft upstream from Hot Springs Regional sewage treatment plant, 0.5 mi east of Bacova Junction, and 0.7 mi downstream from bridge on State Highway 615.	4.32	1993-97	6-26-98 9-29-98	2.99 1.91

a Provided by the Virginia Department of Environmental Quality - Water Division.

Discharge measurements made at special study and miscellaneous sites during water year 1998--Continued

		Ţ	Orainage	Measured previously	Measurements	
Stream	Tributary to	Location	area (mi ²)	(water years)	Date	Discharge (ft ³ /s)
		JAMES RIVER BASIN	Contin	ued		
02012500 Jackson River	James River	Lat 37°52'36", long 79°58'39", Alleghany County, at Smith Bridge, 0.8 mi south of Falling Spring, and 1.6 mi downsteam from Falling Spring Creek.	411	1925-96	10-16-97 3-31-98	219 428
02012980 Jerrys Run [a]	Dunlap Creek	Lat 37°48'37", long 80°11'25", Alleghany County, at I-64 Rest Area, 0.6 mi east of Exit 2, and 5.3 mi north of Alleghany.	1.89	1996-97	6-22-98	.273
02015300 Wilson Creek [a]	Jackson River	Lat 37°50'37", long 79°48'01", Alleghany County, at Tukes Trailer Court discharge, 1.5 mi northwest of Longdale, and 2.5 mi upstream from mouth.	28.34	1995-97	6-25-98 9-22-98	7.11 .095
02015600 Cowpasture River	James River	Lat 38°19'30", long 79°26'14", Highland County, on left down- stream wingwall of bridge on U.S. Highway 250, 1.2 mi west of Head Waters, and 3 mi upstream from Shaw Fork.	11.3	1995-97	1-10-98	49.2
02017700 Craig Creek tribu- tary	Craig Creek	Lat 37°33'21", long 79°59'52", Craig County, at culvert on State Highway 606, 0.4 mi up- stream from mouth, and 7.1 mi northeast of New Castle.	2.05	1968-71 1992, 1994	*6-23-95 1- 6-98	147 2.56
02018310 Unnamed tribu- tary (No.3) [a]	James River	Lat 37°38'17", long 79°47'52", Botetourt County, at Eagle Rock 50 ft downstream from culvert on State Highway 688, and 300 f upstream from mouth.		1997	10-24-97 6-22-98	0
02018810 Crooked Run [a]	North Fork	Lat 37°30'44", long 79°55'40", Botetourt County, at Camp Fincastle Lake outfall, 0.3 mi downstream from Woodville Spring, and 2.8 mi northwest of Fincastle.	-	-	6-22-98 9- 9-98	1.47 .853
02018850 Borden Creek [a]	Catawba Creek	Lat 37°32'17", long 79°54'24", Botetourt County, 0.7 mi downstream from culvert on State Highway 666, 1.0 mi upstream from confluence with Sukey Johnson Branch, and 1.6 mi west of Flatwoods.	-	1997	10-24-97 6-22-98 9- 9-98	.731 2.06 .815
02020100 Renick Run	James River	Lat 37°35'27", long 79°38'04", Botetourt County, at culvert on Frontage Road of Interstate Highway 81, 4.8 miles north- east of Buchanan.	2.06	1969-71, 1995-97	1-13-98	1.80
02021080 Alum Creek [a]	Brattons Run	Lat 37°54'36", long 79°36'27", Rockbridge County, 300 ft south of State Highway 633, 1.2 mi upstream from mouth, and 4.6 mi south of Millboro.	3.21	1992-97	9-22-98	.028

a Provided by the Virginia Department of Environmental Quality - Water Division.

			Drainage	Measured previously	Meas	surements
Stream	Tributary to	Location	area (mi ²)	(water years)	Date	Discharge (ft ³ /s)
		JAMES RIVER BASI	NContin	ued		
02021110 Brattons Run [a]	Calfpasture River	Lat 37°58'07", long 79°30'17", Rockbridge County, 200 ft upstream from bridge on State Highway 39, 0.7 mi southwest of Goshen, and 1.0 mi down- stream from bridge on State Highway 780.	28.86	1991-97	6-25-98 9-22-98	7.48 .207
02021400 Unnamed tribu- tary [a]	Byrd Spring Creek tributary	Lat 38°02'26", long 79°23'12", Augusta County, at Castaline Trout Farm - Craigsville, 0.3 mi upstream from State Highway 683, and 2.7 mi south of Craigville.	0.38	1994-97	7-16-98	1.63
02021670 Cedar Creek [a]	Cedar Grove Branch	Lat 37°53'32", long 79°18'49", Rockbridge County, 1.6 mi northwest of Fairfield, 1.9 mi upstream from culverts on State Highway 712, and 3.3 mi upstream from mouth.	1.75	-	7-16-98 9-10-98	.756 .437
02023390 Moores Creek [a]	South River	Lat 37°55'57", long 79°13'52", Rockbridge County, at Wilco Travel Plaza, 200 ft upstream from State Highway 917 and 0.3 mi south of Raphine.	0.70	1994-97	6-24-98	.722
02023395 Moores Creek [a]	South River	Lat 37°54'57", long 79°14'10", Rockbridge County, at Raphine Motel sewage treatment plant, 0.6 mi upstream from bridge on U. S. Highway 11, and 1.5 m south of Raphine.	2.46 mi	1994-97	6-24-98 9-10-98	3.06 1.23
02023410 Marl- brook Creek [a]	South River	Lat 37°52'59", long 79°16'57", Rockbridge County, 30 ft up- stream from culvert on U.S. Highway 11, 500 ft downstream from culvert on State Highway 613, and at Fairfield.	1.38	-	6-24-98 9-10-98	1.88 .362
02024208 Indian Gap Run [a]	Maury River	Lat 37°43'38", long 79°21'38", Rockbridge County, at Buena V. City 600 ft upstream from mou and 0.2 mi downstream from cu on U.S. Highway 501.	th,	1995-97	7-13-98 9-22-98	.492 .271
02025610 Harris Creek [a]	James River	Lat 37°32'53", long 79°08'30", Amherst County, at Old Dominic Job Corps discharge, 0.9 mi u stream from confluence with Fo ing Rock Creek, and 2.5 mi no: west of Faulconerville.	o- all-	1995-97	7- 6-98	7.97
02025680 Unnamed tribu- tary [a]	Harris Creek	Lat 37°28'43", long 79°08'11", Amherst County, at bridge on private road, 100 ft upstream from Ivanhoe Forest Subdivision sewage treatment plant, and 1.4 mi south of Monroe.	0.50 on	1993-97	7- 6-98	.210
02025850 Ivy Creek [a]	Blackwater Creek	Lat 37°23'36", long 79°18'35", Bedford County, 100 ft down- stream from Ivy Hill Lake, 2.1 mi upstream from State Highway 662, and 2.7 mi northeast of Norwood.	9.68	1994-97	7- 1-98	5.65

a Provided by the Virginia Department of Environmental Quality - Water Division.

		Th-	rainage	Measured previously	Measurements	
Stream	Tributary to	Location	area (mi ²)	(water years)	Date	Discharge (ft ³ /s)
		JAMES RIVER BASIN-	-Contin	ued		
02025890 Unnamed tribu- tary [a]	Tussocky Creek	Lat 37°17'55", long 79°09'04", Campbell County, at Evergreen Mobile Home Park, 1.0 mi up- stream from confluence with tributary from Willow Lake, and 2.8 mi southeast of City Farm.	0.20	1996-97	7- 1-98 9-21-98	.018
02025970 Wreck Island Creek [a]	James River	Lat 37°28'52", long 78°53'43", Appomattox County, 50 ft up- stream from Appomattox Line Company discharge, 2.0 mi downstream from bridge on State Highway 683, and 3.0 mi south of Riverville.	56.11	1993-97	7- 6-98 9-21-98	36.5 22.2
02027700 Tribu- tary	Buffalo River	Lat 37°33'45", long 78°57'35", Amherst County, at culvert on U.S. Highway 60, 5.2 mi southeast of Amherst.	0.46	1966-71, 1996-97	3-23-98	1.71
02028480 Unnamed tribu- tary [a]	South Fork Rockfish River	Lat 37°54'16", long 78°57'51", Nelson County, 200 ft upstream from Wintergreen Mountain sewage treatment plant, 2.8 mi northeas of Love.		1993-97	7- 6-98	.236
02030400 Turpin Creek [a]	Slate River	Lat 37°14'19", long 78°28'50", Buckingham County, at Bucking- ham Medium Security Institute #3 discharge, 1.5 mi upstream from Peyton Creek, and 2.0 mi northwest of Dillwyn.	1.32	1994-97	10- 7-97 7-30-98 9-21-98	.271 .499 .250
02030755 Unnamed tribu- tary [a]	North Creek	Lat 37°45'28", long 78°15'38", Fluvanna County, at Village Nursing Center discharge, 0.2 mi south of Fork Union, and 0.5 mi upstream from mouth.	0.08	1994-97	10- 8-97 6-30-98 9-28-98	<.001 .002 <.001
02030760 North Creek [a]	South Creek	Lat 37°45'27", long 78°15'02", Fluvanna County, 100 ft upstream from Fork Union Military Academy sewage treatment plant, at bridge on State Highway 652, and 0.8 mi southeast of Fork Union.	2.0	1990-97	10- 8-97 6-30-98 9-28-98	.131 .664 .122
02032300 Muddy Run	Buck Mountain Creek	Lat 38°14'05", long 78°37'02", Albemarle County, at bridge on State Highway 810, 0.7 mi upstream from mouth, and 11 mi southwest of Stanardsville.	3.36	-	*2- 2-83 *4- 4-83 *3-24-89 1-13-98	12.3 27.3 25.3 8.13
02033300 Moores Creek	Rivanna River	Lat 38°00'25", long 78°34'25", Albemarle County, at culvert on access road, 30 ft north of U.S. Highway 29, 2.8 mi upstream from Morey Creek, and 4 mi southwest of Charlottesville.	3.52	1969, 1990, 1991, 1996-97	3-31-98	8.55

^{*} Not previously published. < Less than. a Provided by the Virginia Department of Environmental Quality - Water Division.

			waina	Measured	Measurements	
Stream	Tributary to	Location	rainage area (mi ²)	previously (water years)	Date	Discharge (ft ³ /s)
		JAMES RIVER BASIN-	Contin	ued		
02033390 Biscuit Run [a]	Moores Creek	Lat 37°59'57', long 78°31'09", Albemarle County, at Southwood Mobile Home Park discharge, 1.1 mi upstream from Inter- state Highway 64, 0.8 mi south of Charlottesville City limits and 1.3 mi upstream from mouth.	12.56	1994-97	10- 9-97 7-15-98 9-15-98	3.47 6.09 1.68
02033570 Shadwell Creek[a]	Rivanna River	Lat 38°01'13", long 78°25'27", Albemarle County, at Ramada Inn discharge, 0.3 mi upstream from bridge on U.S. Highway 250 and 1.6 mi west of Shadwell.	0.624	-	10- 9-97 7-15-98 9-15-98	.035 .146 .030
02033670 Rivanna River[a]	James River	Lat 38°00'24", long 78°24'02", Albemarle County, at bridge on State Highway 729, 0.4 mi upstream from Camp Branch, and 0.5 mi southwest of Shadwel	- 1.	1993, 1995, 1997	10- 8-97 8-31-98	82.7 120
02033800 Mechunk Creek [a]	Rivanna River	Lat 38°59'03", long 78°18'44", Fluvanna County, at bridge on U.S. Highway 250, 5.0 mi west of Zion Crossroads.	-	1941, 1951, 1953-54, 1964, 1994-97	10- 8-97 8-31-98 9-28-98	5.19 1.61 .494
02036000 Beaverdam Creek [a]	James River	Lat 37°38'50", long 77°49'34", Goochland County, at bridge on State Highway 6, at State Farm, and 1.7 mi northwest of Crozier		1943, 1951-54, 1995-97	10- 7-97 8-31-98 9-28-98	3.16 1.04 .695
02038000 Falling Creek	James River	Lat 37°26'37", long 77°31'21", Chesterfield County, at bridge on State Highway 651, 2.8 mi upstream from Pocoshock Creek and 4.7 mi northwest of Ches- terfield.	32.8	1955-94‡, 1996-97	5-29-98	26.0
02038670 Unnamed tribu- tary [a]	James River	Lat 37°23'48", long 77°22'36", Henrico County, 0.2 mi downstream from culvert on Kingsland Road, 0.8 mi upstream from mouth, and 4.4 mi east of Centralia.	0.77	1997	10-10-97 8-24-98	.057 .026
02038730 Fourmile Creek [b]	James River	Lat 37°27'16", long 77°19'53", Henrico County, at bridge on Doran Road, 0.2 mi upstream from confluence with Ross Run, and 3.7 mi east of Richmond Heights.	4.01	1980-83, 1997	10-10-97 8-24-98	.442
02038810 South Fork Appomattox River [a]		Lat 37°21'13", long 78°48'50", Appomattox County, at Appo- mattox lagoon discharge, 200 ft downstream from culvert on U.S. Highway 460 bypass, and 0.8 mi southeast of Appomattox.	0.46	1994-97	7- 6-98 8-25-98	.113
02038840 Holiday Creek	Appomattox River	Lat 37°25'58", long 78°41'12", Buckingham County, at State Forest Road 2307 (old Rich- mond Road), 1.8 mi upstream from confluence with North Holiday Creek, and 5.2 mi south-southwest of Toga.	1.68	1972, 1989-90, 1994, 1997	1- 8-98	4.72

[†] Operated as a continuous-record gaging station.
a Provided by the Virginia Department of Environmental Quality - Water Division.
b Provided by both the U.S. Geological Survey and Virginia Department of Environmental Quality - Water Division.

Discharge measurements made at special study and miscellaneous sites during water year 1998--Continued

			Drainage	Measured previously	Measurements	
Stream	Tributary to	Location	area (mi ²)	(water years)	Date	Discharge (ft ³ /s)
		JAMES RIVER BASI	NContin	ued		
02038845 North Holiday Creek	Holiday Creek	Lat 37°26'09", long 78°40'04", Buckingham County, at State Forest Road 2307 (old Rich- mond Road), 1.0 mi upstream from mouth, and 4.5 mi south- southwest of Toga.	1.31	1972-73, 1989-90, 1994, 1997	1- 8-98	2.86
02040500 Flat Creek	Appomattox River	Lat 37°23'37", long 78°03'45", Amelia County, at bridge on State Highway 681, 0.5 mi downstream from Horsepen Creek and 6.0 mi northwest of Amelia		1947-78, 1952-54, 1971-72, 1977, 1981-85, 1987-89, 1992, 1996-97	5-29-98	44.1
02040590 Nibbs Creek [a]	Flat Creek	Lat 37°22'02", long 77°59'33", Amelia County, 150 ft upstream from Courthouse Branch, 0.2 mi downstream from bridge on Stat Highway 681, and 1.8 mi north of Amelia Courthouse.	=	1997	10- 7-97 9-14-98 9-23-98	1.38 .551 1.58
02041700 Cattail Run [a]	Appomattox River	Lat 37°12'58", long 77°26'39", Dinwiddie County, at Peters- burg, 500 ft upstream from U.S. Highway 1 and 460, and 0.7 mi upstream from mouth.	8.61	1993-97	10- 9-97 9-14-98	.290 .455
02041745 Poor Creek	Appomattox River	Lat 37°12'56", long 77°22'29", Petersburg City, 100 ft up- stream from Siege Road, 2.8 mi southwest of entrance to Petersburg National Battle- field, and 1.5 mi west of Fort Lee.	-	-	9-10-98	.09
02041748 Poor Creek	Appomattox River	Lat 37°13'49", long 77°22'32", Petersburg City, 0.5 mi west of Siege Road, 2.0 mi south- west of entrance to Petersburg National Battlefield, and 2.0 mi west of Fort Lee.	-	-	9- 9-98	.10
02041758 Harrison Creek	Appomattox River	Lat 37°13'58", long 77°21'50", Petersburg City, 75 ft down- stream from Siege Road, 1.3 mi southwest of entrance to Petersburg National Battle- field, and 1.0 mi west of Fort Lee.	-	-	9- 9-98	0
02041760 Harrison Creek	Appomattox River	Lat 37°14'25", long 77°21'50", Petersburg City, 100 ft down- stream of State Highway 36, 0.5 mi west of entrance to Petersburg National Battle- field, and 1.0 mi west of Fort Lee	-	-	9- 9-98	.10
02041790 Harrison Branch [a]	Appomattox River	Lat 37°15'45", long 77°21'22", Prince George County, at Red F Mobil Home Park, 1.1. mi upstr from mouth, 1.8 mi west of Jef Park, and 3.0 mi east of Color Heights.	Hill ream fferson	1996-97	10- 9-97 8-24-98 9-28-98	.035 .220 .005

a Provided by the Virginia Department of Environmental Quality - Water Division.

		ת	rainage	Measured previously	Meas	surements
Stream	Tributary to	Location	area (mi ²)	(water years)	Date	Discharge (ft ³ /s)
		JAMES RIVER BASIN-	Contin	ued		
02041810 Swift Creek	Appomattox River	Lat 37°27'18", long 77°42'11", Chesterfield County, on left bank, 5 ft upstream from bridge on State Route 667 and 0.9 mi upstream from mouth at Swift Creek Reservoir.	21.4	1987-88, 1991-93, 1996-97	10-20-97 11-24-97 11-24-97 12-15-97 1- 7-98	.05 9.64 9.04 4.21 4.10
02041820 Blackman Creek	Deep Creek	Lat 37°24′54″, long 77°43′38″, Chesterfield County, on right bank, 60 ft upstream from bridge on State Route 667, and 0.7 mi upstream from mouth at Deep Cree		1987-88, 1992-93, 1996-97	10-20-97 11-14-97 11-26-97 11-26-97 12-16-97 1- 8-98	0 0 . 48 . 51 . 40 2.79
02041830 Horsepen Creek	Deep Creek	Lat 37°25′24″, long 77°43′33″, Chesterfield County, on right bank, 15 ft downstream from bric on State Route 667, and 0.9 mi u stream from mouth at Deep Creek.	ıp-	1987-88, 1992-93, 1996-97	10-20-97 11-14-97 11-25-97 12-16-97 12-16-97 1- 8-98	0 7.74 1.12 .34 .36 1.44
02041840 Otterdale Branch	Deep Creek	Lat 37°26′28″, long 77°42′40″, Chesterfield County, on right bank, 10 ft downstream from bridge on State Route 667, and 0.7 mi upstream from mouth at Swift Creek Reservoir.	3.59	1987-88, 1991-93, 1996-97	10-20-97 11-14-97 11-24-97 12-15-97 12-15-97 1- 7-98	.01 10.0 1.61 .58 .57
02041850 Tomahawk Creek	Swift Creek	Lat 37°28′08″, long 77°40′54″, Chesterfield County, on right bank, 15 ft downstream from bridge on State Route 652, and 1.4 mi upstream from mouth at Swift Creek Reservior.	4.20	1987-88, 1991-93, 1996-97	10-20-97 11-14-97 11-24-97 11-24-97 12-15-97 1- 7-98	0 10.1 2.87 2.85 1.12 1.87
02041860 Little Tomahawk Creek	Tomahawk Creek	Lat37°27'53", long 77°40'21", Chesterfield County, on right bank, 15 ft downstream from bridge on unimproved road, and 1.3 mi upstream from mouth at Swift Creek Reservoir.	2.31	1987-88, 1991-93, 1996-97	10-20-97 11-14-97 11-24-97 12-15-97 12-15-97 1-7-98 1-7-98	0 6.06 .97 .31 .30 .67
02041862 Little Tomahawk tributary (No.1)	Little Tomahawk Creek	Lat 37°27'05", long 77°40'23", Chesterfield County, 0.6 mi west of State Route 604, and 0.2 mi upstream from mouth.	0.19	1997	10-20-97 11- 7-97	0 .56 2.17 1.22 1.15 .80 .64 1.02 .99 1.71 1.61 1.57 .37 .36 .28 .24 .21

Discharge measurements made at special study and miscellaneous sites during water year 1998--Continued

		т	Orainage	Measured previously	Meas	surements
Stream	Tributary to	Location	area (mi ²)	(water years)	Date	Discharge (ft ³ /s)
		JAMES RIVER BASIN	Contin	ued		
0204186350 Swift Cree tributary	Swift Creek ek	Lat 37°25'37", long 77°40'57", Chesterfield County, 1.7 mi north of U.S. Highway 360, 4.3 mi south-east of Hallsboro, and 0.3 mi upstream from mouth.	0.05	1997	10-20-97 11- 7-97 11- 7-97 11- 7-97 11- 7-97 11- 7-97 11- 7-97 11- 7-97 11- 7-97 11- 25-97 12-17-97 1-12-98	.06 1.96 1.60 1.31 2.12 2.00 9.31 6.70 4.22 .04 .07
02041870 Dry Creek	Swift Creek	Lat 37°23'55", long 77°41'27", Chesterfield County, on left bank 10 ft upstream from unimproved road 0.3 south of U.S. Highway 360 and 0.3 mi upstream from mouth at Swift Creek Reservoir.	2.96	1991-93, 1996-97	10-20-97 11- 7-97 11-25-97 12-16-97 1- 8-98	0 .60 .54 .10 16.4
02041880 Ashbrook Creek	Dry Creek	Lat 37°23'56", Long 77°41'06", Chesterfield County, on right bank at dam for Ashbrook Lake about 0.1 mi upstream of mouth at Swift Creek Reservoir.	2.37	1992-93, 1996-97	10-20-97	0
02041890 West Branch	Dry Creek	Lat 37°24'39", long 77°41'16", Chesterfield County, 0.2 mi upstream from mouth at Swift Creek Reservoir	2.75	1991-93, 1996-97	10-20-97 11-14-97 11-25-97 12-16-97 1- 8-98	.03 3.07 .55 .23 18.6
02042075 Bailey Creek [a]	James River	Lat 37°14'43", long 77°19'34", Prince George County, at Fort Lee Millitary Reservation, 0.7 mi upstream from bridge on Stat Highway 630, and 1.2 mi south of Jefferson Park.	- e	1995-97	10- 9-97 8-24-98 9-28-98	.203 .262 .242
02042080 Bailey Creek [a]	James River	Lat 37°16'26", long 77°17'24", Hopewell City and Prince George County line, at bridge on State Highway 156, at Hopewell, and 0.4 mi down- stream from Manchester Run.	14.0	1992-97	10- 9-97 8-24-98 9-28-98	2.84 3.16 2.46
02042190 Courthouse Creek [a]	Queens Creek e	Lat 37°20'36", long 77°04'36", Charles City County, at Charles City, 50 ft upstream from Charles City Middle School sewage treatment plant, 0.3 mi upstream from bridge on State Highway 155, and 1.2 mi up- stream from mouth.	5.07	1993-97	10- 8-97	.212
02042250 Bailey Branch tributary	Bailey Branch	Lat 37°10'29", long 76°59'13", Surry County, at culvert on State Highway 10, 1.0 mi northwest of Sring Grove.	0.71	1968-70, 1992, 1996-97	5-27-98	1.13
02042400 Jordans Branch	Upham Brook	Lat 37°35′10″, long 77°29′55″, Henrico County, at bridge on U.S. Highway 250 (Broad Street) at Richmond, and 2.0 mi upstream from mouth.	2.53	1984-85, 1989-90, 1996-97	5-18-98	.90

a Provided by the Virginia Department of Environmental Quality - Water Division.

		D	Orainage	Measured previously	Meas	surements
Stream	Tributary to	Location	area (mi ²)	(water years)	Date	Discharge (ft ³ /s)
		JAMES RIVER BASIN	Contin	ued		
02042455 White Oak Swamp	Chickahominy River	Lat 37°28'05", long 77°12'32", Henrico County, at bridge on State Highway 156, at Elko.	-	1984-85, 1987-89, 1991, 1995-97	10-22-97 1-15-98 4-16-98 7-16-98	7.80 25.3 20.1 2.76
02042478 Schiminoe Creek tributary	Schiminoe Creek	Lat 37°27'27", long 77°05'23", New Kent County, upstream of culvert on U.S. Highway 60, 2.8 mi west of Providence Forge and 0.4 mi upstream from mouth.		1996-97	10-22-97 1-15-98 4-16-98 7-16-98	.15 1.60 2.25 .21
02042726 Diascund Creek	Chickahominy River	Lat 37°28'52", long 76°58'21", New Kent County, at bridge on State Highway 628, 2.4 mi south of New Kent, and 6.0 mi upstream from Timber Swamp.	9.25	1895, 1987-91, 1995-97	10-22-97 1-15-98 4-16-98 7-16-98	3.29 9.01 15.0 6.11
		CHOWAN RIVER	BASIN			
02044900 Great Creek [a]	Nottoway River	Lat 36°58'51", long 77°44'28", Dinwiddle County, at town of McKenney sewage treatment plant 1.1 mi west of McKenney, and 1.8 mi upstream from mouth.	3.84	1994-97	10-10-97	.006
02045275 Unnamed tribu- tary [a]	Sturgeon Creek	Lat 36°51'35", long 77°50'05", Brunswick County, 0.7 mi up- stream from culvert on State Highway 642, 2.4 mi upstream from mouth and 2.8 mi east of Alberta.	1.68	-	6-23-98 9- 1-98 9-14-98 9-28-98	.095 .002 .003 .004
02046250 Stony Creek [a]	Nottoway River	Lat 36°56′53″, long 77°23′24″, Sussex County, at Stony Creek sewage treatment plant, 0.2 mi downstream from bridge on Interstate Highway 95, 0.6 mi east of Stony Creek, and 0.9 mi upstream from mouth.	236	1994-97	10-10-97 8-10-98 9-23-98	1.81 4.22 2.60
02046265 Hatcher Run	Rowanty Creek	Lat 37°09'20", long 77°37'32", Dinwiddie County, 25 ft up- stream from State Highway 627, 1.0 mi north of Five Forks, and 12.0 mi southwest of Petersburg.	-	-	9-10-98	.03
02050050 Blackwater River tributary	Blackwater River	Lat 36°38'44", long 76°51'29", Suffolk City, at culvert on State Highway 272, 4.9 mi southwest of Holland, and 3.0 mi upstream from mouth.	2.76	1968-70, 1996-97	5-27-98	.18
		ROANOKE RIVER	R BASIN			
02055515 Lick Run [a]	Tinker Creek	Lat 37°16'20", long 79°56'08", Roanoke City, at Roanoke, along Norfolk Avenue, 300 ft downstream from U.S. High- way 220, and 1.0 mi upstream from mouth.	5.0	1994-97	9- 9-98	7.72

a Provided by the Virginia Department of Environmental Quality - Water Division.

Discharge measurements made at special study and miscellaneous sites during water year 1998--Continued

		ח	rainage	Measured previously	Meas	surements
Stream	Tributary to	Location	area (mi²)	(water years)	Date	Discharge (ft ³ /s)
		ROANOKE RIVER BASIN	NConti	nued		
02056800 South For Blackwate River [a]		Lat 37°00'39", long 80°02'53", Franklin County, at Callaway, a Callaway Elem. School sewage treatment plant discharge, and 400 ft downstream from bridge of State Highway 641.		1995, 1997	9- 9-98	2.96
02057060 Gills Creek	Blackwater River	Lat 39°06'25", long 79°43'51", Franklin County, 0.8 mi south on Jack-O-Lantern Branch Trail in Booker T. Washington National Monument, 35 ft upstream of confluence with Jack-O-Lantern Branch, 5.5 mi southeast of Burnt Chimney, and 8.0 mi southwest of Moneta.		-	8-26-98	9.47
0205706010 Jack-0- Lantern Branch	Gills Creek	Lat 37°06′54″, long 79°43′50″, Franklin County, 0.5 mi south on Farm Trail Loop in Booker T. Washington Monument, 5.0 mi southeast of Burnt Chimney, and 7.5 mi southwest of Moneta.	-	-	8-25-98	.07
0205706020 Jack-0- Lantern tribu- tary (No.1)	Jack-O-Lantern Branch	Lat 37°06'42", long 79°43'45", Franklin County, 0.5 mi south on Jack-O-Lantern Branch Trail in Booker T. Washington Nationa. Monument, 1.0 mi south of State Highway 122, 5.0 mi southeast of Burnt Chimney, and 7.0 mi southwest of Moneta.	- L	-	8-25-98	.12
0205706030 Jack-O- Lantern Branch	Gills Creek	Lat 37°06′24″, long 79°43′50″, Franklin County, 0.8 mi south on Jack-O-Lantern Branch Trail in Booker T. Washington Nationa Monument, 40 ft upstram of con- fluence with Gills Creek,5.5 mi southwest of Burnt Chimney, and 8.0 mi southwest of Moneta.	- L	-	8-26-98	.39
02057695 Unnamed tribu- tary [a]	Powder Mill Creek	Lat 37°00'32", long 79°53'29", Franklin County, at Rocky Mount, 800 ft east of Main Street, and 0.25 mi upstream from culvert on State Street.	-	-	5-22-98 9- 9-98	.021
02059440 Unnamed tribu- tary [a] (No.1)	South Fork Goose Creek	Lat 37°23′52″, long 79°45′08″, Bedford County, at Woodhaven discharge, 200 ft upstream from culvert on State Highway 697, and 1.5 mi east of Villamont.	0.31	1996-97	10-24-97	.503
02060900 Roaring Run [a]	Big Otter River	Lat 37°24'28", long 79°24'11", Bedford County, at Gunnoe Sausage discharge, 500 ft upstream from bridge on State Highway 643, and 0.3 mi south of Cifax.	0.70	1994-97	10-24-97 7- 1-98	.129 .271
02061460 Buffalo Creek [a]	Big Otter River	Lat 37°18'18", long 79°17'24", Campbell County, 300 ft upstream from bridge on U.S. Highway 460, and 0.5 mi northwest of New London.	5.86	1993-97	7- 1-98	3.55

a Provided by the Virginia Department of Environmental Quality - Water Division.

Discharge measurements made at special study and miscellaneous sites during water year 1998--Continued

			Drainage	Measured previously	Meas	surements
Stream	Tributary to	Location	area (mi²)	(water years)	Date	Discharge (ft ³ /s)
		ROANOKE RIVER BAS	SINConti	nued		
02063800 Mollys Creek [a]	Falling River	Lat 37°12'05", long 79°03'18", at Thousand Trails sewage treatment plant discharge, 0.7 mi upstream from bridge on State Highway 654, and 2.7 mi southeast of Winfall.	13.92	1995-97	8-25-98	3.48
02065010 Phelps Creek [a]	Falling River	Lat 37°04'06", long 78°57'06", Campbell County, 500 ft down- stream from Brookneal Reserve 0.3 mi upstream from mouth, a 1.5 mi north of Brookneal.	ir,	1995, 1997	10- 9-97 8-25-98	1.14 1.21
02066520 Twittys Creek [a]	Roanoke Creek	Lat 36°59'22", long 78°36'13", Charlotte County, at Drakes Branch sewage treatment plant discharge, at Drakes Branch, 0.25 mi downstream from bridg on State Highway 47.	and	1995, 1997	10- 9-97	.614
02072530 Blackberry Creek [a]	Smith River	Lat 36x°44'42", long 80°04'48", Henry County, at Fairway Acre discharge, 500 ft upstream fr bridge on State Highway 687, 2.0 mi northeast of Sandville	om and	1997	9- 9-98	1.99
02075091.25 Unnamed tribu- tary [a]	Hogans Creek	Lat 36°32'30", long 79°22'22", Pittsylvania County, at Goody Tire and Rubber plant dischar 0.4 mi upstream from bridge of State Highway 736, 1.1 mi sou east of Danville City limits, and 1.5 mi upstream from mout	ge, n th-	1994-97	9-10-98	.125
02075191 Cane Creek [a]	Dan River	Lat 36°36'00", long 79°19'34", Pittsylvania County, 0.3 mi downstream from bridge on State Highway 730, and 1.7 mi west of Ringgold.	3.94	-	†11-18-96 †5-23-97 †6-25-97 †9-18-97 9-10-98	2.07 2.06 1.68 1.23 1.20
02075350 Powells Creek	Dan River	Lat 36°34′50″, long 79°11′20″, Halifax County, at culvert on U.S. Highway 58, 1.1 mi east of Halifax-Pittsylvania county line, 8.8 mi southwest of Turbeville, and 0.8 mi up- stream from mouth.		1993, 1996	6-10-98	.10
02076100 Wet Sleeve Creek [a]	Banister River	Lat 36°46'18", long 79°32'52", Pittsylvania County, 0.4 mi downstream from bridge on State Highway 815, 1.3 mi upstream from mouth, and 2.8 mi northeast of Swansonville.	3.75	1993-95, 1997	9-10-98	1.02
02076200 Bearskin Creek	Banister River	Lat 36°50'30", long 79°29'05", Pittsylvania County, at culve on State Highway 57, 4.5 mile west of Chatham.		1969-72, 1996-97	1- 6-98	2.76
02076280 Dry Fork [a]	White Oak Creek	Lat 36°44'40", long 79°23'48", Pittsylvania County, at Vulca Materials Company discharge, 0.6 mi south of Dry Fork, and 0.7 mi upstream from bridge of State Highway 718.	l	1994-95, 1997	9-10-98	0

a Provided by the Virginia Department of Environmental Quality - Water Division.

			rainage	Measured previously	Measurements	
Stream	Tributary to	Location	area (mi ²)	(water years)	Date	Discharge (ft ³ /s)
		YADKIN RIVER	BASIN			
02113540 Unnamed tribu- tary [a] (No. 1)	Birds Branch	Lat 36°38'18", long 80°32'05", Patrick County, at Doe Run Lodge discharge, 0.25 mi south of Pilc Mtn. Overlook, and 3.0 mi north- west of Ararat.	t	1995-97	8- 4-98	.090
02113541 Unnamed tribu- tary [a] (No. 2)	Birds Branch	Lat 36°38'16", long 80°32'30", Patrick County, at Groundhog Mtn. Resort discharge, 0.45 mi southwest of Pilot Mtn. Overlook, and 3.1 mi north- west of Ararat.	-	1995-97	8- 4-98	.040
		KANAWHA RIVER	BASIN			
03162705 Peggies Branch [a	New River	Lat 36°36'08", long 81°20'22", Grayson County, 0.2 mi down- stream from bridge on State Hihgway 728, 0.3 mi north of Oak Hill, and 1.6 mi up- stream from mouth.	1.54	1995, 1997	8- 4-98	.403
03162750 Fox Creek [a]	New River	Lat 36°41'22", long 81°25'52", Grayson County, at Rivers Casuals sewage treatment plant, 400 ft upstream from bridge on State Highway 16, and 1.1 mi southeast of Troutdale.	13.82	1994-95, 1997	8- 4-98	3.06
03162852 Peach Bottom Creek [b]	New River	Lat 36°36'01" long 81°06'41", Grayson County, at Indepen- dence sewage treatment plant, 200 ft upstream from State Highway 697, and 2.7 mi southeast of Independence.	-	1993-95, 1997	8- 4-98	8.58
03163480 Stone Creek [a]	Elk Creek	Lat 36°43'27", long 81°10'45", Grayson County, at Perry Manufacturing sewage treat- ment plant, 0.2 mi north of Elk Creek, and 0.3 mi upstream from bridge on State Highway 659.	2.31	1994-95, 1997	8- 5-98	1.14
03164100 Bull Run [a]	New River	Lat 36°42'28", long 81°02'11", Grayson County, 0.5 mi upstream from bridge on State Highway 648 1.3 mi northwest of Providence, and 2.5 mi southwest of Stevens Creek.	0.32	1995, 1997	8- 4-98	.240
03166100 Buddle Branch [a	New River	Lat 36°50'17", long 80°55'00", Wythe County, 100 ft east of State Highway 636, 0.6 mi upstream from culvert on State Highway 69, and 0.9 mi south of Austinville.	-	1993-97	8- 5-98	.154
0316612010 Unnamed tribu- tary [a] (No.1)	Buddle Branch	Lat 36°51'21", long 80°54'18", Wythe County, 10 ft upstream from confluence with Buddle Branch, 0.6 mi northeast of Austinville.	-	1997	8- 5-98	.955

a Provided by the Virginia Department of Environmental Quality - Water Division. b Provided by both the U.S. Geological Survey and Virginia Department of Environmental Quality - Water Division.

Discharge measurements made at special study and miscellaneous sites during water year 1998--Continued

			Drainage	Measured previously	Meas	surements
Stream	Tributary to	Location	area (mi ²)	(water years)	Date	Discharge (ft ³ /s)
		KANAWHA RIVER BAS	INConti	nued		
03167100 McGavock Creek [a]	Reed Creek	Lat 36°57′58″, long 80°51′07″, Wythe County, at I-81 Auto & Truck Stop sewage treatment plant discharge, at exit 86, and 2.8 mi northeast of Grahams Forge.	0.12	1995-97	8- 3-98	.003
03167150 Big Reed Island Creek [a]	New River	Lat 36°41'20", long 80°31'42", Carroll County, at Olde Mill Golf Resort, 0.2 mi down- stream from bridge on State Highway 618, and 2.1 mi south of Laurel Fork.	20.2	1994-97	8- 4-98	14.4
03167600 Unnamed tribu- tary [a] (No.1)	East Fork Little Reed Island Creek	Lat 36°40'00", long 80°41'43", Carroll County, at Lakeview Motel sewage treatment plant discharge, at Fancy Gap, and 1.1 mi upstream from mouth.	0.13	1995-97	8- 4-98	.057
03167608 East Fork Little Red Island Cre	ed	Lat 36°40'27", long 80°42'42", Carroll County, at Days Inn discharge, 200 ft upstream from I-77, and 1.2 mi northeast of Fancy Gap.	3.21	1996-97	8- 4-98	3.02
03167610 Unnamed tribu- tary [a]	East Fork Little Reed Island Creek Tributary (No.2)	Lat 36°40'26", long 80°41'42", Carroll County, at Utts Campground discharge, at culvert on U.S. Highway 52, and 0.5 mi north of Fancy Gap.	0.15	1995-97	8- 4-98	.035
03168450 Peak Creek [a]	New River	Lat 37°02'50", long 80°47'32", Pulaski County, at Pulaski, 600 ft downstream from bridge on State Highway 610, and 0.4 mi upstream from Tract Fork.	-	1995, 1997	8-21-98	3.62
03168480 Tract Fork [a]	Peak Creek	Lat 37°02'50", long 80°47'14", Pulaski County, at Pulaski, 100 ft upstream from mouth, and 1.9 mi downstream from Harbison Branch.	25.55	1994-95	8-21-98	3.01
03169220 Dodd Creek [a]	West Fork	Lat 36°54'38", long 80°20'20", Floyd County, at Floyd sewage treatment plant, 900 ft down- stream from bridge on U.S. Highway 221, and 0.8 mi west of Floyd.	19.25	1996-97	8- 3-98	14.0
03171170 Crab Creek [a]	New River	Lat 37°09'26", long 80°28'15", Montgomery County, at Town of Christiansburg discharge, 200 upstream from culvert on State Highway 660, and 3.9 mi northw of Christiansburg.	2	1995, 1997	8- 3-98	6.13
03171700 Crab Orchard Creek [a]	Walker Creek	Lat 37°05'36", long 81°06'37", Bland County, 0.4 mi down- stream from bridge on State Highway 605, 0.7 mi southeast of Bland.	15.91	1993-97	8-28-98	1.72

a Provided by the Virginia Department of Environmental Quality - Water Division.

		1	Drainage	Measured previously	Measurements	
Stream	Tributary to	Location	area (mi ²)	(water years)	Date	Discharge (ft ³ /s)
		KANAWHA RIVER BASI	NConti	nued		
03174580 Hunting Camp Creek [a]	Wolf Creek	Lat 37°09'25", long 81°08'55", Bland County, at GIV Inc. dis- charge, 0.3 mi north of Bastian and 1.1 mi upstream from mouth.		1995, 1997	8- 3-98	.508
03174600 Wolf Creek [a]	New River	Lat 37°10'38", long 81°09'10", Bland County, at Kegley Manor sewage treatment plant dis- charge, 0.4 mi upstream from U.S. Highway 21 and 52, 0.8 mi upstream from Hunting Camp Creek, and 1.7 mi north of Bastian.	99.0	1994-95, 1997	8- 3-98	9.89
		BIG SANDY RIVE	ER BASIN			
03207227 Right Fork [a]	Garden Creek	Lat 37°10'02", long 82°00'53", Buchanan County, at Skeggs, 600 ft upstream from Skeggs Branch, and 1.5 mi south of Mount Heron.	12.0	1995-97	8-27-98	2.66
03207350 Levisa Fork [b]	Big Sandy River	Lat 37°14'21", long 82°04'02", Buchanan County, at Oakwood sewage treatment plant, 0.1 mi downstream from Laurel Branch, and 1.8 mi east of Vansant.	177	1993-97	8-27-98	43.3
03207438 Slate Creek [a]	Levisa Fork	lat 37°18'45", long 81°58'36", Buchanan County, at J. M. Bevins Elementary School sewage treatment plant, 50 ft south of State Highway 83, 600 ft upstream from Twin Branch, and 0.9 mi southeast of Stacy.	16.12	1994-97	8-27-98	1.13
03208340 McClure Creek [a]	McClure River	Lat 37°01'03", long 82°17'46", Dickenson County, 100 ft west of State Highway 63, 0.2 mi downstream from Trammel Branch, and 0.3 mi northwest of Trammel		1994-97	8-25-98	1.72
03208364 McClure Creek [a]	McClure River	Lat 37°04'04", long 82°20'40", Dickenson County, at Ervinton Elementary School sewage treat- ment plant, 0.2 mi upstream from bridge on State Highway 652, 0.2 mi upstream from Open Fork, and 0.3 mi southeast of Nora.	22.0	1994-97	8-25-98	11.4
03208368 Spring Fork [a]	Open Fork	Lat37°02'59", long 82°21'36", Dickenson County, 400 ft up- stream from confluence with Open Fork, 1.6 mi southeast of Nora.	5.18	1997	8-25-98	1.65
03208700 North Fork Pound River	Pound River	Lat 37°07'32", long 82°37'36", Wise County 700 ft down- stream from Stacy Branch, 1,600 ft downstream from North Fork Pound River dam, and at Pound.	18.5	1963-97	1- 6-98 5-21-98 5-21-98	27.8 3.16 3.45

a Provided by the Virginia Department of Environmental Quality - Water Division.
b Provided by both the U.S. Geological Survey and Virginia Department of Environmental Quality - Water Division.

			Drainage	Measured previously	Measurements	
Stream	Tributary to	Location	area (mi ²)	(water years)	Date	Discharge (ft ³ /s)
		BIG SANDY RIVER BA	SINCont	inued		
03208800 Pound River	Russell Fork	Lat 37°07'26", long 82°36'29", Wise County, 1,600 ft down- stream from confluence of North and South Forks, 0.5 mi upstream from U.S. Highway 23 0.7 mi upstream from Indian Creek, and at Pound.	36.7	1966-81, 1984-97	4- 2-98 8-11-98	45.5 21.5
03208900 Pound River	Russell Fork	Lat 37°09'51", long 82°31'30", Dickenson County, 50 ft up- stream from State Highway 624 150 ft upstream from Camp Creek, and 2.6 mi northwest of Georges Fork.	82.5	1964-97	5-21-98 8-11-98	93.9 52.2
0320890475 Laurel Creek [a]	Georges Fork	Lat 37°08'02", long 82°29'25", Dickenson County, 1.1 mi south of Georges Fork, 1.4 mi upstre from mouth.		1997	8-25-98	.035
0320890485 Georges Fork [a]	Pound River	Lat 37°09'01", long 82°29'25", Dickenson County, 50 ft down- stream from Laurel Creek, 300 ft downstream from bridge on State Highway 83, and 0.2 morthwest of Georges Fork.		1994-97	8-25-98	2.53
03209200 Russell Fork	Levisa Fork	Lat 37°14'45", long 82°19'25", Dickenson County, at bridge on State Highway 611, 0.2 mi downstream from Pound River, and at Bartlick.	526	1963-97	5-21-98 8-11-98	546 346
03213570 Right Fork [a]	Knox Creek	Lat 37°22'53", long 82°00'01", Buchanan County, at Hurley Middle School sewage treat- ment plant, 200 ft downstream from Straight Fork, 0.1 mi upstream from mouth, and at Blackey.	8.53	1994-97	8-27-98	.305
		TENNESSEE RIV	VER BASIN			
03472200 Big Laurel Creek [a]	Whitetop Laurel Creek	Lat 36°41'15", long 81°32'54", Smyth County, at Grindstone Recreation Area sewage treat- ment plant, 0.1 mi upstream from bridge on State Highway 603, and 1.9 mi north of Mt. Rogers.	0.53	1994-95, 1997	8- 5-98	.121
03473840 Unnamed tribu- tary [a]	Hungry Mother Creek	Lat 36°52'20", long 81°30'42", Smyth County, at Hungry Mother State Park Campground D sewage treatment plant, 400 ft down- stream from bridge on park roa and 2.7 mi north of Marion.	е	1993-95	8-26-98	.270
03475595 Cedar Creek [a]	Middle Fork Holston River	Lat 36°44'55", long 81°51'26", Washington County, at Meadowv: Elem. School sewage treatment plant, 0.1 mi north of Cedarv: and 3.4 mi upstream from mouth	ille,	1995, 1997	8- 5-98	.895

a Provided by the Virginia Department of Environmental Quality - Water Division.

			rainage	Measured previously	Mea	surements
Stream	Tributary to	Location	area (mi ²)	(water years)	Date	Discharge (ft ³ /s)
		TENNESSEE RIVER BAS	INCont	inued		
03475600 Cedar Creek	Middle Fork Holston River	Lat 36°44'50", long 81°51'20", Washington County, at culvert on U.S. Highway 11, 1.2 mi south of Meadowview, and 2.5 mi upstream from mouth.	3.38	1969, 1990, 1992-94	3-24-98	5.28
03475630 Wolf Creek [b]	South Fork Holston River	Lat 36°41'11", long 81°58'56", Washington County, at town of Abingdon sewage treatment plant, 100 ft downstream from bridge on State Highway 670, and 1.6 mi south of Abingdon.	15.95	1948, 1988, 1993-95, 1997	10-30-97 12- 1-97 12- 5-97 12- 5-97 12- 5-97 1- 8-98 2- 3-98 2-23-98 3-20-98 4-17-98 5- 1-98 7- 2-98 8-21-98 9-17-98 9-17-98 9-29-98	11.0 18.4 9.28 12.0 28.5 60.3 45.8 89.3 248 27.2 24.8 15.8 11.0 10.6 9.15 9.64
034765085 Sinking Creek [a]	Paperville Creek	Lat 36°39'44", long 82°03'56", Washington County, on State Highway 808, 0.2 mi downstream from bridge on U.S. Highway 11, and 5.6 mi southwest of Abingdo	0.59 n.	1993-97	8- 5-98	1.06
03487800 Lick Creek	North Fork Holston River	Lat 36°57'44", long 81°28'21", Smyth County, 270 ft upstream from bridge on State Highway 42, 1.6 mi upstream from mouth, and 2.9 mi northeast of Chatham Hill.	25.5	1966-68 1990, 1992, 1994	4-13-98	64.1
03488450 Brumley Creek	North Fork Holston River	Lat 36°47'30", long 82°01'10", Washington County, at bridge on State Highway 611, 0.2 mi upstream from mouth, 0.8 mi southeast of Brumley Gap, and 2.7 mi downstream from Lee Creek.	21.1	1979-81, 1982-85, 1992, 1994	3-24-98	85.0
03488490 Canoe Branch[a]	North Fork Holston River	Lat 36°45'12", long 82°02'42", Washington County, at Greendale Elementary School discharge, 2.4 mi upstream from mouth, and 2.4 mi southeast of Holston		1997	8-26-98	<.001
03489860 Hilton Creek [a]	North Fork Holston River	Lat 36°39'12", long 82°27'50", Scott County, at Hilton Elementary School sewage treatment plant, 0.2 mi south- east of Hilton, and 0.4 mi upstream from mouth.	1.05	1993-95, 1997	5-19-98 8-24-98	.998 .248
03489867 Unnamed tribu- tary [a] (No.8)	North Fork Holston River	Lat 36°38'24", long 82°29'33", Scott County, at Brickyard Gap, 300 ft upstream from bridge on State Highway 896, 0.3 mi upstream from mouth, and 1.7 mi southwest of Hilton.	2.95	-	8-24-98	.387

< Less than.
a Provided by the Virginia Department of Environmental Quality - Water Division.
b Provided by both the U.S. Geological Survey and Virginia Department of Environmental Quality - Water Division.

Discharge measurements made at special study and miscellaneous sites during water year 1998--Continued

		т	rainage	Measured previously	Meas	surements
Stream	Tributary to	Location	area (mi²)	(water years)	Date	Discharge (ft ³ /s)
		TENNESSEE RIVER BAS	INCont	inued		
03489950 Unnamed tribu- tary [a] (No.1)	Little Moccasin Creek	Lat 36°38'13", long 82°40'00", Scott County, 400 ft upstream from culvert on State Highway 870, 600 ft upstream from mouth and 3.1 mi northeast of Kermit.	0.20	1997	8-24-98	.063
03521500 Clinch River	Tennessee River	Lat 37°05'10", long 81°46'52", Tazewell County, 1.0 mi south- east of Richlands, 1.7 mi downstream from Indian Creek.	137	1945-97	1- 5-98	75.8
03521550 Big Creek [a]	Clinch River	Lat 37°09'14", long 81°47'02", Tazewell County at Seaboard No.2 Mine discharge, at mouth of Wildcat Hollow, and 0.6 mi southeast of Coaldan.	3.86	1997	8-27-98	.178
03523050 Big Cedar Creek [a]	Clinch River	Lat 36°55'19", long 82°03'10", Russell County, at Lebanon sewage treatment plant, 200 ft downstream from Little Cedar Creek, and 2.1 mi north- east of Lebanon.	-	1993-95, 1997	8-26-98	25.7
03524018 Hurricane Fork [a]	Dumps Creek	Lat 36°59'06", long 82°10'58", Russell County, 0.6 mi down- stream from Laurel Branch, 1.1 mi upstream from the mouth, and 1.6 mi north of South Clinchfield.	10.3	1995-97	8-25-98	1.79
03524025 Dumps Creek [a]	Clinch River	Lat 36°57'23", long 82°10'46", Russell County, 300 ft down- stream from Millstone Branch, 0.5 mi south of South Clinchfield, and 2.0 mi up- stream from mouth.	20.9	1995-97	8-25-98	7.95
03524596 Corder Branch [a	Little Stony Creek]	Lat 36°53'04", long 82°27'51", Wise County, 100 ft downstream from Ramey Branch, 0.6 mi up- stream from mouth, and 4.1 mi south of Coeburn.	3.55	1995, 1997	8-26-98	.137
03527505 Unnamed tribu- tary [a] (No.7)	North Fork Clinch River	Lat 36°42'40", long 82°47'15", Scott County, at Empire Mobile Home Park sewage treatment plan dischrage, 0.6 mi upstream from mouth, and 0.7 mi southeast of Duffield.		1995, 1997	8-24-98	.077
03529420 Callahan Creek [a]	Powell River	Lat 36°55'03", long 82°47'29", Wise County, at Interstate R/R discharge, 0.6 mi southeast of Andover, 0.6 mi downstream from Preacher Creek, and 1.0 mi up- stream from mouth.	27.4	1995, 1997	8-25-98	7.41
03529430 Lick Branch [a	Pigeon Creek	Lat 36°52'55", long 82°50'00", Wise County, at confluence with Pigeon Creek, at Lower Exeter, 500 ft north of State Highway 6 and 1.5 mi west of Imbodem.		1997	8-25-98	.774

a Provided by the Virginia Department of Environmental Qualtiy - Water Division.

Discharge measurements made at special study and miscellaneous sites during water year 1998--Continued

			Drainage	Measured previously	Meas	surements
Stream	Tributary to	Location	area (mi ²)	(water years)	Date	Discharge (ft ³ /s)
		TENNESSEE RIVER B	ASINCont	inued		
03531190 Station Creek [a]	Powell River	Lat 36°42'34", long 82°57'33", Lee County, at Dot Mobile Home Park sewage treatment plant, 500 ft upstream from bridge on U.S. Highway 58, and at Dot.	3.29	1994-95, 1997	8-24-98	0
03531200 Station Creek [a]	Powell River	Lat 36°41'58", long 83°00'02", Lee County, at Lee County Industrial Park discharge, 1.3 mi upstream from mouth, and 2.4 mi west of Dot.	7.55	1994-95, 1997	8-24-98	1.08

a Provided by the Virginia Department of Environmental Quality - Water Division.

JAMES RIVER BASIN

02011795 LAKE MOOMAW NEAR HOT SPRINGS, VA

LOCATION.--Lat 37°57'04", long 79°59'21", Alleghany County, Hydrologic Unit 02080201, in control tower at Gathright Dam on Jackson River, 0.9 mi upstream from Cedar Creek, 7.6 mi southwest of Hot Springs, and 19 mi upstream from Covington.

DRAINAGE AREA. -- 344 mi².

PERIOD OF RECORD. -- December 1979 to current year.

GAGE.--Water-stage recorder. Datum of gage is at sea level (U.S. Army Corps of Engineers bench mark).

REMARKS.--Lake is formed by rolled rockfill dam with an impervious compacted earth (clay) core. Spillway with crest at elevation 1,667.5 ft is in a divide about 2.5 mi south of the dam, ungated, and 2,450 ft long with a base width of 100 ft. Except for flood flows, all discharge will be through a diversion tunnel with the invert of the entrance being in an intake tower 260 ft high. Elevation of invert is 1,430.5 ft. Portals in the tower at nine levels permit oxygenated water from the surface and cold water from the bottom of the lake to be mixed for water-quality control. Sluice gates in the tower control flood flow releases. Storage began Dec. 10, 1979. Total capacity at top of dam, elevation 1,684.5 ft, is 502,600 acre-ft of which 81,100 acre-ft is above spillway crest. Capacity at maximum conservation pool, elevation 1,582.0 ft, is 123,700 acre-ft; capacity at minimum conservation pool, elevation 1,554.0 ft, is 63,000 acre-ft. Lake is used for flood control, low-water augmentation for water-quality control, and recreation. U.S. Army Corps of Engineers satellite precipitation and elevation telemeter at station.

COOPERATION. -- Records were provided by the U.S. Army Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 168,400 acre-ft, Jan. 20, 1996, elevation, 1,598.4 ft; minimum, (after first filling to minimum conservation pool), 71,900 acre-ft, Nov. 30, Dec. 1, 1991, elevation, 1,558.8 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 148,900 acre-ft, Mar. 22, elevation, 1,591.5 ft; minimum, 75,800 acre-ft, Nov. 1, elevation, 1,560.8 ft.

Date	Elevation (feet)	Contents (acre-feet)	Change in content (acre-feet)
Date	(leet)	(acre-reet)	(acre-reer)
pt. 30	1,564.5	83,400	_
t. 31	1,560.9	76,000	-7,400
v. 30	1,563.5	81,300	+5,300
c. 31	1,564.8	84,000	+2,700
CAL YR 1997			-38,500
n. 31	1,582.6	125,300	+41,300
b. 28	1,581.7	123,000	-2,300
r. 31	1,581.6	122,700	-300
r. 30	1,581.5	122,500	-200
y 31	1,581.9	123,500	+1,000
ne 30	1,582.0	123,700	+200
ly 31	1,577.9	113,600	-10,100
g. 31	1,572.7	101,300	-12,300
pt. 30	1,567.4	89,500	-11,800

JAMES RIVER BASIN

02011795 LAKE MOOMAW NEAR HOT SPRINGS, VA--Continued

ROANOKE RIVER BASIN

02057400 SMITH MOUNTAIN LAKE NEAR PENHOOK, VA

LOCATION.--Lat 37°02'28", long 79°32'09", Pittsylvania County, Hydrologic Unit 03010101, at dam on Roanoke (Staunton) River 6.5 mi northeast of Penhook and at mile 314.0.

DRAINAGE AREA. -- 1,024 mi².

PERIOD OF RECORD. -- September 1963 to current year.

GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. Prior to July 19, 1965, nonrecording gage at same site and datum.

REMARKS.--Reservoir is formed by concrete dam. Two ungated spillways, one near each end of dam, with crests at elevation 795 ft, are each 105 ft long. Initial filling began in September 1963 during construction; water in reservoir first reached minimum power pool, elevation, 787 ft, in May 1965. Total capacity at maximum pool elevation, 811 ft, is 1,517,000 acre-ft of which 375,000 acre-ft is above the spillway crest; 157,800 acre-ft is normally used for power between elevation 787 ft, minimum power pool, and the spillway crest. Capacity at invert of lowest penstock, elevation, 601 ft, is 100 acre-ft. Figures given herein represent total contents. Reservoir is part of the Smith Mountain Combination Project (pumped storage) which is used for hydroelectric power, flood control, low-water regulation for pollution abatement and water supply, water releases for downstream fish spawning, and recreation.

COOPERATION. -- Records were provided by the American Electric Power.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 1,250,200 acre-ft, Apr. 27, 1978, elevation, 799.8 ft; minimum (after first filling to minimum power pool), 995,400 acre-ft, Jan. 23, 1970, elevation, 787.6 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 1,160,000 acre-ft, Jan. 28, elevation, 795.8 ft; minimum, 1,070,600 acre-ft, Jan. 1, elevation, 791.5 ft.

MONTHEND ELEVATION AND CONTENTS AT 2400, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Elevation Contents Change in contents (acre-feet) Date (feet) (acre-feet) Sept. 30.... 792.8 1,097,100 1,084,900 -12,200 Oct. 31..... 792.2 30.... 792.8 1,097,100 +12,200 Nov. Dec. 31.... -22,400 791.7 1,074,700 CAL YR 1997..... -63,200 Jan. 794.8 1,137,900 +63.200 31..... 1,127,700 Feb. -10,200 794.3 28..... 31.... 794 2 1,125,700 -2.000 Mar. Apr. 30..... 794.5 1,131,800 +6,100 Mav 31..... 794 5 1,131,800 Ω +2,000 June 30..... 794 6 1,133,800 July 31..... 794.1 1,123,600 -10,200 31..... 793 4 1,109,400 -14,200Sept. 30..... 792.2 1,084,900 -24,500 -12,200 WTR YR 1998.....

02057400 SMITH MOUNTAIN LAKE NEAR PENHOOK, VA--Continued

ROANOKE RIVER BASIN

02059400 LEESVILLE LAKE NEAR LEESVILLE, VA

LOCATION.--Lat 37°05'35", long 79°24'09", Campbell County, Hydrologic Unit 03010101, at Leesville Dam on Roanoke (Staunton) River, 2.0 mi south of Leesville, 3.5 mi upstream from Goose Creek, and at mile 296.

DRAINAGE AREA. -- 1,505 mi².

PERIOD OF RECORD. -- September 1962 to current year.

GAGE.--Water-stage recorder. Datum of gage is at sea level. Prior to June 6, 1963, nonrecording gage at same site and datum.

REMARKS.--Reservoir is formed by concrete dam. Spillway, with crest at elevation 578.0 ft, is equipped with 4 radial gates 35 ft high by 50 ft wide. Storage began on Sept. 29, 1962, during construction, and water in reservoir first reached minimum power pool, elevation, 600.0 ft, on Mar. 5, 1963. Total capacity at maximum pool elevation, 614 ft, is 98,180 acre-ft of which 78,670 acre-ft is above the spillway crest elevation; 38,200 acre-ft is normally used for power between elevations 600.0 ft, minimum power pool, and 613.0 ft. Capacity at invert of lowest penstock, elevation, 579.75 ft, is 21,010 acre-ft. Figures given herein represent total contents. Reservoir is part of the Smith Mountain Combination Project (see station 02057400).

COOPERATION .-- Records were provided by the American Electric Power.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 98,180 acre-ft, Feb. 1, 1965, elevation, 614.0 ft; minimum (after first filling to minimum power pool), 39,880 acre-ft, Mar. 19, 1963, elevation, 592.0 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 94,960 acre-ft, Jan. 29, elevation, 613.0 ft; minimum, 58,000 acre-ft, Nov. 24, elevation, 600.3 ft.

Date	Elevation (feet)	Contents (acre-feet)	Change in content (acre-feet)
Sept. 30	606.3	74,420	_
Oct. 31	606.8	75,890	+1,470
Nov. 30	601.4	60,950	-14,940
Dec. 31	609.3	83,240	+22,290
CAL YR 1997			+20,680
Jan. 31	603.0	65,240	-18,000
Feb. 28	604.4	68,990	+3,750
Mar. 31	606.4	74,720	+5,730
Apr. 30	604.8	70,060	-4,660
May 31	603.8	67,380	-2,680
June 30	603.4	66,310	-1,070
July 31	605.8	72,950	+6,640
Aug. 31	605.8	72,950	0
Sept. 30	604.4	68,990	-3,960
WTR YR 1998			-5,430

02059400 LEESVILLE LAKE NEAR LEESVILLE, VA--Continued

ROANOKE RIVER BASIN

02067800; 02067820 TALBOTT AND TOWNES RESERVOIRS NEAR KIBLER, VA

LOCATION.--Talbott Dam: Lat 36°40'39", long 80°23'52", Patrick County, Hydrologic Unit 03010103, on Dan River 4.5 mi northeast of Kibler. Townes Dam: Lat 36°41'10", long 80°25'50", Patrick County, Hydrologic Unit 03010103, on Dan River about 4 mi north of Kibler.

DRAINAGE AREA.--Talbott Dam, 20.2 mi²; Townes Dam, 32.9 mi².

PERIOD OF RECORD.--February 1939 to December 1945, January 1948 to September 1960 (published in WSP 1723), and October 1960 to current year.

REMARKS.--The two reservoirs are operated as a unit for storage of water for Pinnacles hydroelectric plant.

Total capacity of Talbott Reservoir, 8,040 acre-ft, and Townes Reservoir, 1,380 acre-ft. Storage began in

Talbott Reservoir on Feb. 13, 1939, and in Townes Reservoir several months earlier.

MONTHEND ELEVATION AND CONTENTS AT 2400, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

COOPERATION. -- Records were provided by the city of Danville.

WTR YR 1998.....

Date	Contents (acre-feet)	Change in contents (acre-feet)
Comb. 20	4.740	
Sept. 30	4,740	- -470
Nov. 30	3,730	-540
Dec. 31	3,540	-190
CAL YR 1997		-4,720
Jan. 31	6,080	+2,540
Feb. 28	7,720	+1,640
Mar. 31	7,080	-640
Apr. 30	6,820	-260
May 31	7,780	+960
June 30	7,360	-420
July 31	6,320	-1,040
Aug. 31	5,990	-330
Sept. 30	5,080	-910

+340

ROANOKE RIVER BASIN

02071900 PHILPOTT LAKE NEAR PHILPOTT, VA

LOCATION.--Lat $36^{\circ}46^{\circ}52^{\circ}$, long $80^{\circ}01^{\circ}40^{\circ}$, Henry County, Hydrologic Unit 03010103, at Philpott Dam on Smith River, 1.5 mi west of Philpott, 12.0 mi upstream from Reed Creek, and at mile 44.3.

DRAINAGE AREA. -- 216 mi².

PERIOD OF RECORD. -- August 1950 to current year.

GAGE. -- Water-stage recorder. Datum of gage is at sea level.

REMARKS.--Reservoir is formed by concrete dam. Spillway, with crest at elevation 985 ft, is ungated and 120 ft long. Storage began August 1950 during construction; initial filling started in December 1951; water in reservoir first reached rule-curve elevation in July 1953. Total capacity at maximum flood-control pool elevation, 998 ft, is 247,400 acre-ft of which 47,000 acre-ft is above the spillway crest; 34,200 acre-ft is controlled flood storage between elevations 974 ft, maximum power pool, and 985 ft; 57,800 acre-ft is available for power between elevations 951 ft, minimum power pool, and 974 ft; and 108,400 acre-ft is inactive and dead storage below elevation 951 ft. Usable capacity is 92,000 acre-ft between elevations 951 ft and 985 ft. Figures given herein represent total contents. Reservoir is used for flood control, hydroelectric power, water supply, low-water regulation for pollution abatement and industrial water supply, and recreation.

COOPERATION.--Records were provided by the U.S. Army Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 191,700 acre-ft, June 22, 1972, elevation, 983.06 ft; minimum (after first filling to rule curve), 64,540 acre-ft, Sept. 26, 1956, elevation, 927.59 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 169,850 acre-ft, Apr. 20, elevation, 975.25 ft; minimum, 140,520 acre-ft, Dec. 19, elevation, 964.64 ft.

Date	Elevation (feet)	Contents (acre-feet)	Change in content (acre-feet)
ept. 30	967.80	148,840	_
ct. 31	965.79	143,510	-5,330
ov. 30	965.31	142,260	-1,250
ec. 31	965.05	141,580	-680
CAL YR 1997			-21,380
an. 31	972.61	162,180	+20,600
eb. 28	974.01	166,220	+4,040
ar. 31	973.89	165,870	-350
pr. 30	973.81	165,640	-230
ay 31	974.24	166,890	+1,250
une 30	973.47	164,660	-2,230
uly 31	971.28	158,420	-6,240
ag. 31	970.67	156,710	-1,710
ept. 30	967.71	148,600	-8,110
WTR YR 1998			-240

02071900 PHILPOTT LAKE NEAR PHILPOTT, VA--Continued

ROANOKE RIVER BASIN

02079490 JOHN H. KERR RESERVOIR NEAR BOYDTON, VA

LOCATION.--Lat 36°35'56", long 78°18'06", Mecklenburg County, Hydrologic Unit 03010102, at John H. Kerr Dam on Roanoke River, 2.7 mi upstream from Allen Creek, 6.7 mi southeast of Boydton, 18 mi upstream from the Virginia-North Carolina State line, and at mile 178.7.

DRAINAGE AREA. -- 7,780 mi², approximately.

PERIOD OF RECORD. -- July 1950 to current year.

GAGE.--Water-stage recorder. Datum of gage is at sea level.

REMARKS.--Reservoir is formed by concrete dam with earth embankments. Spillway, with crest at elevation 288.0 ft, is equipped with 22 radial gates 32 ft high by 42 ft wide. Storage began in September 1950 during construction; initial filling started June 30, 1952; water in reservoir first reached rule-curve elevation in March 1953. Total capacity at top of gates, elevation, 320 ft, is 2,770,000 acre-ft of which 1,281,400 acre-ft is controlled flood storage between elevations 300 ft, top of power pool, and 320 ft; 316,900 acre-ft is available for power between elevations 293.0 ft, bottom of power pool, and 300 ft; 1,171,700 acre-ft is inactive and dead storage below elevation 293.0 ft. Figures given herein represent total contents. Reservoir is used for flood control, hydroelectric power, low-water regulation for navigation and pollution abatement, release of water for downstream fish spawning, water supply, and recreation.

COOPERATION. -- Records were provided by the U.S. Army Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 2,736,460 acre-ft, Apr. 29, 1987, elevation, 319.61 ft; minimum (after first filling to rule curve), 724,700 acre-ft, Feb. 3, 1956, elevation, 280.23 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 2,424,860 acre-ft, Feb. 20, elevation, 315.71 ft; minimum, 1,251,630 acre-ft, Dec. 19, elevation, 294.90 ft.

MONTHEND ELEVATION AND CONTENTS AT 2400, WATER	YEAR OCTOBER 19	97 TO SEPTEMBER	2 1998
Date	Elevation (feet)	Contents (acre-feet)	Change in contents (acre-feet)
Sept. 30	297.25	1,356,750	-
Oct. 31	297.55	1,370,730	+13,980
Nov. 30	296.78	1,335,160	-35,570
Dec. 31	296.29	1,313,010	-22,150
CAL YR 1996			-181,150
Jan. 31	308.73	1,967,910	+654,900
Feb. 28	311.91	2,164,480	+196,570
Mar. 31	310.87	2,098,640	-65,840
Apr. 30	309.08	1,988,860	-109,780
May 31	302.26	1,604,430	-384,430
June 30	298.69	1,424,680	-179,750
July 31	296.50	1,322,500	-102,180
Aug. 31	296.29	1,313,010	-9,490
Sept. 30	294.93	1,252,910	-60,100
WTR YR 1997			-103,840

02079490 JOHN H. KERR RESERVOIR NEAR BOYDTON, VA--Continued

KANAWHA RIVER BASIN

03169000 CLAYTOR RESERVOIR NEAR RADFORD, VA

LOCATION.--Lat 37°04'28", long 80°35'05", Pulaski County, Hydrologic Unit 05050001, at Claytor Dam on New River, 0.5 mi upstream from Little River, and 5.5 mi upstream from Radford.

DRAINAGE AREA.--2,382 mi².

PERIOD OF RECORD. -- May 1939 to current year (monthly figures only).

REVISED RECORDS.--WSP 2108: 1961-65 monthend contents and change in contents.

GAGE.--Water-stage recorder. Datum of gage is approximately at sea level (levels by Appalachian Power Company). Prior to Sept. 11, 1943, nonrecording gage at same site and datum.

REMARKS.--Reservoir is formed by gravity overflow concrete dam. Spillway with crest at elevation 1,818.5 ft is equipped with 9 lift gates 30 ft high by 50 ft wide. Dam completed and storage began May 22, 1939; water in reservoir reached minimum pool elevation in January 1940. Total level-pool capacity at elevation 1,847.0 ft, 1.5 ft below top of gates, is 230,100 acre-ft of which about 100,000 acre-ft is controlled storage above minimum pool elevation of 1,820.0 ft. Reservoir is used for hydroelectric power and recreation. U.S. Army Corps of Engineers satellite elevation telemeter at station.

COOPERATION. -- Records were provided by the American Electric Power.

MONTHEND ELEVATION AND CONTENTS AT 2400, WATER			
Date	Elevation (feet)	Contents (acre-feet)	Change in contents (acre-feet)
Sept. 30	1,845.62	223,900	_
Oct. 31	1,844.88	220,700	-3,200
Iov. 30	1,839.56	197,900	-22,800
ec. 31	1,845.11	221,700	+23,800
CAL YR 1997			-400
an. 31	1,844.59	219,500	-2,200
eb. 28	1,844.58	219,400	-100
ar. 31	1,844.90	220,800	+1,400
pr. 30	1,845.05	221,400	+600
ay 31	1,845.55	223,600	+2,200
une 30	1,845.62	223,900	+300
uly 31	1,845.48	223,300	-600
ug. 31	1,845.42	223,000	-300
ept. 30	1,845.62	223,999	+900
WTR YR 1998			0

03169000 CLAYTOR RESERVOIR NEAR RADFORD, VA--Continued

KANAWHA RIVER BASIN

03170500 LITTLE RIVER RESERVOIR NEAR RADFORD, VA

LOCATION.--Lat 37°04'40", long 80°34'22", Pulaski County, Hydrologic Unit 05050001, on left bank 30 ft upstream from dam, 0.25 mi upstream from mouth of Little River, 3 mi downstream from Meadow Creek, and 4 mi south of Radford.

DRAINAGE AREA.--337 mi².

PERIOD OF RECORD. -- September 1943 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,770 ft above sea level, from topographic map.

REMARKS.--Reservoir is operated for generating power for the city of Radford. Missing record is due to instrument malfunction.

EXTREMES FOR CURRENT YEAR.--Maximum recorded contents, 517 acre-ft, Jan. 8, minimum recorded contents, 6.5 acre-ft, Mar. 23.

RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	104	164	85	107	285	276	120	175	155	126	186	175
2	101	170	101	107	232	265	146	281	171	135	184	170
3	86	146	96	111	141	247	122	285	173	128	171	176
4	177	104	90	108	325	192	182	296	205	118	188	181
5	186	102	97	109	417	144	297	311	194	121	174	185
3	100	102	,	100	11,		257	311	171	121	1,1	103
6	130	92	94	149	399	188	257	290	160	127	181	173
7	102	95	145	147	383	152	179	269	130	122	191	181
8	92	169	84	256	349	117	123	215	160	125	232	243
9	82	175	83	317	341	294	192	277	160	188	316	242
10	120	104	119	289	343	342	315	257	142	200	149	167
11	198	99	95	165	323	285	245	326	204	198	123	176
12	186	93	112	143	369	252	184	292	253	203	162	175
13	121	91	95	134	367		150	184	225	197	183	180
14	87	94	96	114	329		127	264	137	198	188	197
15	90	172	78	144	303		138	253	185	204	192	179
16	74	179	62	356	294		125	196	186	186	186	176
17	136	97	72	300	365		245	199	164	183	218	187
18	193	90	94	239	414		350	175	180	190	183	176
19	191	84	92	136	385		337	156	181	197	183	190
20	112	88	95	131	349		440	166	178	190	182	176
21	80	93	94	107	331		376	144	167	189	190	176
22	86	170	94	106	308		328	162	181	203	175	181
23	84	171	112	142	314		305	151	170	191	185	180
24	84	100	106	282	369	339	293	282	163	181	184	175
25	181	95	107	275	324	296	278	283	177	191	175	162
26	191	95	125	199	303	282	262	234	187	187	178	178
27	160	171	109	133	292	273	239	267	140	184	194	166
28	141	154	107	109	284	262	185	317	129	199	190	163
29	109	154	96	330		238	153	265	134	180	182	164
30	103	142	78	299		172	129	171	152	201	186	167
31	92		105	287		140		158		182	176	
moma r	2070	2752	2010	E021	9238		6000	7201	E142	E404	F707	E 415
TOTAL	3879	3753	3018	5831	330		6822 227	7301 236	5143	5424	5787	5417
MEAN	125	125	97	188					171	175	187	181
MAX	198	179	145	356	417		440	326	253	204	316	243
MIN	74	84	62	106	141		120	144	129	118	123	162

03170500 LITTLE RIVER RESERVOIR NEAR RADFORD, VA--Continued

BIG SANDY RIVER BASIN

03208680 NORTH FORK OF POUND LAKE AT POUND, VA

LOCATION.--Lat 37°07'27", long 82°37'52", Wise County, Hydrologic Unit 05070202, in control tower of North Fork Pound Dam at Pound, 1,200 ft upstream from Stacy Branch, and 1.2 mi upstream from South Fork Pound River.

DRAINAGE AREA. -- 17.2 mi².

PERIOD OF RECORD.--July 1966 to current year. Published as "North Fork Pound River Lake" prior to October 1993.

GAGE.--Water-stage recorder. Datum of gage is at sea level (U.S. Army Corps of Engineers bench mark). Prior to Aug. 29, 1966, nonrecording gage at same site and datum.

REMARKS.--Lake is formed by rockfill dam. Spillway with crest at elevation 1,644.0 ft is in a saddle 350 ft southeast of dam. Except during major floods, all discharge will be through a diversion tunnel, the invert of the entrance of which is at elevation 1,556.5 ft. Storage began in September 1964 during construction with peak discharge affected thereafter; initial filling for regular operation started July 13, 1966. Total capacity at elevation 1,644.0 ft, top of spillway, is 11,290 acre-ft of which 8,110 acre-ft is flood-control storage for summer operations between elevations 1,611.0 ft, top of summer conservation pool, and 1,644.0 ft; an additional 1,290 acre-ft is available for flood control during the period December to March between elevations 1,601.0 ft, top of winter conservation pool, and 1,611.0 ft; contents at established minimum pool, 1,601.0 ft, is 1,900 acre-ft; dead storage is 7 acre-ft below elevation 1,556.5 ft. Figures given herein represent total contents. Lake is used for flood control, low-water augmentation for water-quality control, and recreation. U.S. Army Corps of Engineers satellite precipitation and elevation telemeter at station.

COOPERATION. -- Records were provided by the U.S. Army Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 6,920 acre-ft, Apr. 8, 1977, elevation, 1,629.41 ft; minimum (after initial filling for regular operation), 1,660 acre-ft, Jan. 23, 1969, elevation, 1,598.62 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 5,700 acre-ft, Apr. 20, elevation, 1,624.32 ft; minimum, 1,950 acre-ft, Feb. 2, elevation, 1,601.54 ft.

Date	Elevation (feet)	Contents (acre-feet)	Change in contents (acre-feet)
pt. 30	1,611.35	3,240	_
t. 31	1,606.67	2,570	-670
v. 30	1,601.79	1,980	-590
c. 31	1,601.81	1,980	0
CAL YR 1997			-70
n. 31	1,602.13	2,020	+40
b. 28	1,601.86	1,990	-30
r. 31	1,601.94	2,000	+10
r. 30	1,611.34	3,240	+1,240
y 31	1,611.57	3,270	+30
ne 30	1,611.41	3,250	-20
ly 31	1,611.74	3,300	+50
g. 31	1,611.09	3,200	-100
pt. 30	1,610.28	3,070	-130

03208680 NORTH FORK OF POUND LAKE AT POUND, VA--Continued

BIG SANDY RIVER BASIN

03208990 JOHN W. FLANNAGAN RESERVOIR NEAR HAYSI, VA

LOCATION.--Lat 37°14'00", long 82°20'56", Dickenson County, Hydrologic Unit 05070202, in control tower of John W. Flannagan Dam on Pound River, 1.3 mi upstream from Blacklog Branch, and 3.7 mi northwest of Haysi.

DRAINAGE AREA. -- 221 mi².

PERIOD OF RECORD. -- September 1964 to current year.

GAGE.--Water-stage recorder. Datum of gage is at sea level (U.S. Army Corps of Engineers bench mark). Prior to Mar. 31, 1965, nonrecording gage at same site and datum.

REMARKS.--Reservoir is formed by rockfill dam. Spillway with crest at elevation 1,410.0 ft is in a saddle 0.3 mi upstream from dam and is equipped with 6 radial gates 36 ft high by 42 ft wide. Except during major floods, all discharge will be through a diversion tunnel, the invert of the entrance of which is at elevation 1,230.0 ft. Storage began in September 1961 during construction with peak discharge affected thereafter; initial filling for regular operations started in March 1965. Total capacity at elevation 1,446.0 ft, top of gates, is 145,700 acre-ft of which 78,600 acre-ft is controlled flood storage for summer operations between elevations 1,396.0 ft, top of summer conservation pool, and 1,446.0 ft; an additional 16,500 acre-ft is available for flood control during the period December to March between elevations 1,380.0 ft, top of winter conservation pool, and 1,396.0 ft; contents at established minimum pool, 1,314.0 ft, is 12,000 acre-ft; dead storage is 300 acre-ft below elevation 1,230.0 ft. Figures given herein represent total contents. Reservoir is used for flood control, low-water augmentation for water-quality control, and recreation. U.S. Army Corps of Engineers satellite precipitation and elevation telemeter at station.

COOPERATION. -- Records were provided by the U.S. Army Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 116,500 acre-ft, Apr. 7, 1977, elevation, 1,430.80 ft; minimum (after initial filling for regular operation), 11,800 acre-ft, Apr. 1, 1965, elevation, 1,313.42 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 93,200 acre-ft, Apr. 20, elevation, 1,416.13 ft; minimum, 50,500 acre-ft, Feb. 7, elevation, 1,379.95 ft.

	Date	Elevation (feet)	Contents (acre-feet)	Change in contents (acre-feet)
-		1 225 22	55.200	
	30	1,395.28	66,300	_
Oct.	31	1,387.90	58,300	-8,000
Nov.	30	1,380.52	51,100	-7,200
Dec.	31	1,380.31	50,900	-200
CAL	YR 1997			0
Jan.	31	1,381.66	52,100	+1,200
Feb.	28	1,380.37	50,900	-1,200
Mar.	31	1,380.17	50,700	-200
Apr.	30	1,396.21	67,300	+16,600
May	31	1,396.21	67,300	0
June	30	1,396.46	67,600	+300
July	31	1,395.90	67,000	-600
Aug.	31	1,396.27	67.400	+400
_	30	1,394.07	64,900	-2,500
WTR	YR 1998			-1,400

BIG SANDY RIVER BASIN

03208990 JOHN W. FLANNAGAN RESERVOIR NEAR HAYSI, VA--Continued

01620500 NORTH RIVER NEAR STOKESVILLE, VA

LOCATION.--Lat 38°20'15", long 79°14'25", Augusta County, Hydrologic Unit 02070005, George Washington National Forest, on left bank 575 ft upstream from highway bridge, 2.8 mi upstream from city of Staunton dam, 3.8 mi upstream from Broad Run, 5.0 mi west of Stokesville, and 7.8 mi upstream from Skidmore Fork.

DRAINAGE AREA. -- 17.2 mi².

PERIOD OF RECORD. -- October 1946 to current year.

REVISED RECORDS.--WSP 1903: 1960. WSP 2103: Drainage area. WDR VA-89-1: 1949 (M).

GAGE.--Water-stage recorder. Datum of gage is 2,051.37 ft above sea level. Prior to June 10, 1958, at site 575 ft downstream at datum 6.0 ft lower. Prior to October 25, 1996, at site 400 ft upstream at datum 3.2 ft higher.

REMARKS.--Records fair except those for periods of doubtful or no gage-height record Jan. 8-12, Mar. 24 to May 15, which are poor. Maximum discharge, 9,530 ft³/s, from rating curve extended above 900 ft³/s on basis of computation of peak flow over dam at site 2.8 mi downstream. Maximum gage height, 19.8 ft, from floodmarks, backwater from Elkhorn Lake. Several measurements of water temperature were made during the year. Waterquality records for some prior periods have been collected at this location.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in October 1942 reached a stage of 8.4 ft, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 200 ${\rm ft}^3/{\rm s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 8 Feb. 17	0615 1815	*1,600 838	*6.59 4.64	Mar. 19 Mar. 21	1045 0015	292 586	3.75 4.31
Mar. 9	1445	670	4.43	a			

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

a May have been above base discharge on Apr. 21 and May 9.

Minimum daily discharge, 0.26 ft³/s, Sept. 18.

	DAILY MEAN VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.5 1.1 .98 1.1 1.5	2.6 13 24 22 18	11 10 9.5 9.2 9.1	13 12 13 26 51	40 36 35 68 98	150 113 87 66 53	e38 e37 e42 e58 e88	e54 e63 e72 e83 e95	9.5 8.3 7.4 6.7 6.3	11 9.3 9.5 15	1.3 1.2 1.0 .94 .83	.51 .43 .40 .36
6 7 8 9 10	1.5 1.5 1.4 1.2	15 57 102 82 61	8.8 8.1 7.7 7.4 7.8	65 73 e300 e330 e160	71 55 46 42 45	42 36 120 528 333	e53 e45 e46 e80 e130	e110 e140 e160 e130 e87	6.0 5.6 5.1 4.9 5.1	14 13 13 12 11	.76 .70 .67 .74 e1.2	.33 .36 .49 .42
11 12 13 14 15	.99 .96 .93 .90	47 35 28 24 26	8.5 8.4 8.4 8.8 9.1	e110 e75 54 43 41	54 81 99 81 64	141 80 57 45 37	e90 e70 e57 e48 e40	e70 e62 e53 e47 e38	4.9 5.0 5.4 5.0 6.8	9.4 8.1 7.2 6.6 6.1	.83 .78 .67 .65	.39 .34 .32 .31 .29
16 17 18 19 20	.86 .84 .82 .81	27 24 21 19 16	8.8 8.7 8.4 8.0 7.7	55 61 55 48 40	53 330 443 212 148	30 24 30 255 284	e35 e35 e48 e73 e120	37 59 53 43 35	9.3 8.2 6.3 22 51	5.5 5.2 4.8 4.4 4.1	.79 .94 .92 1.0	.27 .27 .26 .31
21 22 23 24 25	.78 .77 .75 .80	15 15 15 15	7.4 7.3 7.1 7.3 8.8	33 29 42 80 77	124 98 89 73 62	443 177 74 e68 e58	e150 e140 e120 e87 e65	29 24 20 19 16	38 28 21 18 15	3.9 3.6 3.3 3.0 2.7	1.1 1.2 1.5 1.9	.29 .31 .32 .32
26 27 28 29 30 31	.91 .96 1.0 .98 .96	14 14 13 12 11	11 14 16 16 16 15	63 54 64 55 52 46	65 74 112 	e54 e50 e47 e45 e43 e41	e50 e43 e42 e43 e48	14 14 13 11 10	13 11 11 15 13	2.5 2.3 2.1 1.9 1.7	1.5 1.2 .93 .77 .67	.31 .29 .36 .31 .30
TOTAL MEAN MAX MIN CFSM IN.	31.38 1.01 1.5 .75 .06	801.6 26.7 102 2.6 1.55 1.73	299.3 9.65 16 7.1 .56	2220 71.6 330 12 4.16 4.80	2798 99.9 443 35 5.81 6.05	3611 116 528 24 6.77 7.81	2021 67.4 150 35 3.92 4.37	1672 53.9 160 10 3.14 3.62	371.8 12.4 51 4.9 .72 .80	212.8 6.86 15 1.6 .40 .46	30.92 1.00 1.9 .58 .06	10.24 .34 .51 .26 .02

e Estimated.

01620500 NORTH RIVER NEAR STOKESVILLE, VA--Continued

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1947 - 1998, BY WATER YEAR (WY)

	OCT	NOV	DEC	JAN	FE	EΒ	MAR	APR	MAY	JUN	JUL	AUG		SEP
MEAN	14.1	25.8	27.7	35.4	37.5	5	58.3	47.5	35.1	24.5	7.20	8.66		10.0
MAX	90.7	257	99.5	152	99.9	9	230	196	86.4	177	53.1	66.8		157
(WY)	1980	1986	1974	1995	1998	3	1993	1992	1960	1949	1995	1989		1996
MIN	.21	.41	1.29	.74	4.64	Ł	8.21	11.7	5.32	2.37	.87	.26		.25
(WY)	1964	1954	1961	1981	1977	7	1981	1995	1977	1977	1966	1987		1963
SUMMARY	STATISTI	cs	FOR 1	997 CALEND	AR YE	AR	FO	R 1998 WA	TER YEAR		WATER YEA	RS 1947	-	1998
ANNUAL	TOTAL			7224.64				14080.04						
ANNUAL	19.8				38.6			27.6						
HIGHEST	ANNUAL M	IEAN									49.0			1949
LOWEST .	ANNUAL ME	AN									10.4			1981
HIGHEST	DAILY ME	AN		477	Jun	2		528	Mar 9		3300	Nov	5	1985
	DAILY MEA			.69	Sep	8		.26	-		.10	bSep		
	SEVEN-DAY			.78	Sep	3		.28	-		.12			1968
INSTANT.	ANEOUS PE	AK FLOW						1600	Jan 8		9530	Jun	17	1949
INSTANT.	ANEOUS PE	AK STAGE						6.59			c19.80			1985
INSTANT.	ANEOUS LO	W FLOW							dSep 17		.10	Sep	15	1962
ANNUAL	RUNOFF (C	FSM)		1.15				2.24			1.60			
ANNUAL :	RUNOFF (I	NCHES)		15.63				30.45			21.78			
10 PERC	ENT EXCEE	DS		40				88			61			
50 PERC	ENT EXCEE	DS		9.4				14			12			
90 PERC	ENT EXCEE	DS		.93				.72			1.1			

b Also Sept. 16, 19-22, 1962, and Sept. 7-13, 1966. c From floodmarks, backwater from Elkhorn Lake. d Also Sept. 18, 1998.

01621050 MUDDY CREEK AT MOUNT CLINTON, VA

LOCATION.--Lat 38°29'12", long 78°57'40", Rockingham County, Hydrologic Unit 02070005, on right downstream side of bridge on State Highway 726, at Mount Clinton.

DRAINAGE AREA. -- 14.2 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- April 1993 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 1,320 ft above sea level, from topographic map.

REMARKS.--Records good except for period of doubtful gage-height record, May 5, 6, which is fair. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 150 ft³/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 8	0630	*1,330	*6.89	Mar. 19	0015	363	4.82
Feb. 5	1645	170	4.13	Mar. 20	2045	433	5.01
Feb. 17	1430	860	6.02	May 8	0215	165	4.11

Minimun discharge, 1.2 ft³/s, Sept. 20.

		DISCHA	RGE, IN C	UBIC FEET	PER SECON	ND, WATER LY MEAN V		OBER 1997	TO SEPTE	MBER 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	3.3	4.4	3.7	3.4	35	27	22	15	11	9.0	2.5	2.1
2	3.2	4.2	3.4	3.5	32	27	20	23	11	8.5	2.7	2.0
3	3.1	3.3	3.4	3.7	39	25	19	21	11	8.1	2.4	2.1
4	3.0	3.0	3.6	4.4	50	23	29	25	11	7.7	2.4	2.1
5	2.5	2.5	3.4	5.2	123	22	23	e35	11	7.5	2.3	1.7
6	2.3	2.9	3.3	5.1	109	20	20	e26	10	7.0	2.3	2.0
7	2.1	24	3.2	7.7	69	19	19	26	10	6.8	2.3	2.2
8	2.0	18	3.2	249	57	48	19	80	10	7.6	2.4	5.8
9	1.9	7.1	3.3	51	50	74	34	44	10	6.8	2.8	2.5
10	1.9	5.4	3.7	28	47	42	30	34	11	6.4	2.9	2.3
11	2.2	4.7	3.5	22	62	32	24	31	12	6.0	2.9	2.3
12	1.9	4.6	3.3	19	92	29	21	32	12	5.8	2.4	2.2
13	1.7	4.5	3.2	17	64	26	20	27	10	5.6	2.2	2.1
14	1.5	5.6	3.1	15	48	25	19	24	9.8	5.5	3.8	2.2
15	1.7	5.1	3.0	18	38	23	18	22	12	5.2	3.2	2.0
16	1.5	4.9	3.1	21	34	21	17	20	10	5.1	3.3	2.0
17	1.5	4.6	3.0	18	272	20	17	22	9.7	5.3	4.0	2.0
18	1.7	4.4	3.0	16	121	51	15	18	9.2	4.6	3.0	2.1
19	1.4	4.4	3.0	15	67	135	25	17	11	4.4	2.7	2.2
20	1.3	4.2	2.9	14	57	127	27	16	9.7	4.1	2.5	2.3
21	1.4	4.2	2.8	13	43	182	20	15	9.0	3.7	2.5	2.1
22	1.4	4.6	3.0	13	36	80	19	14	10	3.6	2.4	2.2
23	1.6	4.1	3.1	34	48	52	18	14	13	3.9	2.3	2.2
24	2.4	4.0	3.1	27	50	42	17	14	12	3.2	2.1	2.1
25	3.2	4.1	4.2	22	38	35	15	15	9.9	3.1	2.1	2.1
26	2.5	4.1	3.7	19	35	31	15	13	9.4	3.9	1.9	2.1
27	3.0	3.9	3.9	19	32	29	15	13	9.1	3.4	2.1	2.0
28	2.3	3.8	3.8	56	30	27	14	13	11	3.2	2.1	1.9
29	2.1	3.7	3.8	68		25	14	12	13	3.1	2.1	1.7
30	1.8	3.8	3.9	58		23	13	12	10	2.9	2.1	1.6
31	1.9		3.6	44		22		12		3.0	2.2	
TOTAL	65.3	162.1	104.2	909.0	1778	1364	598	705	317.8	164.0	78.9	66.2
MEAN	2.11	5.40	3.36	29.3	63.5	44.0	19.9	22.7	10.6	5.29	2.55	2.21
MAX	3.3	24	4.2	249	272	182	34	80	13	9.0	4.0	5.8
MIN	1.3	2.5	2.8	3.4	30	19	13	12	9.0	2.9	1.9	1.6
CFSM	.15	.38	. 24	2.06	4.47	3.10	1.40	1.60	.75	.37	.18	.16
IN.	.17	.42	.27	2.38	4.66	3.57	1.57	1.85	.83	.43	.21	.17

01621050 MUDDY CREEK AT MOUNT CLINTON, VA--Continued

STATIST	CICS OF M	ONTHLY MEAN	DATA	FOR WATER	YEARS 1993	- 1998,	BY WATER	YEAR (WY)				
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	9.16	8.28	12.3	27.1	26.9	27.8	13.9	12.5	10.9	7.84	10.5	19.9
MAX	22.1	19.3	37.5	66.9	63.5	44.0	19.9	22.7	29.9	16.1	33.8	105
(WY)	1996	1997	1997	1996	1998	1998	1998	1998	1996	1995	1996	1996
MIN	2.07	4.03	2.45	9.43	5.92	6.64	4.08	6.18	5.48	3.16	1.75	1.85
(WY)	1994	1994	1995	1995	1995	1995	1995	1997	1993	1993	1993	1993
SUMMARY	STATIST	ICS	FOR	1997 CAL	ENDAR YEAR	F	'OR 1998 W.	ATER YEAR		WATER YI	EARS 1993	- 1998
ANNUAL	TOTAL			3031.	9		6312.5					
A NINITIA I.	MEAN			Q ·	3.1		17 3			16.2		

ANNUAL TOTAL	3031.9	6312.5	
ANNUAL MEAN	8.31	17.3	16.2
HIGHEST ANNUAL MEAN			30.0 1996
LOWEST ANNUAL MEAN			6.67 1995
HIGHEST DAILY MEAN	138 Mar 3	272 Feb 17	1760 Sep 6 1996
LOWEST DAILY MEAN	1.3 Oct 20	1.3 Oct 20	1.1 Jul 31 1993
ANNUAL SEVEN-DAY MINIMUM	1.5 Oct 16	1.5 Oct 16	1.4 Jul 29 1993
INSTANTANEOUS PEAK FLOW		1330 Jan 8	3850 Sep 6 1996
INSTANTANEOUS PEAK STAGE		6.89 Jan 8	10.37 Sep 6 1996
INSTANTANEOUS LOW FLOW		a1.2 Oct 20	.71 Oct 12 1995
ANNUAL RUNOFF (CFSM)	.58	1.22	1.14
ANNUAL RUNOFF (INCHES)	7.94	16.54	15.47
10 PERCENT EXCEEDS	17	40	28
50 PERCENT EXCEEDS	4.8	7.5	7.9
90 PERCENT EXCEEDS	2.4	2.1	2.3

a Result from unknown flow disruption.

01621050 MUDDY CREEK AT MOUNT CLINTON, VA--Continued (National water-quality assessment station)

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--March 1993 to June 1995, September 1997 to current year.

REMARKS.--These data are a part of the National Water-Quality Assessment (NAWQA) program of the Potomac River Basin.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
OCT 1997												
27	1630	2.4	446	8.0	8.5	12.5	720	10.1	55	21	3.4	7.8
DEC 15 JAN 1998	1700	3.0			5.0	3.5	729		61	22	3.3	3.6
13	1500	17	456	8.0	10.5	10.0	729	10.8	55	21	4.5	4.0
FEB 12 MAR	1345	77	286	8.0	9.0	8.5	719	11.1	33	12	3.2	4.2
16	1415	21	397	8.7	3.5	7.5	738	14.4	49	19	3.8	2.5
APR 14 27 MAY	1445 1200	19 16	359 380	9.1 8.5	17.5 13.0	15.5 14.5	723 730	13.6 11.9	49	18	3.3	2.5
12	1215	36	384	8.2	14.0	13.5	725	9.2	46	17	3.7	4.1
26 JUN	1145	13	431	8.2	29.0	20.0	726	9.5				
10	1345	10	433	8.2	20.0	16.0	729	9.4	53	22	3.6	3.2
25	1100	9.9	437	8.0	28.0	23.0	732	9.5				
JUL 16	1100	5.2	440	8.1	27.5	24.0		9.2				
30	0845	2.7	451	7.8	25.5	20.5	728	7.9				
AUG 11	1330	2.9	431	8.2	28.5	25.5	726	9.7	51	22	3.2	3.7
25	1215	1.8	431	8.2	30.0	25.5	727	10.7	21		3.2	
SEP	1015	0.0	425	0.0	05.5	00.0	505	10 5		0.4	2 2	4.5
28	1215	2.0	437	8.2	27.5	23.0	727	10.5	52	24	3.3	4.7

DATE	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)
OCT 1997 27	11	9.3	<.10	6.8	245	0	201	262	.066	3.00	.073
DEC		5.5	1.10	0.0	213	Ü	201	202	.000	3.00	.075
15 JAN 1998	11	7.7	.10	3.1	260	0	213	266	.033	4.21	<.020
13 FEB	14	10	.11	7.6	218	0	179	261	.014	8.61	<.020
12	12	5.8	<.10	5.3	128	0	105	167	.013	4.92	<.020
MAR 16	11	8.2	<.10	2.6	199	4	169	234	.016	6.38	.023
APR 14	9.8	6.2	<.10	1.8	156	17	156	193	.034	4.54	.049
27											
MAY 12	9.7	6.1	<.10	6.0	203	0	166	219	.044	4.36	.142
26											
JUN 10	9.4	7.3	.12	6.5	233	2	195	254	.317	5.02	.062
25											
JUL									0.50	2 06	006
16									.069	3.86	.086
30											
AUG 11	7.6	6.9	.10	6.9	227	8	200	253	.049	3.14	.061
25	7.0	0.9					200	255	.049	3.14	.001
SEP											
28	7.6	7.3	<.10	6.3				259	.081	2.65	.027

 $^{\,{&}lt;}\,$ Actual value is known to be less than the value shown.

01621050 MUDDY CREEK AT MOUNT CLINTON, VA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DATE	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660)	ACETO- CHLOR, WATER FLTRD REC (UG/L) (49260)	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)
OCT 1997 27	.61	.44	.120	.073	.069	22	34	<.003	<.002	<.002	.057
DEC 15	.45	.35	.059	.063	.059	14	15	<.003	<.002	<.002	.065
JAN 1998 13	.49	.37	.085	.065	.090	<10	15				
FEB 12	1.0	.36	.307	.224	.197	16	11				
MAR 16	.53	.19	.029	<.010	.014	<10	11				
APR 14 27	.55	.26	.050	.024	.033	22	14	<.003 <.003	<.002	<.002 <.002	.058
MAY 12 26 JUN	1.2	.63	.269	.126	.126	31	45 	<.003 <.003	<.002 <.002	<.002 <.002	1.54 .368
10 25 JUL	.44	.24	.060	.040	.044	12	17 	<.003 <.003	<.002 <.002	<.002 <.002	.216 2.14
16 30	.47	.28	.169	.041	.029			<.003 <.003	<.002 <.002	<.002 <.002	.214 .155
11 25	.41	.34	.063	.045	.052	16 	22	<.003 <.003	<.002 <.002	<.002 <.002	.129 .105
SEP 28	.51	.41	.096	.061	.061	32	26	<.003	<.002	<.002	.088
DATE	ALPHA BHC DIS- SOLVED (UG/L) (34253)	BEN- FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	BUTYL- ATE, WATER, DISS, REC (UG/L) (04028)	CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	CARBO- FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674)	CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)	CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)	DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	P,P' DDE DISSOLV (UG/L) (34653)	DI- ELDRIN DIS- SOLVED (UG/L) (39381)
OCT 1997	BHC DIS- SOLVED (UG/L) (34253)	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	ATE, WATER, DISS, REC (UG/L) (04028)	BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674)	PYRIFOS DIS- SOLVED (UG/L) (38933)	ZINE, WATER, DISS, REC (UG/L) (04041)	WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	DDE DISSOLV (UG/L) (34653)	ELDRIN DIS- SOLVED (UG/L) (39381)
	BHC DIS- SOLVED (UG/L)	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L)	ATE, WATER, DISS, REC (UG/L)	BARYL WATER FLTRD 0.7 U GF, REC (UG/L)	FURAN WATER FLTRD 0.7 U GF, REC (UG/L)	PYRIFOS DIS- SOLVED (UG/L)	ZINE, WATER, DISS, REC (UG/L)	WATER FLTRD 0.7 U GF, REC (UG/L)	ATRA- ZINE, WATER, DISS, REC (UG/L)	DDE DISSOLV (UG/L)	ELDRIN DIS- SOLVED (UG/L)
OCT 1997 27 DEC 15 JAN 1998 13	BHC DIS- SOLVED (UG/L) (34253)	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	ATE, WATER, DISS, REC (UG/L) (04028)	BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674)	PYRIFOS DIS- SOLVED (UG/L) (38933)	ZINE, WATER, DISS, REC (UG/L) (04041)	WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	DDE DISSOLV (UG/L) (34653)	ELDRIN DIS- SOLVED (UG/L) (39381)
OCT 1997 27 DEC 15 JAN 1998 13 FEB 12	BHC DIS- SOLVED (UG/L) (34253)	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	ATE, WATER, DISS, REC (UG/L) (04028)	BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674)	PYRIFOS DIS- SOLVED (UG/L) (38933)	ZINE, WATER, DISS, REC (UG/L) (04041)	WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	DDE DISSOLV (UG/L) (34653)	ELDRIN DIS- SOLVED (UG/L) (39381) <.001
OCT 1997 27 DEC 15 JAN 1998 13 FEB 12 MAR 16	BHC DIS- DIS- SOLVED (UG/L) (34253) <.002 <.002	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.002 <.002	ATE, WATER, DISS, REC (UG/L) (04028) <.002	BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.003	FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) <.021 <.003	PYRIFOS DIS- SOLVED (UG/L) (38933) <.004 <.004	ZINE, WATER, DISS, REC (UG/L) (04041) <.004	WATER FLTRD 0.7 U GF, REC (UG/L) (82682) <.002 <.002	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) E.0820	DDE DISSOLV (UG/L) (34653) <.006 <.006	ELDRIN DIS- SOLVED (UG/L) (39381) <.001 <.001
OCT 1997 27 DEC 15 JAN 1998 13 FEB 12 MAR 16 APR 14 27	BHC DIS- SOLVED (UG/L) (34253) <.002 <.002	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.002 <.002	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002	BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.003 <.003	FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) <.021 <.003	PYRIFOS DIS- SOLVED (UG/L) (38933) <.004 <.004	ZINE, WATER, DISS, REC (UG/L) (04041) <.004 	WATER FLTRD 0.7 U GF, REC (UG/L) (82682) <.002 <.002	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) E.0820 E.107	DDE DISSOLV (UG/L) (34653) <.006 <.006	ELDRIN DIS- SOLVED (UG/L) (39381) <.001
OCT 1997 27 DEC 15 JAN 1998 13 FEB 12 MAR 16 APR 14 27 MAY 12	BHC DIS- SOLVED (UG/L) (34253) <.002 <.002 <.002	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.002 <.002	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 <.002	BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.003 <.003 <.003	FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) <.021 <.003 <.003	PYRIFOS DIS- SOLVED (UG/L) (38933) <.004 <.004 <.004 <.004	ZINE, WATER, DISS, REC (UG/L) (04041) <.004 <.004 <.004	WATER FLTRD 0.7 U GF, REC (UG/L) (82682) <.002 <.002	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) E.0820 E.107	DDE DISSOLV (UG/L) (34653) <.006 <.006	ELDRIN DIS- SOLVED (UG/L) (39381) <.001 <.001
OCT 1997 27 DEC 15 JAN 1998 13 FEB 12 MAR 16 APR 14 27 MAY 12 JUN 10 25	BHC DIS- SOLVED (UG/L) (34253) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.002 <.002 	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 	BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.003 <.003 <.003 <.003	FURAN WATER FLITED 0.7 U GF, REC (UG/L) (82674) <.021 <.003 <.003 <.003 <.003	PYRIFOS DIS- SOLVED (UG/L) (38933) <.004 <.004 <.004 <.004 <.004	ZINE, WATER, DISS, REC (UG/L) (04041) <.004 <.004 <.004 <.004 <.004	WATER FLTRD 0.7 U GF, REC (UG/L) (82682) <.002 <.002 <.002 <.002 <.002	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) E.0820 E.107 	DDE DISSOLV (UG/L) (34653) <.006 <.006 <.006 E.0017	ELDRIN DIS- SOLVED (UG/L) (39381) <.001 <.001 <.001 <.001
OCT 1997 27 DEC 15 JAN 1998 13 FEB 12 MAR 16 APR 14 27 MAY 12 JUN 10 25 JUL 16 30	BHC DIS- SOLVED (UG/L) (34253) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.002 <.002 	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002	BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.003 <.003 <.003 <.003 E.0051 <.003 <.003	FURAN WATER FLITED 0.7 U GF, REC (UG/L) (82674) <.021 <.003	PYRIFOS DIS- SOLVED (UG/L) (38933) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004	ZINE, WATER, DISS, REC (UG/L) (04041) <.004 <.004 	WATER FLTRD 0.7 U GF, REC (UG/L) (82682) <.002 <.002 	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) E.0820 E.107 E.112 E.0634 E.107 E.0976	DDE DISSOLV (UG/L) (34653) <.006 <.006 <.006 E.0017 <.006 E.0016	ELDRIN DIS- SOLVED (UG/L) (39381) <.001 <.001 <.001 <.001 <.001 <.001
OCT 1997 27 DEC 15 JAN 1998 13 FEB 12 MAR 16 APR 14 27 MAY 12 MAY 10 25 JUN 10 25 JUL 16	BHC DIS- DIS- SOLVED (UG/L) (34253) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002	BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003	FURAN WATER FLITED 0.7 U GF, REC (UG/L) (82674) <.021 <.003	PYRIFOS DIS- SOLVED (UG/L) (38933) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004	ZINE, WATER, DISS, REC (UG/L) (04041) <.004 <.004 	WATER FLTRD 0.7 U GF, REC (UG/L) (82682) <.002 <.002 	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) E.0820 E.107 E.112 E.0634 E.107 E.0976 E.0947 E.340 E.120	DDE DISSOLV (UG/L) (34653) <.006 <.006 <.006 E.0017 <.006 E.0016 <.006 <.006	ELDRIN DIS- SOLVED (UG/L) (39381) <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001

 $[\]mbox{<}$ Actual value is known to be less than the value shown. \mbox{E} $\mbox{Estimated}.$

01621050 MUDDY CREEK AT MOUNT CLINTON, VA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DATE	DISUL- FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	DI- AZINON, DIS- SOLVED (UG/L) (39572)	EPTC WATER FLTRD 0.7 U GF, REC (UG/L) (82668)	ETHO- PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672)	ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663)	FONOFOS WATER DISS REC (UG/L) (04095)	LINDANE DIS- SOLVED (UG/L) (39341)	LIN- URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666)	METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667)	MOL- INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671)	METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)
OCT 1997 27	<.017	<.002	<.002	<.003	<.004	<.003	<.004	<.002	<.006	<.004	<.001
DEC 15	<.017	<.002	<.002	<.003	<.004	<.003	<.004	<.002	<.006	<.004	<.001
JAN 1998 13											
FEB 12											
MAR 16 APR											
14 27	<.017 <.017	E.001 <.002	<.002 <.002	<.003 <.003	<.004 <.004	<.003 <.003	<.004 <.004	<.002 <.002	<.006 <.006	<.004 <.004	<.001 <.001
MAY 12 26	<.017 <.017	<.002 <.002	<.002 <.002	<.003 <.003	<.004 <.004	<.003 <.003	<.004 <.004	<.002 <.002	<.006 <.006	<.004 <.004	<.001 <.001
JUN 10 25	<.017 <.017	<.002 <.002	<.002 <.002	<.003 <.003	<.004 <.004	<.003 <.003	<.004 <.004	<.002 <.002	<.006 <.006	<.004 <.004	<.001 <.001
JUL 16 30	<.017 <.017	<.002 <.002	<.002 <.002	<.003 <.003	<.004 <.004	<.003 <.003	<.004 <.004	<.002 <.002	<.006 <.006	<.004 <.004	<.001 <.001
AUG 11 25	<.017 <.017	<.002 <.002	<.002 <.002	<.003 <.003	<.004 <.004	<.003	<.004 <.004	<.002 <.002	<.006 <.006	<.004 <.004	<.001 <.001
SEP	<.017	<.002	<.002	<.003	<.004	<.003	<.004	<.002	<.006	<.004	<.001
DATE	DIS-	METO- LACHLOR WATER DISSOLV (UG/L) (39415)	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	PRO- PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	WATER FLTRD 0.7 U	PRON- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	PARA- THION, DIS- SOLVED (UG/L) (39542)	PRO- METON, WATER, DISS, REC (UG/L) (04037)
OCT 1997	THION, DIS- SOLVED (UG/L) (39532)	LACHLOR WATER DISSOLV (UG/L) (39415)	BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	THION, DIS- SOLVED (UG/L) (39542)	METON, WATER, DISS, REC (UG/L) (04037)
OCT 1997 27 DEC 15	THION, DIS- SOLVED (UG/L)	LACHLOR WATER DISSOLV (UG/L)	BUZIN SENCOR WATER DISSOLV (UG/L)	PANIL WATER FLTRD 0.7 U GF, REC (UG/L)	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L)	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L)	PARGITE WATER FLTRD 0.7 U GF, REC (UG/L)	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L)	ULATE WATER FILTRD 0.7 U GF, REC (UG/L)	THION, DIS- SOLVED (UG/L)	METON, WATER, DISS, REC (UG/L)
OCT 1997 27 DEC 15 JAN 1998 13	THION, DIS- SOLVED (UG/L) (39532)	LACHLOR WATER DISSOLV (UG/L) (39415)	BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004	THION, DIS- SOLVED (UG/L) (39542)	METON, WATER, DISS, REC (UG/L) (04037)
OCT 1997 27 DEC 15 JAN 1998 13 FEB 12	THION, DIS- SOLVED (UG/L) (39532) <.005	LACHLOR WATER DISSOLV (UG/L) (39415) .005 <.002	BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.004	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.004 <.004	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.005	PARGITE WATER FLIRD 0.7 U GF, REC (UG/L) (82685) <.013	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004	THION, DIS- SOLVED (UG/L) (39542)	METON, WATER, DISS, REC (UG/L) (04037) <.018
OCT 1997 27 DEC 15 JAN 1998 13 FEB 12 MAR 16	THION, DIS- SOLVED (UG/L) (39532) <.005 <.005	LACHLOR WATER DISSOLV (UG/L) (39415) .005 <.002	BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.004	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.004	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.005 <.005	PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685) <.013	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004	THION, DIS- SOLVED (UG/L) (39542) <.004	METON, WATER, DISS, REC (UG/L) (04037) <.018
OCT 1997 27 DEC 15 JAN 1998 13 FEB 12 MAR 16 APR 14 27	THION, DIS- SOLVED (UG/L) (39532) <.005 <.005	LACHLOR WATER DISSOLV (UG/L) (39415) .005 <.002	BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.004 	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.004	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.005 <.005	PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685) <.013 <.013	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004	THION, DIS- SOLVED (UG/L) (39542) <.004 <.004	METON, WATER, DISS, REC (UG/L) (04037) <.018
OCT 1997 27 DEC 15 JAN 1998 13 FEB 12 MAR 16 APR 14 27 MAY 12	THION, DIS- SOLVED (UG/L) (39532) <.005 <.005	LACHLOR WATER DISSOLV (UG/L) (39415) .005 <.002	BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.004 <.004 <.004	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.004 <.004	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.005 	PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685) <.013 	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004	THION, DIS- SOLVED (UG/L) (39542) <.004 <.004	METON, WATER, DISS, REC (UG/L) (04037) <.018 <.018
OCT 1997 27 DEC 15 JAN 1998 13 FEB 12 MAR 16 APR 14 27 MAY 12 JUN 10 25	THION, DIS- SOLVED (UG/L) (39532) <.005 <.005 <.005 <.005 <.005	LACHLOR WATER DISSOLV (UG/L) (39415) .005 <.002	BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.004 <.004 <.004 <.004 <.004	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.004 <.004 <.004 <.004 <.004	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.005 <.005 	PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685) <.013 <.013 	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 <.003 <.003	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004	THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004 <.004 <.004 <.004	METON, WATER, DISS, REC (UG/L) (04037) <.018 <.018 E.0038 E.0039
OCT 1997 27 DEC 15 JAN 1998 13 FEB 12 MAR 16 APR 14 27 MAY 12 JUN 10 25 JUL 16 30	THION, DIS- SOLVED (UG/L) (39532) <.005 <.005 <.005 <.005 <.005 <.005 <.005	LACHLOR WATER DISSOLV (UG/L) (39415) .005 <.002004 .010 .330 .062	BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.004 <.004 	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.005 <.005 <.005 <.005 <.005 <.005	PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685) <.013 <.013 <.013 <.013 <.013 <.013 <.013	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 <.003 <.003 <.003 <.003	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004 <.004 <.004	THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004	METON, WATER, DISS, REC (UG/L) (04037) <.018 <.018
OCT 1997	THION, DIS- SOLVED (UG/L) (39532) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005	LACHLOR WATER DISSOLV (UG/L) (39415) .005 <.002004 .010 .330 .062 .036 .079	BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.004 <.004 	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005	PARGITE WATER FLITED 0.7 U GF, REC (UG/L) (82685) <.013 <.013	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004	THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004	METON, WATER, DISS, REC (UG/L) (04037) <.018 <.018

 $[\]mbox{<}$ Actual value is known to be less than the value shown. \mbox{E} $\mbox{Estimated}.$

POTOMAC RIVER BASIN

01621050 MUDDY CREEK AT MOUNT CLINTON, VA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DATE	PHORATE WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	PROP- CHLOR, WATER, DISS, REC (UG/L) (04024)	NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	TER- BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678)	TRI- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661)	THIO- BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681)	TER- BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675)	TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670)	SI- MAZINE, WATER, DISS, REC (UG/L) (04035)	SEDI- MENT, SUS- PENDED (MG/L) (80154)
OCT 1997											
27 DEC	<.002	<.007	<.003	<.007	<.001	<.002	<.002	<.013	<.010	.0236	20
15	<.002	<.007	<.003	<.007	<.001	<.002	<.002	<.013	<.010	.0249	18
JAN 1998 13											19
FEB											
12 MAR											52
16											6
APR											
14	<.002	<.007	<.003	<.007	<.001	<.002	<.002	<.013	<.010	.0196	23
27 MAY	<.002	<.007	<.003	<.007	<.001	<.002	<.002	<.013	<.010	.0384	
12	<.002	<.007	<.003	<.007	<.001	<.002	<.002	<.013	E.0048	1.16	64
26	<.002	<.007	<.003	<.007	<.001	<.002	<.002	<.013	E.0065	.169	
JUN 10	<.002	<.007	<.003	<.007	<.001	<.002	<.002	<.013	<.010	.0862	52
25	<.002	<.007	<.003	<.007	<.001	<.002	<.002	<.013	E.0054	1.11	
JUL											
16	<.002	<.007	<.003	<.007	<.001	<.002	<.002	<.013	<.010	.0804	13
30 AUG	<.002	<.007	<.003	<.007	<.001	<.002	<.002	<.013	<.010	.0607	
11	<.002	<.007	<.003	<.007	<.001	<.002	<.002	<.013	<.010	.0553	11
25	<.002	<.007	<.003	<.007	<.001	<.002	<.002	<.013	<.010	.0376	
SEP	0.00	0.05	0.05	0.05	0.01	0.00	000	0.1.5	- 0000	0000	•
28	<.002	<.007	<.003	<.007	<.001	<.002	<.002	<.013	E.0029	.0328	8

 $[\]mbox{<}$ Actual value is known to be less than the value shown. $\mbox{\ensuremath{\texttt{E}}}$ Estimated.

01631000 SOUTH FORK SHENANDOAH RIVER AT FRONT ROYAL, VA

LOCATION.--Lat 38°54'50", long 78°12'40", Warren County, Hydrologic Unit 02070005, on left bank 0.7 mi downstream from bridge on State Highway 619, 1.0 mi west of Front Royal, and 3.5 mi upstream from confluence with North

DRAINAGE AREA.--1,642 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--June 1899 to September 1906, September 1930 to current year. Monthly discharge only for some periods, published in WSP 1302.

REVISED RECORDS.--WSP 951: 1936(M). WSP 1171: 1935(M), 1937(M). WSP 2103: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 469.38 ft above sea level. June 1899 to July 1906, nonrecording gage at site 1.0 mi upstream at different datum.

REMARKS.--No estimated daily discharges. Records good except for period July 28 to Sept. 30, which is fair. Large diurnal fluctuation at low and medium flow caused by powerplants upstream from station prior to 1954; occasional large diurnal fluctuation thereafter. National Weather Service gage-height telemeter at station. Maximum discharge, 130,000 ft³/s, from rating curve extended above 92,000 ft³/s on basis of slope-area measurement of peak flow. Minimum gage height, 0.56 ft, Jan. 30, 1934. Water-quality records for some prior periods have been collected at this location.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1870, that of Oct. 16, 1942.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 8,500 ft³/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Nov. 8	1100	12,900	8.36	Feb. 18	1945	35,300	15.01
Jan. 9	0930	*36,800	*15.42	Feb. 24	2100	9,620	7.04
Jan. 29	1330	17,400	9.90	Mar. 10	1430	10,600	7.46
Feb. 5	2045	30,800	13.82	Mar. 22	0700	18,300	10.18
Feb. 13	0200	12,600	8.23	Apr. 21	0045	9,600	7.03

Minimum discharge, 403 ft³/s, Oct. 12.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	851	649	872	938	6990	5680	2830	1980	1340	1200	594	581
2	642	734	856	905	5640	5860	2660	2100	1260	1060	585	574
3	528	962	842	897	4880	5810	2500	2640	1200	967	576	567
4	487	1170	828	1030	5470	5280	2470	2680	1150	945	572	548
5	445	962	806	1200	21500	4580	2800	4240	1110	1010	567	526
6 7 8 9	447 455 441 439 440	826 3930 11800 9720 5680	790 766 754 755 746	1450 1700 7640 32500 15100	21400 12900 9340 8000 6910	4050 3620 3430 5340 9830	3370 3210 2950 2930 3590	4830 4190 4350 6850 7750	1050 1060 1050 1040 1060	940 918 912 898 895	559 544 538 547 607	498 478 519 500 548
11	435	3820	747	8100	6370	8700	4670	5990	1050	868	706	659
12	417	2870	767	5810	8890	6550	4350	4970	1070	851	683	497
13	432	2100	784	4720	11900	5300	3770	4740	1080	825	660	452
14	452	1820	744	3990	9930	4550	3310	4250	1070	810	629	452
15	448	1740	732	3400	7660	3960	2970	3660	1570	794	618	461
16	455	1690	729	3320	6190	3470	2700	3180	1390	792	608	466
17	450	1520	743	4350	9380	3120	2490	2970	1570	779	707	477
18	478	1380	713	4050	31800	3010	2350	3470	1610	803	750	536
19	472	1280	704	3650	23600	4590	2560	3470	1650	919	890	486
20	482	1190	681	3300	13500	8660	5760	2670	1300	800	1040	527
21	491	1140	687	3010	10900	11000	7980	2330	1640	768	777	595
22	479	1140	683	2540	9050	16300	5620	2080	1470	740	687	620
23	461	1110	700	2630	7770	10400	4450	1860	1380	707	665	609
24	444	1110	696	5220	8770	7320	3740	1760	1260	690	651	588
25	462	1040	737	5760	8580	5850	3270	1810	1280	659	636	575
26 27 28 29 30 31	474 548 628 639 610 562	980 938 906 900 869	756 869 900 914 994 967	5300 4430 7110 15700 11200 8860	7280 6350 5780 	4960 4400 3860 3480 3210 3000	2870 2610 2400 2260 2090	1740 1630 1530 1580 1540 1410	1240 1070 1060 1050 1070	652 654 634 626 620 610	630 612 601 586 586 588	572 523 522 521 500
TOTAL MEAN MAX MIN CFSM IN.	15494 500 851 417 .30 .35	65976 2199 11800 649 1.34 1.49	24262 783 994 681 .48 .55	179810 5800 32500 897 3.53 4.07	296730 10600 31800 4880 6.45 6.72	179170 5780 16300 3000 3.52 4.06	101530 3384 7980 2090 2.06 2.30	100250 3234 7750 1410 1.97 2.27	37200 1240 1650 1040 .76 .84	25346 818 1200 610 .50	19999 645 1040 538 .39 .45	15977 533 659 452 .32 .36

POTOMAC RIVER BASIN

01631000 SOUTH FORK SHENANDOAH RIVER AT FRONT ROYAL, VA--Continued

~						001	1000			/					
STATIS	TICS OF	MONTHLY MEAN	I DATA I	OR WATER	YEARS I	.931	- 1998	, BY WAT	ER Y	(EAR (WY)					
	OCT	NOV	DEC	JAN	FEB	3	MAR	APR		MAY	JUN	JUL	AUG		SEP
MEAN	1165	1237	1495	1953	2260	1	2897	2476		1868	1347	808	949		957
MAX	8678	10130	4795	7876	10600		10300	7963		4807	6586	2876	6807		9631
(WY)	1943	1986	1973	1996	1998		1936	1987		1989	1972	1949	1955		1996
MIN	225	243	268	285	348		632	516		578	393	252	281		314
(WY)	1931	1931	1966	1966	1931		1981	1981		1977	1977	1966	1932		1965
SUMMAR	Y STATIS	rics	FOR	1997 CAL	ENDAR YE	AR	1	FOR 1998	WAT	TER YEAR		WATER	YEARS 193	1 -	1998
ANNUAL	TOTAL			524282				1061744							
ANNUAL	MEAN			1436				2909				1614			
HIGHES	T ANNUAL	MEAN										3189			1996
LOWEST	ANNUAL	MEAN										680			1981
HIGHES	T DAILY	MEAN		11800	Nov	8		32500		Jan 9		114000	Oct	16	1942
LOWEST	DAILY M	EAN		328	Aug	7		417		Oct 12		107	Nov	18	1930
ANNUAL	SEVEN-D	AY MINIMUM		437	Oct	8		437		Oct 8		152	Sep	6	1966
INSTAN	TANEOUS	PEAK FLOW						36800		Jan 9		130000	Oct	16	1942
INSTAN	TANEOUS	PEAK STAGE						15	.42	Jan 9		a34.	.80 Oct	16	1942
INSTAN	TANEOUS	LOW FLOW						403		Oct 12		59	Jan	30	1934
ANNUAL	RUNOFF	(CFSM)		.8	37			1	.77				.98		
ANNUAL	RUNOFF	(INCHES)		11.8	38			24	.05			13.	. 36		
10 PER	CENT EXC	EEDS		2650				7300				3230			
50 PER	CENT EXC	EEDS		988				1110				960			
90 PER	CENT EXC	EEDS		472				522				390			

a From floodmarks.

01631000 SOUTH FORK SHENANDOAH RIVER AT FRONT ROYAL, VA--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- July 1996 to current year.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)
OCT 1997										
30	1530	623	358	8.9	18.0	12.0	750	13.1	124	40
NOV										
08	1515	12600	210	7.6		9.0	741	10.7	95	
20	1010	1150	270	6.6	8.0	9.0	750	11.2	98	
DEC										
16	0830	793	315	7.9	3.0	1.0	752	13.2	94	
JAN 1998										
09	1300	36100	135	6.0	15.0	13.0	739	11.5	113	
10	1015	14600	165	6.2	6.0	10.0	751	10.6	95	
22	1200	2500	245	7.7	1.0	5.0	754	12.4	98	30
*22	1205	2500	245	7.7	1.0	5.0	754	12.4	98	
24	1130	5570	238	8.0	4.0	5.5	744	11.9	97	
29	1100	17100	184	7.0	6.0	3.0	746	12.8	97	
30	1045	10900	182	7.1	6.0	4.0	745	13.0	101	
FEB										
06	1045	21100	142	7.4	5.0	3.0	745	12.1	92	
08	1100	9240	205	7.0	8.0	4.5	749	12.0	94	
*12	1245	8520	212	7.2	12.0	7.0	741	11.2	95	
12	1245	8520	212	7.2	12.0	7.0	741	11.2	95	
18	1045	33000	126	7.5	13.0	6.5	738	11.1	93	
20	1200	13200	136	7.4	12.0	7.0	740	11.7	99	
MAR										
17	0945	3140	220	6.9	5.0	6.0	760	12.4	100	
APR										
16	0930	2730	194	7.7	20.0	16.5	744	10.4	109	24
21	1200	7770	200	7.6	19.7	14.0	753	9.3	91	
MAY										
07	1135	4170	175	6.6	28.0	21.5	747	8.9	103	
13	0900	4760	168	7.1	15.0	15.0	754	10.3	103	
JUN	1120	1.600	204		0.5	00.0			0.4	
17	1130	1670	324	7.6	26.0	23.0	755	7.1	84	
JUL	1200	E 41	200	0.6	26.0	20 5	7.40		0.6	2.17
22	1300	741	329	8.6	36.0	29.5	749	6.4	86	37
AUG	1020	740	222	0 0	27.0	25.0	740	10.0	104	
21	1030	749	332	9.0	27.0	25.0	748	10.0	124	
SEP	1045	404	202	0 0	27.6	25.0	746	11 0	120	
17	1245	424	323	9.0	27.6	25.9	746	11.0	139	

^{*} Replicate sample.

01631000 SOUTH FORK SHENANDOAH RIVER AT FRONT ROYAL, VA--Continued

	MAGNE-		POTAS-	ANC WATER	ALKA- LINITY	ALKA- LINITY	CAR- BONATE	BICAR- BONATE	
	SIUM,	SODIUM,	SIUM,	UNFLTRD	WAT.DIS	WAT DIS	WATER	WATER	SULFATE
	DIS-	DIS-	DIS-	FET	FET	TOT IT	DIS IT	DIS IT	DIS-
	SOLVED	SOLVED	SOLVED	FIELD	LAB	FIELD	FIELD	FIELD	SOLVED
DATE	(MG/L	(MG/L	(MG/L	MG/L AS	CACO3	MG/L AS	MG/L AS	MG/L AS	(MG/L
	AS MG)	AS NA)	AS K)	CACO3	(MG/L)	CACO3	CO3	HCO3	AS SO4)
	(00925)	(00930)	(00935)	(00410)	(29801)	(39086)	(00452)	(00453)	(00945)
OCT 1997									
30	15	14	2.9	156		156	26	138	14
NOV									
08									
20									
DEC									
16									
JAN 1998									
09									
10									
22	7.8	4.8	1.6		91	91	0	111	12
22						91	0	111	
24									
29									
30									
FEB									
06									
08									
12 12									
18									
20 MAR									
17 APR									
16	6.8	3.8	1.5		82	71	6	74	8.2
21		J.0				7 1		7-2	0.2
MAY									
07									
13									
JUN									
17									
JUI.									
22	15	9.2	2.3		150				10
AUG	1.5	٧.٢	2.5		130				10
21									
SEP									
17									
±/									

01631000 SOUTH FORK SHENANDOAH RIVER AT FRONT ROYAL, VA--Continued

				SOLIDS,	NITRO-	NITRO-	NITRO-	NITRO-	NITRO-
	CHLO-	FLUO-	SILICA,	RESIDUE	GEN,	GEN,	GEN,	GEN,	GEN, AM-
	RIDE,	RIDE,	DIS-	AT 180	NITRATE	NITRITE	NO2+NO3	AMMONIA	MONIA +
	DIS-	DIS-	SOLVED	DEG. C	DIS-	DIS-	DIS-	DIS-	ORGANIC
	SOLVED	SOLVED	(MG/L	DIS-	SOLVED	SOLVED	SOLVED	SOLVED	TOTAL
DATE	(MG/L	(MG/L	AS	SOLVED	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L
DAIL	AS CL)	AS F)	SIO2)	(MG/L)	AS N)				
	(00940)	(00950)	(00955)	(70300)	(00618)	(00613)	(00631)	(00608)	(00625)
	(00940)	(00930)	(00933)	(70300)	(00018)	(00013)	(00031)	(00008)	(00023)
OCT 1997									
30	18	.14	.23	207		<.010	1.09	<.020	. 29
NOV									
08					1.04	.024	1.07	.092	.60
20						<.010	1.58	<.020	.12
DEC									
16						<.010	.219	<.020	.18
JAN 1998							,	1.020	
09					.819	.033	.852	.155	2.2
10					.796	.019	.815	.057	1.2
22	7.7	< .10	6.8	140	1.70	.013	1.71	<.020	<.10
22				140	1.66	.013	1.68	<.020	<.10
24					1.70	.019	1.72	<.020	.20
29					1.21	.013	1.72	.096	.47
30					1.05	.012	1.06	.128	.66
					1.05	.010	1.00	.120	.00
FEB 06						<.010	0.60	006	.65
							.862	.086	
08						<.010	1.54	.062	.33
12						<.010	1.64	.060	. 27
12						<.010	1.64	.060	. 27
18						<.010	.790	.063	.31
20						<.010	1.01	.042	.19
MAR									
17					1.55	.041	1.59	<.020	<.10
APR									
16	5.2	<.10	.48	106		<.010	.554	.025	.20
21						<.010	.895	.062	.35
MAY									
07					.860	.011	.871	.033	.41
13					.818	.018	.836	.052	.21
JUN									
17						<.010	1.48	.066	.63
JUL									
22	12	.11	5.2	192	.581	.018	.599	.032	.39
AUG									
21					.906	.016	.922	.033	.29
SEP									
17					.490	.010	.500	.020	.34

< Actual value is known to be less than the value shown.

01631000 SOUTH FORK SHENANDOAH RIVER AT FRONT ROYAL, VA--Continued

	NITRO-				PHOS-			
	GEN, AM-	NITRO-		PHOS-	PHORUS		MANGA-	
	MONIA +	GEN	PHOS-	PHORUS	ORTHO,	IRON,	NESE,	SEDI-
	ORGANIC	DIS-	PHORUS	DIS-	DIS-	DIS-	DIS-	MENT,
	DIS.	SOLVED	TOTAL	SOLVED	SOLVED	SOLVED	SOLVED	SUS-
DATE	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(UG/L	(UG/L	PENDEI
	AS N)	AS N)	AS P)	AS P)	AS P)	AS FE)	AS MN)	(MG/L)
	(00623)	(00602)	(00665)	(00666)	(00671)	(01046)	(01056)	(80154)
OCT 1997								
30	.20	1.3	.174	.169	.174	11	2.2	7
NOV								
08	.27	1.3	.218	.125	.148			129
20	<.10		.107	.080	.100			2
DEC								
16	.12	.34	.073	.043	.055			2
JAN 1998								
09	.52	1.4	.749	.169	.164			755
10	.23	1.0	.354	.075	.075			257
22	<.10		.032	.013	.043	<10	5.4	7
22	<.10		.030	.030	.035			
24	.14	1.9	.051	.048	.057			26
29	.21	1.4	.131	.087	.089			131
30	.34	1.4	.173	.111	.120			73
FEB								
06	.33	1.2	.206	.087	.113			164
08	.24	1.8	.117	.091	.084			37
12	.13	1.8	.082	.055	.055			
12	.13	1.8	.082	.055	.055			31
18	.21	1.0	.105	.065	.072			325
20	.11	1.1	.054	.034	.043			82
MAR	•==		.031	.031	.015			02
17	<.10		.026	.021	.031			7
APR	1.10		.020	.021	.031			,
16	.10	.66	.030	.030	.021	28	<4.0	6
21	.26	1.2	.096	.051	.047			65
MAY	.20	1.2	.050	.031	.047			05
07	.21	1.1	.075	.051	.050			24
13	.16	1.0	.073	.050	.062			27
JUN	.10	1.0	.034	.030	.002			21
17	.28	1.8	.141	.113	.108			22
	.20	1.0	.141	.113	.100			22
JUL	٥٢	0.5	107	077	070	1.5		2
22	.25	.85	.107	.077	.070	15	7.7	3
AUG	0.0		104	112	114			,
21	.22	1.1	.124	.113	.114			4
SEP	2.0	0.0	0.55	0.50	0.55			
17	.30	.80	.065	.062	.057			2

< Actual value is known to be less than the value shown.

01632000 NORTH FORK SHENANDOAH RIVER AT COOTES STORE, VA

LOCATION.--Lat 38°38'13", long 78°51'11", Rockingham County, Hydrologic Unit 02070006, on right bank at Cootes Store, 300 ft upstream from bridge on State Highway 259, and 3.7 mi upstream from Linville Creek.

DRAINAGE AREA. -- 210 mi².

PERIOD OF RECORD. -- February 1925 to current year.

REVISED RECORDS.--WSP 726: 1928-31. WSP 951: 1936, 1939(M). WSP 1171: 1935, 1937, 1938(M). WSP 1502: 1926, 1927-28(M), 1929, 1930-34(M). WSP 2103: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,051.8 ft above mean sea level (U.S. Army Corps of Engineers bench mark). Prior to Nov. 15, 1937, nonrecording gage at same site and datum.

REMARKS.--Records good except for period of no gage-height record, Aug. 27-31, which is fair. National Weather Service gage-height telemeter and Virginia Department of Emergency Services gage-height radio transmitter at station. Maximum discharge, 63,400 ft³/s, from rating curve extended above 9,000 ft³/s on basis of indirect measurement of peak flow. Minimum gage height, 1.74 ft, Sept. 7-10, 1966. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1836, that of Oct. 15, 1942.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 3,500 ft³/s and maximum (*):

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 8 Feb. 17	0815 1930	7,140 *7,620	10.63 *10.97	Mar. 21	0700	3,860	7.83

Minimum discharge, 0.85 ft³/s, Sept. 26-27.

		DISCHA	ARGE, IN	CUBIC FEE		OND, WATE AILY MEAN		TOBER 1997	/ TO SEPT	EMBER 199	8	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	22	31	65	80	598	1160	228	150	34	39	4.1	2.6
2	20	69	60	84	521	812	261	268	30	35	4.0	2.2
3	19	75	54	137	535	667	234	272	27	32	3.8	2.0
4	17	55	51	438	841	515	497	275	25	30	3.6	1.8
5	16	43	47	505	1340	399	698	549	24	28	3.2	1.7
6	15	41	44	403	1120	318	535	790	24	25	3.1	1.6
7	14	1400	41	357	849	275	404	502	22	22	2.9	1.5
8	13	1770	39	4030	713	728	328	1820	21	26	2.8	2.8
9	12	846	38	2160	695	2050	596	1470	21	21	3.3	2.1
10	12	441	39	1160	690	1550	1050	806	25	18	3.8	1.9
11	12	271	41	694	865	850	912	552	24	17	3.9	1.7
12	12	195	42	452	1600	559	629	457	27	15	3.2	1.6
13	11	153	40	338	1510	414	459	423	23	14	3.1	1.6
14	11	156	40	265	1070	337	363	374	36	12	3.5	1.5
15	11	194	39	243	727	279	302	312	38	11	4.4	2.2
16	11	181	39	353	576	233	266	263	181	10	5.8	1.3
17	10	161	39	445	3020	204	231	332	98	9.7	38	1.3
18	11	140	39	407	3200	295	199	252	61	9.0	23	1.8
19	9.8	121	38	346	1830	1760	278	201	59	8.1	15	1.7
20	9.3	105	37	294	1500	1460	1030	164	71	7.5	11	1.8
21	8.9	93	36	245	1270	3180	698	137	53	7.0	8.3	1.5
22	8.9	103	36	217	1010	1520	496	112	44	6.2	7.0	1.5
23	8.5	113	36	765	992	831	382	94	52	5.6	6.2	1.7
24	8.7	111	36	1150	1150	567	309	83	63	5.2	5.2	1.7
25	10	102	48	883	1070	418	254	79	44	4.9	4.6	1.7
26	11	96	73	619	1080	336	216	65	36	4.5	4.2	1.7
27	12	87	84	486	928	292	207	60	31	4.3	e3.9	1.5
28	12	79	87	705	1030	283	177	55	34	4.2	e3.8	1.7
29	11	72	87	674		258	155	48	52	4.0	e3.4	1.5
30	11	69	100	770		223	143	42	53	3.7	e3.2	1.7
31	11		98	741		197		38		4.2	e2.9	
TOTAL	381.1	7373	1593	20446	32330	22970	12537	11045	1333	443.1	198.2	52.9
MEAN	12.3	246	51.4	660	1155	741	418	356	44.4	14.3	6.39	1.76
MAX	22	1770	100	4030	3200	3180	1050	1820	181	39	38	2.8
MIN	8.5	31	36	80	521	197	143	38	21	3.7	2.8	1.3
CFSM	.06	1.17	.24	3.14	5.50	3.53	1.99	1.70	.21	.07	.03	.01
IN.	.07	1.31	.28	3.62	5.73	4.07	2.22	1.96	.24	.08	.04	.01

e Estimated.

01632000 NORTH FORK SHENANDOAH RIVER AT COOTES STORE, VA--Continued

STATISTICS OF	MONTHLY	MEAN	DATA	FOR	WATER	YEARS	1925	_	1998,	BY	WATER	YEAR	(WY)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	128	147	186	223	293	417	348	275	130	64.9	88.2	86.6
MAX	1401	1883	850	1114	1155	1536	1156	964	906	552	697	1582
(WY)	1943	1986	1974	1996	1998	1936	1987	1942	1972	1949	1955	1996
MIN	.76	3.26	3.04	5.13	11.3	38.4	27.7	24.3	6.10	1.60	.52	.66
(WY)	1931	1931	1966	1966	1934	1981	1981	1977	1977	1977	1930	1930

SUMMARY STATISTICS	FOR 1997 CALENDAR YEAR	FOR 1998 WATER YEAR	WATER YEARS 1925 - 1998
ANNUAL TOTAL	49973.9	110702.3	
ANNUAL MEAN	137	303	199
HIGHEST ANNUAL MEAN			463 1996
LOWEST ANNUAL MEAN			58.1 1934
HIGHEST DAILY MEAN	2080 Mar 4	4030 Jan 8	26400 Sep 6 1996
LOWEST DAILY MEAN	4.9 Sep 8	1.3 aSep 16	.20 bAug 28 1957
ANNUAL SEVEN-DAY MINIMUM	5.5 Sep 3	1.6 Sep 16	.27 Sep 3 1966
INSTANTANEOUS PEAK FLOW		7620 Feb 17	63400 Sep 6 1996
INSTANTANEOUS PEAK STAGE		10.97 Feb 17	c27.86 Sep 6 1996
INSTANTANEOUS LOW FLOW		.85 dSep 26	.20 Aug 28 1957
ANNUAL RUNOFF (CFSM)	.65	1.44	.95
ANNUAL RUNOFF (INCHES)	8.85	19.61	12.87
10 PERCENT EXCEEDS	277	872	434
50 PERCENT EXCEEDS	60	63	62
90 PERCENT EXCEEDS	10	3.2	4.6

a Also Sept. 17, 1998. b Also Aug. 29, Sept. 4, 1957, and Sept. 7-10, 1966. c From floodmarks. d Also Sept. 27, 1998.

01634000 NORTH FORK SHENANDOAH RIVER NEAR STRASBURG, VA

LOCATION.--Lat 38°58'36", long 78°20'11", Warren County, Hydrologic Unit 02070006, on right bank at downstream side of bridge on State Highway 55, 1.5 mi southeast of Strasburg, 2.2 mi upstream from Cedar Creek, and 10 mi upstream from confluence with South Fork.

DRAINAGE AREA. -- 768 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- March 1925 to current year.

REVISED RECORDS.--WSP 951: 1936(M). WSP 1001: 1931. WSP 1171: 1929(M), 1933(M), 1936-37. WSP 1302: 1928(M), 1930(M). WSP 2103: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 494.03 ft above sea level. Prior to Sept. 21, 1930, nonrecording gage at same site and datum.

REMARKS.--No estimated daily discharges. Records good. Large diurnal fluctuation at low and medium flow from unknown cause. Water-level elevations at the site were affected during the 1992-93 water years by construction of a new bridge about 50 ft downstream from the gage. National Weather Service gage-height telemeter at station. Maximum discharge, 114,000 ft³/s, from rating curve extended above 46,000 ft³/s. Minimum gage height, 1.52 ft, Feb. 9, 1934. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage since at least 1870, that of Sept. 7, 1996.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 6,000 ft³/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 9	0500	*14,000	*14.90	Mar. 19	1930	8,230	10.77
Feb. 5 Feb. 18	1930 1630	8,260 13,500	10.80 14.56	Mar. 21	2245	9,850	12.03

Minimum discharge, 103 ft³/s, Sept. 24.

		DISCHA	ARGE, IN	CUBIC FEE		OND, WATE		TOBER 199	7 TO SEPTI	EMBER 199	8	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	211	167	253	286	2510	2500	1140	747	439	370	159	128
2	185	197	244	266	2060	2480	1320	850	419	344	149	124
3	160	204	235	265	1810	2120	1260	1080	399	316	149	122
4	146	278	222	314	2040	1890	1220	1100	384	303	143	120
5	141	241	213	651	6260	1630	1770	1400	369	298	141	120
6	140	210	206	985	6520	1430	1850	1770	364	287	133	121
7	139	855	197	858	4360	1290	1550	1790	358	283	132	121
8	137	4120	190	2770	3300	1290	1340	1830	351	280	131	142
9	135	3200	189	10300	2890	2750	1390	4110	346	274	133	134
10	133	1690	191	4660	2560	4810	2320	2880	360	265	151	131
11	129	1070	191	2680	2380	3150	2610	2030	360	262	197	129
12	128	755	193	1890	3170	2190	2170	1750	375	242	169	144
13	126	584	194	1450	4080	1780	1740	1680	424	234	175	137
14	127	511	189	1190	3330	1530	1470	1510	458	229	189	132
15	131	481	183	1030	2590	1390	1310	1340	600	225	188	129
16	117	514	181	1150	2070	1240	1190	1190	1260	218	175	126
17	122	486	178	1460	2100	1120	1110	1140	778	215	212	121
18	126	438	175	1460	8610	1140	1030	1220	595	211	211	140
19	125	394	173	1280	6020	4650	994	1000	485	206	202	124
20	126	356	170	1120	4180	5030	1940	879	423	203	222	125
21	127	334	171	979	3500	6740	2600	788	418	198	201	134
22	126	339	169	858	2940	6980	1910	712	388	191	186	133
23	119	334	169	1010	2600	3840	1550	651	622	186	177	129
24	118	331	171	2880	3350	2690	1340	610	540	181	169	114
25	126	315	192	2720	3650	2150	1180	671	441	174	164	124
26	129	300	198	2100	3020	1820	1050	613	398	171	155	132
27	139	283	252	1670	2720	1620	969	568	348	167	142	154
28	141	277	275	2460	2430	1480	914	532	334	165	135	117
29	150	262	283	5010		1380	838	515	335	166	133	117
30	143	258	295	3560		1280	770	488	350	163	130	119
31	132		290	3150		1180		463		164	128	
TOTAL	4234	19784	6432	62462	97050	76570	43845	37907	13721	7191	5081	3843
MEAN	137	659	207	2015	3466	2470	1462	1223	457	232	164	128
MAX	211	4120	295	10300	8610	6980	2610	4110	1260	370	222	154
MIN	117	167	169	265	1810	1120	770	463	334	163	128	114
CFSM	.18	.86	.27	2.62	4.51	3.22	1.90	1.59	.60	.30	.21	.17
IN.	.21	.96	.31	3.03	4.70	3.71	2.12	1.84	.66	.35	.25	.19

10.81

1280

319

113

POTOMAC RIVER BASIN

01634000 NORTH FORK SHENANDOAH RIVER NEAR STRASBURG, VA--Continued

STATISTICS	OF	MONTHLY	MEAN	DATA	FOR	WATER	YEARS	1925	- 1998.	BY	WATER	YEAR	(WY)

9.49

1030

315

134

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	406	425	542	707	888	1161	985	769	474	299	359	320
MAX	3488	2813	1955	3394	3466	5017	2876	1821	2234	1169	2510	3838
(WY)	1943	1986	1973	1996	1998	1936	1993	1988	1972	1949	1955	1996
MIN	58.9	75.8	82.0	86.4	94.0	183	183	154	115	76.4	66.7	67.1
(WY)	1931	1931	1932	1966	1931	1931	1981	1969	1977	1977	1930	1986
SUMMAR	Y STATIST	ICS	FOR :	1997 CALE	NDAR YEAR	F	OR 1998	WATER YEAR		WATER YEA	RS 1925	- 1998
ANNUAL	TOTAL			195824			378120					
ANNUAL	MEAN			537			1036			611		
HIGHEST	T ANNUAL I	MEAN								1360		1996
LOWEST	ANNUAL M	EAN								226		1934
HIGHEST	T DAILY M	EAN		8170	Mar 4		10300	Jan 9		60700	Sep	7 1996
LOWEST	DAILY ME	AN		107	aSep 7		114	Sep 24		35	b0ct	15 1985
ANNUAL	SEVEN-DA	Y MINIMUM		117	Sep 21		122	Sep 1		45	Sep	13 1986
INSTAN	TANEOUS P	EAK FLOW					14000	Jan 9		114000	Sep	7 1996
INSTANT	TANEOUS P	EAK STAGE					14.	90 Jan 9		32.27	Sep	7 1996
INSTAN	TANEOUS L	OW FLOW					103	Sep 24		6.0	Feb	9 1934
ANNUAL	RUNOFF (CFSM)		.7	0		1.	35		.80		

18.32

2720

360

131

ANNUAL RUNOFF (INCHES)

10 PERCENT EXCEEDS 50 PERCENT EXCEEDS

90 PERCENT EXCEEDS

a Also Sept. 8, 1997. b Also Sept. 14, 18, 1986.

01634000 NORTH FORK SHENANDOAH RIVER AT STRASBURG, VA--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- July 1996 to current year.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)
OCT 1997												
30	1050	144	449	8.9	15.0	10.0	751	13.9	125	56	20	8.5
NOV												
08	1245	4420	240	7.0		9.0	740	10.3	92			
20	1215	355	340	7.7	10.0	7.7	751	13.9	118			
DEC												
16	1030	181	390	7.9	3.0	2.0	751	13.3	98			
JAN 1998	1515	0.000	1.40		15.0	14.0	7.40	10.0	100			
09	1515	8730	140	7.7	15.0	14.0	740	10.2	102			
10	1220	4750	165	5.9	9.0	9.0	750	10.4	91			
22 *22	1600	839 839	295 295	7.9	2.0	4.5	753	13.2	103 103	40	9.4	4.6
24	1605 1430	3480	295 380	7.9 8.1	2.0 4.0	4.5 5.0	753 744	13.2 11.6	93			
29	1345	5020	163	7.1	10.0	3.5	744	12.9	100			
30	1250	3670	215	7.1	8.0	4.5	743	12.9	96			
FEB	1230	3070	213	7.2	0.0	4.5	743	12.1	90			
06	1330	6370	200	7.8	5.0	4.5	745	12.2	96			
08	1315	3240	210	7.1	11.0	5.5	747	15.2	123			
*12	1000	2660	265	7.0	13.0	6.0	739	11.9	99			
12	1000	2660	265	7.0	13.0	6.0	739	11.9	99			
18	1315	12200	204	7.8	15.0	6.5	737	11.7	98			
20	1430	4030	172	7.7	13.0	7.0	740	11.6	98			
MAR												
17	1120	1050	290	6.8	2.0	5.0	760	11.9	93			
APR												
16	1430	1110	270	7.6	28.0	16.1	741	11.2	117	35	9.0	3.8
21	1430	2450	250	7.9	18.0	14.5	750	10.3	103			
MAY												
07	0940	1780	240	7.3	26.0	22.0	747	11.1	130			
13	1130	1660	250	7.4	16.0	14.5	752	10.0	99			
JUN												
17	1315	678	354	8.0	25.0	23.0	753	7.8	92			
JUL	1500	105	256	0 6	26.0	00 5		10.0	3.64	20	0.0	
22 AUG	1500	185	356	8.6	36.0	29.5	746	12.2	164	38	20	7.9
AUG 21	1230	1190	430	8.8	29.0	24.5	748	12.0	147			
ZI SEP	1230	1190	430	8.8	∠9.U	24.5	748	12.0	14/			
17	1115	121	438	8.4	28.1	24.9	746	9.2	114			

^{*} Replicate sample.

01634000 NORTH FORK SHENANDOAH RIVER AT STRASBURG, VA--Continued

		ALKA-	ALKA-	CAR-	BICAR-					SOLIDS,	NITRO-	NITRO-
	POTAS-	LINITY	LINITY	BONATE	BONATE		CHLO-	FLUO-	SILICA,	RESIDUE	GEN,	GEN,
	SIUM,	WAT.DIS	WAT DIS	WATER	WATER	SULFATE	RIDE,	RIDE,	DIS-	AT 180	NITRATE	NITRITE
	DIS-	FET	TOT IT	DIS IT	DIS IT	DIS-	DIS-	DIS-	SOLVED	DEG. C	DIS-	DIS-
	SOLVED	LAB	FIELD	FIELD	FIELD	SOLVED	SOLVED	SOLVED	(MG/L	DIS-	SOLVED	SOLVED
DATE	(MG/L	CACO3	MG/L AS	MG/L AS	MG/L AS	(MG/L	(MG/L	(MG/L	AS	SOLVED	(MG/L	(MG/L
	AS K)	(MG/L)	CACO3	CO3	HCO3	AS SO4)	AS CL)	AS F)	SIO2)	(MG/L)	AS N)	AS N)
	(00935)	(29801)	(39086)	(00452)	(00453)	(00945)	(00940)	(00950)	(00955)	(70300)	(00618)	(00613)
0.0m 100F												
OCT 1997	2.0	200	100	1.0	204	20	16	1.2	1.77	055	1 00	016
30 NOV	3.0	200	198	18	204	20	16	.13	.17	255	1.92	.016
08											1.18	.025
20											1.10	<.010
DEC												<.010
16												<.010
JAN 1998												<.010
09											1.01	.029
10											1.38	.025
22	1.8	120	111	0	135	16	8.5	<.10	5.9	173	2.26	.023
22											2.23	.017
24											2.19	.017
29											1.19	.014
30											1.45	.013
FEB											1.15	.013
06												<.010
08												<.010
12												<.010
12												<.010
18												<.010
20												<.010
MAR												
17											2.08	.033
APR												
16	1.7	110	103			12	6.2	<.10	.68	147		<.010
21												<.010
MAY												
07											1.35	.015
13											1.38	.019
JUN												
17												<.010
JUL												
22	2.5	150				16	13	.10	4.3	217	.930	.020
AUG												
21											1.54	.024
SEP												
17											.879	.016

 $[\]mbox{\ensuremath{$<$}}$ Actual value is known to be less than the value shown.

01634000 NORTH FORK SHENANDOAH RIVER AT STRASBURG, VA--Continued

DATE	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	NITRO- GEN DIS- SOLVED (MG/L AS N) (00602)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS-PHORUS DIS-SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	SEDI- MENT, SUS- PENDED (MG/L) (80154)
OCT 1997											
30		<.020	.30	.18	2.1	.100	.103	.135	9.7	2.4	
NOV	1.71	1.020	.50	.10	2.1	.100	.105	.133	J.,	2.1	
08	1.21		1.7	.35	1.6	.369	.094	.098			215
20	2.92	<.020	.16	.10	3.0	.093	.080	.100			3
DEC											
16	.483	<.020	.17	.13	.61	.088	.062	.079			4
JAN 1998											
09	1.04	.071	1.7	.40	1.4	.446	.111	.104			287
10	1.40	.060	.87	.30	1.7	.216	.095	.083			86
22	2.28	<.020	<.10	<.10		.036	.017	.052	<10	7.0	25
22	2.25	<.020	<.10	<.10		.032	.019	.042			
24	2.20	<.020	.40	.18	2.4	.102	.054	.074			24
29	1.21	.088	.46	.29	1.5	.188	.073	.078			83
30	1.46	.073	.53	.28	1.7	.145	.092	.096			46
FEB	1 04	207	1 1		1 0	274	1.64	212			0.0
06 08	1.24 1.89	.287	1.1	.66 .23	1.9 2.1	.274 .121	.164 .092	.213 .096			82 25
12	2.04	.038	.17	.13	2.1	.057	.054	.054			
12	2.04	.038	.17	.13	2.2	.057	.054	.054			14
18	1.59	.064	.45	.28	1.9	.137	.100	.102			402
20	1.36	.037	.15	.10	1.5	.040	.034	.042			41
MAR	1.50	.057			1.5	.010	.031	.012			
17	2.11	<.020	.10	.10	2.2	.020	.020	.029			5
APR											
16	1.03	.025	.20	.14	1.2	.032	.021	.020	24	4.6	8
21	1.37	.044	.36	.26	1.6	.056	.031	.028			37
MAY											
07	1.37	.044	.40	.23	1.6	.070	.047	.048			28
13	1.40	.050	.25	.18	1.6	.055	.061	.059			15
JUN											
17	1.86	.225	.65	.51	2.4	.169	.143	.145			35
JUL											
22	.950	.038	.37	.26	1.2	.039	.040	.032	11	5.1	4
AUG											_
21	1.56	.037	.28	.23	1.8	.166	.148	.153			3
SEP	0.5-	0.55	4.5	2.7	1.6		105	105			_
17	.895	<.020	.46	.31	1.2	.144	.137	.135			1

< Actual value is known to be less than the value shown.

THIS IS A BLANK PAGE

01653000 CAMERON RUN AT ALEXANDRIA, VA

LOCATION.--Lat 38°48'23", long 77°06'36", Fairfax County, Hydrologic Unit 02070010, on left downstream side of Norfolk Southern Railway bridge at Alexandria, 800 ft downstream from confluence of Holmes Run and Backlick Run, 0.5 mi east of the U.S. Army Quartermaster Depot, and 3.4 mi upstream from mouth.

DRAINAGE AREA. -- 33.7 mi².

PERIOD OF RECORD.--June 1955 to March 1979, October 1979 to September 1980, October 1980 to September 1986 (annual maximum only), October 1986 to current year.

GAGE.--Water-stage recorder. Gage reinstalled Nov. 8, 1979. Datum of gage is 31.07 ft above sea level. Prior to Sept. 20, 1965, at present site at datum 7.78 ft higher. Sept. 20, 1965, to Jan. 19, 1976, at present site at datum 5.44 ft higher. Jan. 20, 1976, to Nov. 8, 1976, at site 1,200 ft downstream at datum 10.00 ft lower. Nov. 9, 1976, to Mar. 31, 1979, at site 0.5 mi downstream at datum 7.22 ft lower.

REMARKS.--Records good except for period of doubtful gage-height record, Oct. 1-20, which is fair. Some regulation by Lake Barcroft, formerly Alexandria Reservoir, on Holmes Run 3.6 mi upstream, usable capacity 2,092 acre-ft. Maximum discharge, 19,900 ft³/s, from rating curve extended above 2,500 ft³/s on basis of culvert computations of peak flow for main channel and bypass channels. Several measurements of water temperature were made during the year. Water-quality records for some periods have been collected at this location.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 3,230 ${\rm ft}^3/{\rm s}$, Feb. 17, gage height, 6.28 ft; minimum daily, 3.5 ${\rm ft}^3/{\rm s}$, Sept. 6.

	DAILY MEAN VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	e8.0	95	14	15	27	32	80	84	16	16	11	5.0
2	e6.0	45	12	15	22	90	63	130	10	12	9.0	5.6
3	e4.2	19	11	14	43	153	28	152	13	11	8.4	4.1
4	e4.2	12	13	16	446	44	121	98	10	10	7.5	4.2
5	e4.2	11	15	14	418	32	38	117	9.9	9.9	7.1	3.9
_												
6	e4.0	10	12	14	109	29	27	140	11	9.4	6.8	3.5
7	e3.7	364	11	33	58	36	23	59	10	9.4	6.8	3.6
8	e3.7	203	11	55	41	208	29	203	10	120	6.5	29
9	e3.7	142	13	27	32	391	267	76	22	25	6.6	5.3
10	e3.9	34	40	15	28	74	76	49	39	12	28	4.6
11	e4.5	19	29	13	56	42	39	78	23	10	13	4.6
12	e4.8	15	14	13	84	35	31	175	166	9.4	9.1	4.0
13	e4.9	27	13	14	32	31	26	75	112	9.4	7.5	4.0
14	e5.8	140	12	12	23	30	30	36	35	9.4	6.6	3.7
15	e16	39	12	122	22	26	26	32	344	9.2	6.1	3.8
16	e24	18	11	88	24	24	25	32	124	9.0	5.6	3.9
17	e55	14	11	27	295	22	105	23	31	18	43	6.3
18	e250	13	11	28	247	149	34	18	18	16	20	6.0
19	e170	12	11	20	64	304	124	20	14	7.6	9.4	4.5
20	e14	12	11	19	46	170	81	25	37	7.6	6.1	4.0
20	011				10	2,0		23	<i>3 ,</i>			1.0
21	11	45	11	14	33	494	32	14	14	9.4	6.4	4.7
22	9.6	99	21	13	29	122	27	12	102	18	6.8	111
23	10	25	48	486	248	61	25	15	198	89	6.8	9.7
24	12	14	21	107	306	44	21	15	158	31	6.0	7.3
25	168	12	128	59	77	37	22	39	26	10	6.0	7.5
26	193	12	24	32	45	37	21	14	17	8.6	6.0	7.0
27	83	12	49	62	38	32	31	13	13	7.8	6.0	6.0
28	15	13	46	565	35	30	19	13	65	8.5	9.1	5.9
29	12	12	23	115		29	20	13	16	8.1	5.5	5.2
30	11	13	49	48		27	21	13	14	31	5.1	6.1
31	10		25	32		25		12		68	4.7	
TOTAL	1129.2	1501	732	2107	2928	2860	1512	1795	1677.9	629.7	292.5	284.0
MEAN	36.4	50.0	23.6	68.0	105	92.3	50.4	57.9	55.9	20.3	9.44	9.47
MAX	250	364	128	565	446	494	267	203	344	120	43	111
MIN	3.7	10	11	12	22	22	19	12	9.9	7.6	4.7	3.5
												.28
CFSM	1.08	1.48	.70 .81	2.02	3.10	2.74	1.50	1.72 1.98	1.66	.60	.28	
IN.	1.25	1.66	.81	2.33	3.23	3.16	1.67	1.98	1.85	.70	.32	.31

e Estimated.

01653000 CAMERON RUN AT ALEXANDRIA, VA--Continued

STATISTICS OF	MONTHI.V	MEAN	$D\Delta T\Delta$	FOR	MATER	VEARS	1956	- 1978	1980	1987	_ 1998	RV	WATER	VEAR	(WV)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	32.5	31.8	39.6	43.7	47.2	55.7	41.6	39.4	36.2	46.7	36.1	30.6
MAX	147	80.5	99.2	157	128	132	81.8	117	265	662	364	172
(WY)	1984	1964	1970	1978	1979	1993	1970	1989	1972	1981	1981	1975
MIN	4.52	4.40	3.47	10.0	15.6	19.9	10.6	8.59	7.93	2.51	3.85	5.31
(WY)	1964	1966	1966	1966	1968	1966	1969	1956	1956	1957	1957	1977
SUMMARY	STATIST:	ICS	FOR 1	1997 CALEN	IDAR YEAR	F	OR 1998 WA	ATER YEAR		WATER YEA	ARS 1956	- 1998
ANNUAL	TOTAL			11841.2			17448.3					
ANNUAL	MEAN			32.4			47.8			37.1		
HIGHEST	r annual i	MEAN								64.4		1972
LOWEST	ANNUAL MI	EAN								21.4		1995
HIGHEST	C DAILY M	EAN		425	May 26		565	Jan 28		3680	Jun 🤄	22 1972
LOWEST	DAILY ME	AN		3.7	aOct 7		3.5	Sep 6		1.1	bSep :	22 1964
ANNUAL	SEVEN-DAY	MUMINIM Y		3.9	Oct 4		3.9	Oct 4		1.3	Sep :	21 1964
INSTANT	TANEOUS PI	EAK FLOW					3230	Feb 17		19900	Jun 🤄	22 1972
INSTANT	TANEOUS PI	EAK STAGE					6.28	B Feb 17		18.14	Jun :	22 1972
INSTANT	TANEOUS LO	OW FLOW					3.5	cSep 5		1.1	dAug :	15 1957
ANNUAL	RUNOFF (CFSM)		.96	;		1.42	2		1.10		
ANNUAL	RUNOFF (INCHES)		13.07	,		19.26	5		14.98		
10 PERC	CENT EXCE	EDS		66			123			80		
50 PERC	CENT EXCE	EDS		18			19			16		
90 PERC	CENT EXCE	EDS		7.2			6.0			4.9		

a Also Oct. 8, 9, 1997. b Also Sept. 23-25, 1964. c Also Sept. 6-7, 14, 15-16, 1998. c Also Sept. 22-25, 1964.

01656100 CEDAR RUN NEAR ADEN, VA

LOCATION.--Lat. 38°36'58", long 77°33'16", Prince William County, Hydrologic unit 02070010, on left bank 1000 feet upstream side of bridge on State Highway 611, 0.5 mi downstream from Darrels Run, 0.7 mi downstream from Town Run, and 3.0 miles southeast of Aden.

DRAINAGE AREA.--155 mi²

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1972 to November 1987, August 1996 to current year.

GAGE.--Water-stage recorder. Datum of gage is 166.27 ft above sea level.

REMARKS.--Records fair. October 1972 to November 1987, water-stage recorder at site 800 ft downstream at same datum.

COOPERATION.--Records provided by Virginia Water Control Board from October 1972 to November 1987.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in June 1972 reached a stage of 21.37 ft, from floodmarks, discharge not determined.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 3,800 ft^3/s and maximum (*):

REVISION.--The maximum discharge for water year 1997 has been revised to 7,990 ${\rm ft}^3/{\rm s}$, Oct. 19, 1996, gage height, 14.89 ft.

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft
Nov. 8	0115	4,050	12.75	Feb. 5	0600	5,660	13.94
Jan. 23	2400	3,960	12.66	Feb. 18	1100	4,220	12.92
Jan. 28	1845	4,960	13.57	Mar. 21	1030	*6,770	*14.43

Minimum daily discharge, 0.16 ft^3/s , Sept. 11.

		DISCHARGE	, IN C	CUBIC FEET	PER SECOND DAILY	, WATER MEAN VA		ER 1997 :	TO SEPTEM	BER 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	6.9 3.7 3.2 2.9 3.1	97 179 111 45 32	56 49 38 37 43	e115 102 116 120 109	226 187 168 1980 4700	163 177 569 238 182	118 314 155 184 222	63 227 496 363 230	37 34 24 20 19	41 30 22 17 14	3.3 2.8 2.6 1.7	.87 .92 1.3 .61 .43
6 7 8 9 10	2.6 2.4 2.6 2.2 1.9	22 1440 2390 527 250	45 37 33 30 33	100 143 366 282 185	1490 812 439 290 224	153 135 795 1710 579	149 124 112 362 744	231 158 1650 872 370	18 17 15 15 33	13 11 11 14 14	1.4 1.2 1.2 2.1	.49 .44 .40 .30
11 12 13 14 15	1.7 1.9 2.4 2.0 2.4	165 128 105 321 271	67 62 51 44 39	143 121 118 110 180	198 371 230 177 151	284 204 166 152 133	276 189 152 133 127	298 711 564 287 198	63 53 118 248 275	11 8.3 6.8 5.3 4.8	1.6 1.6 1.9 1.8	.16 .17 .21 .21
16 17 18 19 20	2.7 3.4 59 30 11	160 117 93 79 68	36 37 37 34 31	788 322 271 203 184	136 1150 3170 781 408	119 112 293 2150 775	114 133 155 125 498	149 123 98 78 64	1200 287 152 103 79	4.5 4.5 4.7 4.9 3.9	1.9 1.8 2.4 2.0	.21 .31 42 12 2.5
21 22 23 24 25	6.5 4.6 4.3 4.4	64 197 150 123 95	26 26 63 72 328	144 128 1810 1900 585	311 220 798 1700 512	4770 1420 606 327 244	223 157 132 120 100	54 46 38 36 73	53 42 137 335 107	2.9 2.1 2.4 20 14	1.1 .94 1.3 1.2	.99 .87 .73 .62
26 27 28 29 30 31	25 70 31 15 11 7.9	77 66 54 48 47	213 162 223 168 171 175	309 247 3340 2540 635 319	302 215 175 	201 175 154 144 124 107	85 79 78 66 57	62 44 41 37 31 27	59 40 51 76 52	6.5 4.5 4.2 2.9 2.6 2.8	.93 1.4 1.2 .98 1.0	.83 2.1 .70 .64 .64
TOTAL MEAN MAX MIN CFSM IN.	338.7 10.9 70 1.7 .07	7521 251 2390 22 1.62 1.81	2466 79.5 328 26 .51 .59	16035 517 3340 100 3.34 3.85	21521 769 4700 136 4.96 5.17	17361 560 4770 107 3.61 4.17	5483 183 744 57 1.18 1.32	7719 249 1650 27 1.61 1.85	3762 125 1200 15 .81 .90	310.6 10.0 41 2.1 .06 .07	50.25 1.62 3.3 .90 .01	72.65 2.42 42 .16 .02 .02

e Estimated.

01656100 CEDAR RUN NEAR ADEN, VA--Continued

STATISTICS OF MONTHLY MEA	N DATA FOR WATER	YEARS 1973	- 1987,	1997 - 19	998 BY WAT	ER YEAR	(WY)		
OCT NOV	DEC JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN 137 151	267 301	359	308	266	118	74.7	39.0	71.7	134
MAX 924 584	668 893	908	786	1088	384	353	192	336	958
(WY) 1980 1973	1973 1978	1979	1984	1983	1978	1982	1975	1984	1975
MIN 1.61 10.0	8.55 5.96	58.7	27.8	29.7	17.2	4.78	2.55	1.14	1.32
(WY) 1987 1975	1981 1981	1977	1981	1981	1977	1977	1985	1987	1980
SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES)	FOR 1997 CALE 39616.2 109 2390 1.2 1.8	NOV 8 Sep 27 Sep 3		82640.20 226 4770 .16 .19 6770 14.43 .16 1.46	Mar 21 5 Sep 11 9 aSep 10 Mar 21 15 Sep 10 Mar 21 16 Sep 10 Mar 21 16 Sep 10 5		184 313 52.0 10400 .16 .19 14900 15.29 .16 1.18 16.09	Feb 2 Sep 1 aSep 1 Oct	
10 PERCENT EXCEEDS	227			497			340		
50 PERCENT EXCEEDS	46			66			50		
90 PERCENT EXCEEDS	2.6			1.3			3.0		

a Also Sept. 11, 12, 1998.

01656100 CEDAR RUN NEAR ADEN, VA--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- October 1996 to current year.

DATE	TIME	GAGE HEIGHT (FEET) (00065)	SEDI- MENT, SUS- PENDED (MG/L) (80154)
OCT 1997 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 16 16 17 18 19 20 21 22 21 22 23 24 25 26 27 28 29 30 31 NOV 1997	1200 1200 1200 1200 1200 1200 1200 1200	2.00 1.88 1.87 1.86 1.85 1.83 1.84 1.79 1.80 1.83 1.80 1.82 1.81 1.79 1.80 1.82 1.81 1.81 1.81 1.81 1.83 1.84 2.93 2.37 2.10 1.97 1.90 1.89 1.90 1.96 2.28 3.15 2.41 2.17 2.08 2.01	8 11 12 4 6 8 13 6 9 13 12 12 9 8 12 12 19 18 9 23 12 13 14 95 8 7
01 01 01 01 02 02 02 02 03 04 05 06 07 07 07 07 08 08 08 08 09 09 10	1200 1815 2215 0215 0615 1200 2215 0215 1200 1200 1200 1200 145 1745 1745 1745 1200 1345 1745 1200 1345 1745 1200 1345 1745 1200 1345 1745 1200 1345 1745 1200 1345	2.14 3.50 4.71 4.10 3.68 3.36 3.50 3.50 3.50 3.61 7.25 9.18 10.94 12.02 12.56 12.24 10.22 9.65 7.88 5.88 5.88 5.88 4.16 3.94 3.70	14 71 94 42 24 29 24 17 9 14 11 6 83 422 363 374 145 87 45 77 37 38 25 27 14 10 11 14

DATE	TIME	GAGE HEIGHT (FEET) (00065)	SEDI- MENT, SUS- PENDED (MG/L) (80154)
NOV 1997 11 12 13 14 14 14 14 15 15 15 20 21 22 22 22 22 23 24 26 26 26 26 27 28 29	1200 1200 0430 0830 1200 1230 1630 2030 0030 0430 1200 1230 1200 1200 12100 1200 12100	3.47 3.17 2.99 3.46 4.10 4.47 4.50 4.76 4.90 4.71 4.36 3.95 3.93 3.60 3.38 2.72 2.66 3.48 3.48 3.48 3.50 3.28 3.15 2.88 2.88 2.88 2.88 2.77 2.70 2.59 2.55	10 12 14 23 34 29 35 27 30 24 23 15 17 12 10 21 11 43 43 16 22 13 15 8 11 5
30 DEC 1997 01 02 03 04 05 06 07 08 10 11 12 16 19 21 22 23 24 25 25 25 25 25 26 26 26 27	1200 1200 1200 1200 1200 1200 1200 1200	2.54 2.63 2.57 2.45 2.45 2.51 2.52 2.44 2.39 2.36 2.39 2.78 2.66 2.42 2.40 2.37 2.30 2.31 2.63 2.73 3.46 4.86 4.97 4.94 4.62 4.29 4.05 3.66 3.64 3.48 3.28 3.46	8 12 8 17 12 21 13 11 20 18 9 12 6 43 23 6 8 5 8 16 44 61 46 53 42 35 27 22 25 20 13 19

DATE	TIME	GAGE HEIGHT (FEET) (00065)	SEDI- MENT, SUS- PENDED (MG/L) (80154)
DEC 1997 28 28 28 30 30 31 31 31	0000 0400 1200 0000 1200 1630 2030 0030 0430 1145 1200	3.74 3.92 3.75 3.57 3.39 3.45 3.57 3.66 3.61 3.45 3.44	13 16 12 14 10 23 15 13 8 10
JAN 1998 02 03 04 05 06 07 08 08 08 08 09 09 09 09 10 11 12 13 14 15 16 16 16 16 17 17 17 18 18 19 18 19 19 22 23 23 23	1200 1200 1200 1200 1200 1200 1200 1200	2.91 3.07 3.09 2.99 2.93 3.21 3.45 3.96 4.62 4.56 4.38 4.39 4.59 4.47 4.14 4.14 4.12 4.02 3.91 3.73 3.56 3.49 3.23 3.07 3.06 2.98 2.87 3.47 6.07 7.20 6.89 6.12 5.99 5.51 4.58 4.20 4.08 4.06 4.09 4.07 3.59 3.57 3.53 3.14 3.49 5.69 8.95	42 9 4 8 10 15 8 23 36 38 27 32 35 23 22 333 21 21 17 15 13 10 7 10 10 3 8 90 164 142 88 69 54 50 22 18 18 18 18 18 18 18 18 18 18
23 23	1715 2115	11.46 12.35	309 193

DATE	TIME	GAGE HEIGHT (FEET) (00065)	SEDI- MENT, SUS- PENDED (MG/L) (80154)
JAN 1998 24 24 24 24 24 24 24 24 25 25 25 25 25 25 27 27 28 28 28 29 29 29 29 30 30 30 31 5EB 1998	0115 0515 0915 1025 1030 1200 1315 1715 2115 0515 0915 1200 1200 1200 2400 0400 0400 1200 1200	12.42 11.72 9.51 8.85 8.84 8.42 7.92 7.34 6.27 6.06 6.21 5.99 5.55 5.30 4.74 4.41 4.00 3.84 12.17 12.94 13.40 13.31 13.03 12.09 9.92 7.86 6.21 5.66 5.64 5.64 5.64 5.64 5.23 4.30 4.02	102 62 54 58 37 52 57 46 34 30 25 23 21 20 11 15 120 122 132 90 69 49 54 46 45 39 28 31 32 34 36 37 37 37 37 37 37 37 37 37 37
03 03 03 04 04 04 04 04 04 05 05 05 05 06 06 06 06 06	1200 1315 0145 0545 0945 1200 1257 1300 1312 1345 1745 2145 0145 0945 1200 1235 1345 0145 0145 0145 0145 0145 0145 0145 01	3.46 3.45 3.52 3.78 7.34 9.36 9.90 9.95 10.03 10.36 11.80 12.88 13.54 13.75 13.79 13.64 13.50 13.35 12.86 12.11 10.65 8.69 7.51 7.40 7.17 7.04 7.26 7.52	8 6 5 33 160 124 162 23 172 172 144 126 95 87 67 60 42 49 33 29 35 38 28 23 32 26 25 27

DATE	TIME	GAGE HEIGHT (FEET) (00065)	SEDI- MENT, SUS- PENDED (MG/L) (80154)
DATE FEB 1998 07 07 07 07 07 07 08 08 09 10 11 11 12 12 12 12 12 13 13 14 17 17 17 17 17 18 18 18 18 18 18 19 19 19 19 19 19 19 20 20 21 21 21 21 22 21 22 21 22	0145 0545 0945 1200 2145 1200 2145 1200 2145 1200 2145 1200 2145 0145 0145 0945 1200 1345 1200 1200 1345 1200 1200 1345 1200 1200 1345 1200 1200 1200 1345 1360 1360 1360 1360 1360 1360 1360 1360	HEIGHT (FEET) (00065) 7.20 6.78 6.41 6.18 5.91 5.54 5.23 5.03 4.98 4.50 4.12 3.99 3.78 3.77 3.61 3.69 4.28 4.86 4.85 4.73 4.63 4.41 4.06 3.85 3.68 3.52 4.80 7.19 10.46 11.11 12.19 12.52 12.86 12.66 12.59 12.31 10.33 7.90 6.89 6.63 6.25 6.14 6.00 5.71 5.28 5.00 4.78 4.63 4.63 4.71 4.58 4.33 4.60 4.71 4.58 4.33 4.28 3.78	PENDED (MG/L)
23 24 24 25 25 25	1200 1200 1630 2030 0030 0430 1200 1630	3.77 8.83 7.49 6.51 6.01 5.64 5.15 4.95	27 40 39 36 28 26 19

DATE	TIME	GAGE HEIGHT (FEET) (00065)	SEDI- MENT, SUS- PENDEI (MG/L)
FEB 1998 26 26 27 27 27 28 28	0430 1200 1630 0430 1200 1230 0830 1200	4.41 4.29 4.23 4.04 3.79 3.78 3.62 3.61	12 11 6 8 10 10 8
18 18 19 19 19 19 19 19 19 19 19 19	1530 1930 2330 0330 0730 1115 1130 1200 1530 1930 2330	4.96 4.60 4.39 7.96 10.62 11.43 11.27 11.48 11.37 9.35 7.21	28 22 33 219 289 144 152 98 81 49

DATE	TIME	GAGE HEIGHT (FEET) (00065)	SEDI- MENT, SUS- PENDEI (MG/L)
MAR 1998 20 20 20 21 21 21 21 21 22 22 22 22 22 23 24 24 24 25 26 27 28 29 30	0330 1200 1530 1945 2345 0745 1145 1200 1545 1245 0745 1145 1200 1545 1200 1545 1200 1200 1200 1200 1200 1200 1200 120	6.23 5.37 5.19 5.64 10.27 13.03 14.16 14.08 14.03 13.48 12.66 11.54 9.64 8.19 7.32 7.30 6.90 6.57 5.88 5.50 4.90 4.41 4.30 3.90 3.81 3.67 3.60 3.52 3.39 3.45 3.30 3.18	38 30 17 26 366 328 271 191 107 96 52 44 47 48 40 45 37 34 32 28 24 19 12 23 11 14 11 16 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10
31 APR 1998 01 02 02 03 04 04 04 05 05 05 06 07 08 09 09 10 11 11 12 12 13 14 15	1200 1200 2230 1200 1830 0230 1200 1530 1200 1230 0230 1200 1200 1230 030 1200 030	3.02 2.95 3.49 4.21 3.79 3.49 3.30 3.24 3.45 4.05 4.15 3.96 3.67 3.47 3.25 3.07 2.98 2.97 3.04 3.47 6.68 7.17 5.85 5.32 4.39 3.96 3.77 3.50 3.45 3.26 3.13 3.10 2.98	6 8 14 61 53 23 18 11 14 16 14 13 12 14 15 10 9 55 131 94 63 34 20 16 10 12 10 7

DATE	TIME	GAGE HEIGHT (FEET) (00065)	SEDI- MENT, SUS- PENDED (MG/L) (80154)
APR 1998 17 17 18 19 20 20 20 20 21 21 21 21 21 22 22 22 23 24 22 22 23 24 25 26 27 28 29 MAY 1998	1200 2000 1200 1200 1200 1330 0330 0730 1130 1200 1530 1930 2330 0730 1130 1200 1530 1930 2330 1010 1015 1200 1200 1200 1200 1200 120	3.03 3.45 3.30 3.01 3.45 5.60 5.90 5.18 5.11 4.69 4.36 4.10 3.90 3.77 3.68 3.67 3.60 3.53 3.45 3.42 3.42 3.29 3.13 3.04 2.87 2.79 2.79 2.74 2.75 2.65 2.58	9 15 9 9 31 76 66 49 40 40 29 26 20 19 14 18 12 9 7 10 8 8 10 11 11 7 8 10 10
01 02 02 02 02 02 03 03 03 03 03 04 04 04 04 05 05 05 06 06 06 07 08 08 08 08	1200 0115 0515 0915 1200 1315 1715 2015 0015 0415 0815 1200 1215 1615 2015 0415 0815 1200 1215 1615 2015 0415 0815 1200 1215 1615 22015 0415 0815 1200 0415 0815 1200 0415 0815 1200 1215 1200 1215 1200 1215 1200 1215 1200 1215 1200 1215 1200 1215 1200 1215 1200 1215 1200 1215 1200 1215 1200 1215 1200 1215 1200 1215 1200 12330 1330 1330 1330 1330 1330 133	2.55 3.51 4.09 3.75 3.60 3.55 3.45 5.75 6.46 5.26 4.60 4.57 4.22 4.00 3.87 5.40 4.78 4.42 4.41 4.17 3.99 3.86 3.75 3.70 3.85 3.75 3.70 3.85 3.75 3.70 3.87 3.70 3.87 3.70 3.87 3.70 3.87 3.70 3.87 3.70 3.87 3.70 3.87 3.70 3.87 3.70 3.87 3.70 3.87 3.70 3.87 3.70 3.87 3.70 3.87 3.70 3.87 3.70 3.87 3.70 3.87 3.70 3.87 3.70 3.87 3.70 3.87 3.87 3.87 3.87 3.87 3.87 3.87 3.87	10 40 32 20 20 12 9 16 123 72 58 40 31 26 33 24 28 25 35 35 35 28 24 19 16 12 15 15 12 15 16 12 17 18 18 19 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18

DATE	TIME	GAGE HEIGHT (FEET) (00065)	SEDI- MENT, SUS- PENDED (MG/L) (80154)
MAY 1998 09 09 09 10 11 11 11 12 12 12 13 13 13 13 14 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	0330 0730 1130 1200 1330 1200 1330 0530 0930 1200 1330 0530 0945 0955 1200 1730 0530 1200 1200 1200 1200 1200 1200 1200 12	7.40 6.72 6.27 6.22 4.80 4.45 4.10 4.16 4.27 4.26 5.17 6.09 6.51 7.10 6.82 6.20 5.75 5.46 5.46 5.45 5.21 4.83 4.21 4.07 3.96 3.63 3.57 3.27 3.08 2.89 2.74 2.62 2.54 2.47 2.38 2.37 2.661 2.44 2.43 2.38 2.30 2.25	45 41 34 33 21 15 11 18 19 25 45 47 65 47 21 17 21 17 19 11 12 15 11 7 8 11 19 11 19 11 19 11 11 11 11 11 11 11
JUN 1998 01 02 03 04 05 06 07 08 09 11 12 13 14 14 14 14 15 15	1200 1200 1200 1200 1200 1200 1200 1200	2.24 2.31 2.20 2.15 2.13 2.10 2.05 2.02 2.13 2.57 2.46 2.49 3.52 4.96 4.54 3.65 3.65 3.64 2.89 3.62 9.03	12 17 14 5 8 7 9 5 11 8 12 13 97 291 140 80 50 155 18 299 322

DATE	TIME	GAGE HEIGHT (FEET) (00065)	SEDI- MENT, SUS- PENDED (MG/L) (80154)
JUN 1998 16 16 16 16 16 16 17 17 17 18 19 20 21 22 23 24 24 24 24 24 24 24 24 24 25 26 27 28 29	0400 0800 1143 1147 1150 1200 2400 0400 1200 1200 1200 1200 120	9.57 9.16 7.00 7.00 6.75 6.76 6.76 4.76 4.36 4.21 4.18 4.00 3.49 3.30 2.97 2.79 2.56 2.43 3.45 3.18 3.45 3.18 3.45 3.18 3.51 2.97 2.61 2.43 2.48 2.77	271 189 74 75 80 69 75 41 37 32 24 27 29 23 18 15 13 10 27 18 210 115 111 61 70 70 79 27 14 15 18 18
30 JUL 1998 01 02 03 04 05 06 07 08 09 11 12 13 14 15 16 17 18 20 22 22 22 23 24 25 26 27 28 29 30 31	1200 1200 1200 1200 1200 1200 1200 120	2.56 2.44 2.30 2.20 2.12 2.04 2.05 1.98 1.98 2.09 2.07 2.00 1.92 1.88 1.83 1.80 1.80 1.80 1.80 1.82 1.78 1.82 1.82 1.78 1.82 1.82 1.78 1.82 1.82 1.77 1.71 2.48 2.08 1.88 1.88 1.82 1.76 1.76 1.76	23 9 16 19 9 14 9 8 9 11 8 10 7 11 5 8 4 3 5 6 5 9 14 11 11 11 11 11 11 11 11 11

DATE	TIME	GAGE HEIGHT (FEET) (00065)	SEDI- MENT, SUS- PENDEI (MG/L)
AUG 1998 01 02 03 04 05 06 07 08 09 11 11 11 11 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	1200 1200 1200 1200 1200 1200 1200 1200	1.76 1.76 1.76 1.77 1.69 1.67 1.63 1.69 1.70 1.78 1.67 1.78 1.67 1.66 1.67 1.70 1.70 1.72 1.67 1.69 1.67 1.68 1.64 1.61 1.65 1.65 1.65 1.65 1.65 1.65 1.65	8 9 13 10 6 7 6 5 3 9 4 17 10 6 4 3 7 4 10 8 9 6 8 8 9 15 6 8 8 9 8 9 8 9 8 9 8 9 8 8 9 8 9 8 9 8
31 SEP 1998 01 02 03 04 05 06 07 16	1200 1200 1200 1200 1200 1200 1200 1200	1.73 1.67 1.67 1.73 1.60 1.55 1.60 1.61 1.61	8 4 5 5 6 4 4 6 3 2 3

DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		OCTOBER		N	OVEMBER		DE	CEMBER	
1 2 3 4 5	6.9 3.7 3.2 2.9 3.1	2 3 3 1 2	.04 .03 .02 .01	97 179 111 45 32	11 9 4 4 3	6.2 4.5 1.2 .45 .25	56 49 38 37 43	4 4 6 6 8	.67 .47 .62 .56
6 7 8 9 10	2.6 2.4 2.6 2.2 1.9	2 3 2 2 4	.02 .02 .01 .01	22 1440 2390 527 250	2 54 16 7 4	.13 321 120 11 2.7	45 37 33 30 33	5 5 8 7 5	.65 .54 .73 .61
11 12 13 14 15	1.7 1.9 2.4 2.0 2.4	3 3 2 2 2 3	.01 .01 .01 .01	165 128 105 321 271	3 4 5 9 6	1.6 1.4 1.5 8.4 4.6	67 62 51 44 39	5 3 3 3	.83 .54 .41 .35
16 17 18 19 20	2.7 3.4 59 30 11	2 5 5 4 5	.02 .04 .86 .28	160 117 93 79 68	3 3 4 5 6	1.4 .85 1.0 1.1	36 37 37 34 31	3 3 3 3	.29 .30 .30 .27
21 22 23 24 25	6.5 4.6 4.3 4.4	5 4 6 3 6	.08 .05 .06 .04	64 197 150 123 95	6 9 5 3 3	1.0 4.6 1.9 1.1	26 26 63 72 328	4 3 4 9 23	.26 .23 .76 1.8
26 27 28 29 30 31	25 70 31 15 11 7.9	7 17 3 2 2 2	.47 3.5 .28 .08 .06	77 66 54 48 47	3 3 4 2 3	.72 .56 .51 .30 .39	213 162 223 168 171 175	12 8 7 7 7 6	7.0 3.6 4.4 3.1 3.3 2.6
TOTAL	338.7		6.54	7521		502.45	2466		58.06
		JANUARY		F	FEBRUARY			MARCH	
1 2 3 4 5	e115 102 116 120 109	6 5 3 5	e1.9 1.5 1.4 .82 1.4	226 187 168 1980 4700	21 11 6 76 42	13 5.8 2.6 535 565	163 177 569 238 182	7 8 40 15 10	3.1 3.9 70 10 5.0
6 7 8 9 10	100 143 366 282 185	6 8 19 12 7	1.7 3.0 19 9.3 3.4	1490 812 439 290 224	21 13 8 8 8	89 30 10 6.2 1.9	153 135 795 1710 579	8 4 36 44 16	3.2 1.6 145 207 26
11 12 13 14 15	143 121 118 110 180	4 6 5 3 25	1.7 1.9 1.7 .77	198 371 230 177 151	4 10 4 5 5	2.2 11 2.5 2.4 1.9	284 204 166 152 133	9 7 6 5 6	7.0 3.8 2.6 1.9 2.2
16 17 18 19 20	788 322 271 203 184	47 11 7 5 5	116 10 4.9 3.0 2.6	136 1150 3170 781 408	4 88 114 32 18	1.3 460 1090 68 20	119 112 293 2150 775	5 5 25 121 50	1.6 1.5 21 747 174
21 22 23 24 25	144 128 1810 1900 585	6 7 111 37 19	2.3 2.4 759 227 30	311 220 798 1700 512	13 9 36 41 17	203 24	4770 1420 606 327 244	174 41 28 16 17	2270 160 47 15 12
26 27 28 29 30 31	309 247 3340 2540 635 319	13 17 90 52 35 26	11 12 897 389 60 23	302 215 175 	8 7 8 	6.6 4.3 3.5 	201 175 154 144 124 107	13 16 18 15 11 8	7.3 7.6 7.4 5.8 3.7 2.2
TOTAL	16035		2626.69	21521		3318.6	17361		3975.4

e Estimated.

POTOMAC RIVER BASIN 01656100 CEDAR RUN NEAR ADEN, VA--Continued

DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		APRIL			MAY			JUNE	
1	118	11	3.7	63	21	4.1	37	19	2.1
2	314	58	52	227	36	27	34	20	1.8
3	155	22	9.2	496	67	109	24	14	.90
4	184	16	8.0	363	36	36	20	6	.34
5	222	16	9.4	230	20	12	19	8	.41
6	149	13	5.2	231	22	13	18	8	.38
7	124	11	3.8	158	23	9.6	17	9	.41
8	112	12	3.5	1650	149	697	15	5	.23
9	362	52	115	872	47	120	15	6	.22
10	744	64	167	370	22	22	33	10	.89
11	276	19	14	298	20	16	63	9	1.5
12	189	14	6.9	711	57	124	53	12	1.7
13	152	10	4.1	564	29	47	118	49	38
14	133	12	4.3	287	18	14	248	83	73
15	127	9	3.2	198	15	8.1	275	96	176
16	114	9	2.9	149	10	3.9	1200	128	582
17	133	14	5.3	123	10	3.4	287	27	21
18	155	13	5.6	98	13	3.5	152	23	9.7
19	125	19	6.6	78	12	2.5	103	18	5.0
20	498	64	95	64	15	2.5	79	15	3.2
21	223	22	14	54	22	3.1	53	13	1.9
22	157	11	4.7	46	21	2.7	42	13	1.6
23	132	11	4.1	38	18	1.8	137	48	17
24	120	14	4.4	36	20	2.0	335	90	88
25	100	15	4.0	73	22	4.7	107	29	8.8
26	85	14	3.3	62	17	2.9	59	15	2.4
27	79	11	2.3	44	14	1.7	40	15	1.6
28	78	11	2.4	41	15	1.6	51	21	3.2
29	66	14	2.4	37	18	1.8	76	20	4.2
30	57	14	2.2	31	17	1.4	52	20	2.8
31				27	17	1.2			
TOTAL	5483		568.5	7719		1299.5	3762		1050.28

		MEAN			MEAN			MEAN	
	MEAN	CONCEN-	SEDIMENT	MEAN	CONCEN-	SEDIMENT	MEAN	CONCEN-	SEDIMENT
	DISCHARGE	TRATION	DISCHARGE	DISCHARGE	TRATION	DISCHARGE	DISCHARGE	TRATION	DISCHARGE
DAY	(CFS)	(MG/L)	(TONS/DAY)	(CFS)	(MG/L)	(TONS/DAY)	(CFS)	(MG/L)	(TONS/DAY)
		JULY			AUGUST		SI	EPTEMBER	
1	41	11	1.2	3.3	8	.08	.87	5	.01
2	30	15	1.2	2.8	9	.07	.92	5	.01
3	22	17	1.0	2.6	12	.08	1.3	5	.02
4	17	10	.49	1.7	10	.05	.61	6	.01
5	14	13	.47	1.6	7	.03	.43	4	.00
_	1.0		2.4		_	0.0	4.0		0.1
6	13	9	.34	1.4	7	.03	.49	4	.01
7	11	8	. 24	1.2	6	.02	.44	6	.01
8	11	9	.27	1.2	5	.01	.40	7	.01
9	14	10	.39	2.1	4	.02	.30	8	.01
10	14	9	.32	2.1	7	.04	.19	6	.00
11	11	10	.28	1.6	5	.02	.16	6	.00
12	8.3	10	.21	1.6	4	.02	.17	6	.00
13	6.8	8	.14	1.9	3	.02	.21	6	.00
14	5.3	9	.14	1.8	6	.03	.21	6	.00
15	4.8	5	.07	1.4	5	.02	.21	6	.00
16	4.5	3	.04	1.9	9	.05	.21	4	.00
17	4.5	5	.06	1.8	8	.04	.31	6	.01
18	4.7	7	.09	2.4	8	.05	42	9	1.1
19	4.9	4	.06	2.0	7	.04	12	9	.27
20	3.9	3	.03	1.8	8	.04	2.5	5	.04
21	2.9	4	.03	1.1	12	.04	.99	5	.01
22	2.1	5	.03	.94	7	.02	.87	6	.01
		9	.06		8			5	
23	2.4			1.3		.03	.73		.01
24	20	16	1.0	1.2	8	.03	.62	6	.01
25	14	16	.65	.90	6	.01	.60	5	.01
26	6.5	14	.24	.93	8	.02	.83	7	.02
27	4.5	11	.14	1.4	7	.03	2.1	12	.07
28	4.2	11	.12	1.2	5	.02	.70	6	.01
29	2.9	9	.07	.98	8	.02	.64	5	.01
30	2.6	8	.05	1.0	7	.02	.64	5	.01
31	2.8	10	.08	1.1	7	.02			
TOTAL	310.6		9.51	50.25		1.02	72.65		1.68
				50.25		1.02	,2.03		1.00
YEAR	82640.20		13418.23						

01656120 CEDAR RUN AT ROUTE 646 NEAR ADEN, VA

LOCATION.--Lat. 38°38'29", long 77°30'46", Prince William County, Hydrologic unit 02070010, on left bank at upstream side of bridge on State Highway 646, 2.0 miles southeast of Aden.

DRAINAGE AREA. -- Not determined.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1996 to current year.

GAGE.--Water stage recorder. Elevation of gage is 160 ft above sea level, from topographic map.

REMARKS.--No estimated daily discharges. Records good.

EXTREMES FOR CURRENT YEAR.--Maximum discharge 7,000 $\mathrm{ft^3/s}$ Mar. 21, gage height 16.17 ft ; minimum 0.46 $\mathrm{ft^3/s}$, Sept. 14-16.

REVISION.--The maximum discharge for period of record is 7,820 ft^3/s , Oct. 19, 1996; gage height, 16.61 ft .

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	9.6	97	62	131	304	224	123	78	40	51	5.5	2.5
2	5.4	275	58	106	239	220	386	272	47	40	4.7	2.1
3	3.7	149	47	120	205	707	205	608	31	30	3.9	2.0
4	3.2	64	45	126	1780	322	230	469	25	23	3.3	2.9
5	3.3	47	50	114	5720	231	314	309	24	20	2.6	1.5
6	3.4	34	53	103	2240	184	199	327	23	18	2.7	.93
7	2.8	1150	46	153	1040	159	160	211	20	16	2.4	.80
8	2.7	2910	41	457	567	737	143	1700	18	17	2.1	1.1
9	3.1	708	38	377	381	2120	390	1190	17	20	2.1	1.1
10	2.6	328	41	233	290	798	998	503	30	20	3.2	.85
11	2.7	190	69	164	251	389	396	399	90	16	2.8	.68
12	2.4	135	69	131	466	276	266	817	69	14	2.1	.61
13	2.0	106	60	123	302	223	205	741	112	12	2.0	.56
14	2.4	374	52	114	222	200	174	390	333	11	2.7	.53
15	2.9	369	47	157	181	170	162	271	231	9.3	3.0	.46
16	2.8	195	42	1000	157	145	143	199	1390	9.5	2.9	.49
17	4.0	127	44	439	1090	133	163	157	362	9.2	4.1	.54
18	82	98	44	357	3570	377	202	120	192	9.8	6.0	20
19	52	83	41	262	1100	2380	156	95	125	9.3	3.9	12
20	20	73	38	232	540	1010	594	79	95	8.8	3.4	4.2
21	9.6	68	34	171	425	5150	303	68	67	7.2	2.9	2.0
22	6.0	230	33	146	304	2160	203	59	52	5.5	2.2	2.3
23	4.9	177	61	1620	835	769	164	49	209	5.5	1.9	1.5
24	5.0	131	80	2600	2200	444	141	47	520	23	2.6	1.1
25	10	98	390	794	689	335	112	82	157	27	2.5	.96
26	44	83	277	430	403	274	93	79	85	12	1.8	.94
27	90	74	184	331	302	238	85	57	57	8.9	1.7	1.6
28	54	63	278	3160	252	201	82	52	66	7.9	1.8	1.4
29	28	57	202	3670		170	70	48	98	6.3	2.1	.91
30	18	56	197	858		151	63	41	65	4.9	1.9	.99
31	13		213	443		133		35		5.6	1.7	
TOTAL	495.5	8549	2936	19122	26055	21030	6925	9552	4650	477.7	88.5	69.55
MEAN	16.0	285	94.7	617	931	678	231	308	155	15.4	2.85	2.32
MAX	90	2910	390	3670	5720	5150	998	1700	1390	51	6.0	20
MIN	2.0	34	33	103	157	133	63	35	17	4.9	1.7	.46

01656120 CEDAR RUN AT ROUTE 646 NEAR ADEN, VA--Continued

STATISTICS	OF	MONTHI.V	MEAN	מדמת	FOR	WATER	YEARS	1996	_	1998	RV	WATER	VEAR	(WV)

290

53

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	191	263	346	436	621	507	178	178	93.4	18.0	4.21	5.13
MAX	366	285	597	617	931	678	231	308	155	20.7	5.57	7.94
(WY)	1997	1998	1997	1998	1998	1998	1998	1998	1998	1997	1997	1997
MIN	16.0	241	94.7	255	311	336	125	47.7	31.7	15.4	2.85	2.32
(WY)	1998	1997	1998	1997	1997	1997	1997	1997	1997	1998	1998	1998
SUMMARY	STATIST	ICS	FOR 1	1997 CALEN	DAR YEAR	F	OR 1998 WA	TER YEAR		WATER YE	ARS 1996	- 1998
ANNUAL	TOTAL			46241.0			99950.25					
ANNUAL	MEAN			127			274			235		
	T ANNUAL N									274 195		1998 1997
HIGHEST	DAILY ME	EAN		2910	Nov 8		5720	Feb 5		5720	Feb	5 1998
LOWEST	DAILY MEA	AN		2.0	Oct 13		.46	Sep 15		.46	Sep 1	.5 1998
ANNUAL	SEVEN-DAY	MUMINIM Y		2.5	Sep 4		.55	_		.55	Sep 1	1 1998
INSTANT	TANEOUS PI	EAK FLOW			=		7000	Mar 21		a7820	Oct 1	9 1996

16.17 Mar 21

600

79 2.2

.46 bSep 14

16.61

467

82

.46

Oct 19 1996

bSep 14 1998

INSTANTANEOUS PEAK STAGE

INSTANTANEOUS LOW FLOW

10 PERCENT EXCEEDS

50 PERCENT EXCEEDS 90 PERCENT EXCEEDS

a Revised. b Also Sept. 15-16, 1998.

01656120 CEDAR RUN AT ROUTE 646 NEAR ADEN, VA--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- October 1996 to current year.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)		TEMPER- ATURE WATER (DEG C) (00010)		OXYGEN, DIS- SOLVED (MG/L) (00300)	CENT SATUR- ATION)	NITRO- GEN DIS- SOLVED (MG/L AS N) (00602)
OCT 1997										
16 NOV	0900	2.9	163	7.0	10.5	12.7	770	4.9	45	
26 JAN 1998	1130	83	162	6.6	9.5	6.0	745	14.7	121	1.5
09	1015	385	160	7.1	14.5	13.2	749	9.9	96	1.1
30	1005	909	91	7.1	6.0	6.0	757	12.2	99	.98
FEB										
04	1515	2600	90	7.1	2.0	4.8	749	12.6	100	.91
24	1345	2240	78	6.8	8.0	6.5	752	12.1	100	.75
MAR	1045	0.650	0.0		2 5		720	10.1	100	1 0
19	1045	2670	83	7.0	9.5	6.3	730	12.1	102	1.3
APR 22	0900	205	98	7.0	17.5	13.9	735	9.8	98	.45
MAY	0900	203	90	7.0	17.5	13.9	733	9.0	90	.43
13	0900	769	112	6.9	14.5	14.5	735	8.9	91	1.0
JUN										
16	1000	1970	103	6.9	27.3	19.7	754	7.5	83	3.0
JUL										
22	0900	5.2	145	7.3	27.5	25.1	752	5.6	69	
AUG										
11	1020	2.5	172	7.2	27.5	24.4	749	6.8	83	
SEP										
16	0930	.54	245	7.2	20.3	22.8	755	3.8	45	

DATE	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS-PHORUS DIS-SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
OCT 1997									
16		<.010	<.050	<.015	.34	.28	<.010	<.010	<.010
26 JAN 1998		<.010	1.26	<.020	.32	.28	.017	<.010	.043
09	.549	.010	.559	<.020	.64	.52	.078	.035	.044
30		<.010	.707	.041	.39	. 27	.061	.016	<.010
FEB									
04		<.010	.508	<.020	.81	.40	.190	.064	.056
24		<.010	.330	.060	.69	.42	.134	.061	.038
MAR 19		<.010	.347	.305	1.6	.96	.464	.199	.162
APR		<.010	.34/	.305	1.0	.90	.404	.199	.102
22		<.010	.165	.037	.39	. 28	.047	.016	.018
MAY									
13	.430	.010	.440	.047	.69	.57	.080	.044	.039
JUN									
16	2.10	.032	2.13	.095	1.5	.86	.326	.107	.094
JUL 22		<.010	<.050	.048	. 28	.22	.027	<.010	.016
AUG		<.010	<.030	.040	.20	. 22	.027	<.010	.010
11		<.010	<.050	.061	.31	. 29	<.010	.017	<.010
SEP									
16		.012	<.050	.038	.34	.30	.013	.015	.012

< Actual value is known to be less than the value shown.
* The constituent reporting level was changed during this water year.</pre>

DATE	TIME	GAGE HEIGHT (FEET) (00065)	SEDI- MENT, SUS- PENDEI (MG/L)
OCT 1997 01 02 04 05 06 07 08 09 10 11 12 13 14 15 16 16 16 21 22 23 24 25 24 25 28 29 30 31	1200 1200 1200 1200 1200 1200 1200 1200	1.63 1.50 1.39 1.39 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.36 1.35 1.36 1.35 1.36 1.35 1.36 1.35 1.36 1.35 1.35 1.36 1.35 1.36 1.35 1.36 1.37 1.39 1.39 1.39 1.39 1.39 1.39 1.39 1.39	15 11 15 16 12 26 10 7 20 20 18 13 11 5 2 10 8 72 68 15 14 13 17 9 9 13 11 21 4 7
NOV 1997 01 01 02 02 02 02 03 04 05 06 07 07 07 07 08 08 08 08 09 09 10 11 12 14 14 14	1200 2045 0045 0045 0445 0845 1200 1200 1200 1200 1200 1530 1930 0330 0730 1200 1530 1930 0330 1200 1530 1930 0330 1200 1530 1900 1200 1200 1200 1200 1200 1200 120	1.99 3.71 5.11 4.29 3.70 3.40 2.98 2.37 2.21 2.05 3.57 4.90 9.83 11.09 11.74 12.54 13.02 12.74 12.11 10.04 6.30 5.67 5.65 4.78 3.96 3.59 3.31 3.01 2.79 3.52 4.37 4.51 4.82 5.11 5.22	8 53 58 39 37 107 55 30 60 174 286 330 163 64 51 40 18 33 31 27 23 22 61 15 21 14 18 23 34 51 30 30 28

DATE	TIME	GAGE HEIGHT (FEET) (00065)	SEDI- MENT, SUS- PENDED (MG/L) (80154)
NOV 1997 15 15 16 16 18 19 20 21 22 22 22 22 22 22 23 24 25 26 26 26 27 28 29 DEC 1997	0300 1200 1500 0300 1200 1200 1200 1200 1200 1200 12	4.92 4.13 3.97 3.57 3.35 2.95 2.75 2.63 2.54 2.47 3.40 3.86 3.90 3.78 3.63 3.24 3.01 2.74 2.62 2.62 2.62 2.62 2.63 2.55 2.39	21 50 18 11 23 12 12 18 23 10 48 22 20 13 26 18 12 5 7 7 7 8
01 02 03 04 05 06 07 08 09 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 25 25 25 25 26 26 27 28 28 28 28	1200 1200 1200 1200 1200 1200 1200 1200	2.47 2.40 2.27 2.25 2.31 2.35 2.25 2.18 2.17 2.18 2.54 2.50 2.42 2.34 2.27 2.21 2.24 2.25 2.30 2.18 2.12 2.10 2.31 2.59 3.51 5.15 5.32 5.31 4.93 4.49 4.18 3.73 3.54 3.22 3.51 3.85 4.03 3.92 3.88	11 10 6 8 8 16 14 10 10 13 11 9 13 4 7 8 13 8 7 7 6 4 9 7 6 4 9 3 10 10 10 10 10 10 10 10 10 10 10 10 10

DATE	TIME	GAGE HEIGHT (FEET) (00065)	SEDI- MENT, SUS- PENDED (MG/L) (80154)
DEC 1997 29 30 31 31 31	0300 1200 1200 2045 0045 0445 0845 1200	3.56 3.38 3.34 3.50 3.64 3.66 3.55 3.46	12 12 7 9 8 8 8
19 19 20 21 23 23 23 23 23	1200 1645 1200 1200 1200 0630 1030 1200 1430 1830 2230	3.69 3.64 3.58 3.21 3.08 3.50 6.40 8.81 11.01 11.99 12.63	16 11 7 14 4 13 117 189 319 277 170

DATE	TIME	GAGE HEIGHT (FEET) (00065)	SEDI- MENT, SUS- PENDED (MG/L) (80154)
JAN 1998 24 24 24 24 24 24 24 24 25 25 25 25 26 26 27 27 28 28 29 29 29 29 29 30 30 30 30 30 30 31 5FEB 1998	0230 0630 0920 0925 0948 1030 1200 1430 1230 1230 1200 1200 1200 1215 0115 0115 1200 1315 1715 1215 0115 0115 1200 1315 1715 1215 0115 1215	13.11 13.20 12.99 12.98 12.87 12.63 12.15 10.46 7.47 6.87 6.61 6.14 5.97 5.12 4.43 4.35 4.10 3.91 12.28 13.65 14.44 14.85 14.70 14.09 13.40 13.03 11.24 8.36 7.38 6.98 6.67 6.54 6.54 6.50 6.39 6.31 4.72 4.55	115 43 52 41 50 39 76 40 43 37 35 27 24 25 29 17 22 16 12 121 111 111 87 76 33 30 42 35 40 40 43 40 43 40 40 40 40 40 40 40 40 40 40 40 40 40
01 01 02 03 04 04 04 04 04 04 04 04 04 05 05 05 05 05 05	1115 1200 1200 0315 0715 1115 1206 1215 1221 1353 1400 1404 1515 1915 2315 0715 1000 1015 1025 1125 1221 1353 1400 1515 1215 1221 1353 1400 1515 1515 1515 1515 1515 1515 1515	3.89 3.87 3.57 3.40 3.50 4.12 8.44 9.29 9.34 9.52 9.10 10.61 10.74 10.79 11.30 12.48 13.45 14.89 15.70 15.89 15.89 15.89 15.90 15.87 15.89 15.63 14.98 14.11	18 185 64 16 22 45 125 127 153 38 138 153 173 155 125 118 177 131 85 53 71 72 65 51 45 29 28

DATE	TIME	GAGE HEIGHT (FEET) (00065)	SEDI- MENT, SUS- PENDED (MG/L) (80154)
FEB 1998 06 06 06 06 06 06 06 06 07 07 07 07 07 10 11 11 11 11 11 11 12 12 12 13 14 15 17 17 17 17 17 18 18 18 18 18 18 18 19	0315 0715 1045 1055 1115 1200 1225 1230 1235 1515 1915 2315 0715 1115 1200 1200 1200 1200 1200 1200 12	13.09 11.77 7.40 7.33 9.20 8.83 8.70 8.68 8.55 7.91 7.98 8.25 7.40 6.98 6.90 5.64 5.26 5.24 5.12 4.93 4.55 4.27 3.92 3.80 3.63 3.62 3.73 4.36 5.10 5.13 5.09 4.88 4.61 4.18 3.90 3.84 3.70 3.63 3.62 3.73 4.36 5.10 5.13 5.09 4.88 4.61 4.18 3.90 3.80 3.67 3.50 3.15 3.50 3.29 3.15 3.55 4.20 7.05 10.77 11.69 12.47 12.89 13.35 13.41 13.43 13.52 13.70 13.25 11.88 8.72 7.31 6.90 6.77 6.59 6.23 5.75	32 26 31 31 36 37 35 38 32 24 19 20 17 20 20 14 10 16 6 11 13 16 5 4 10 3 8 3 1 5 12 12 14 14 8 8 15 16 16 16 16 16 16 16 16 16 16 16 16 16

DATE	TIME	GAGE HEIGHT (FEET) (00065)	SEDI- MENT, SUS- PENDED (MG/L) (80154)
FEB 1998 20 20 20 21 21 22 23 24 24 24 24 25 25 25 25 25 27 27 27 27 28	0230 0630 1200 1430 2230 0630 1200 1200 1220 1225 1235 1305 1315 0115 0915 1200 2115 0915 1200 2115 0915	5.35 5.09 4.85 4.82 4.94 4.66 4.46 3.84 3.74 10.93 8.67 8.58 10.67 10.55 10.46 8.75 7.42 6.60 6.08 5.70 5.49 5.40 5.16 4.95 4.71 4.44 4.37 4.17 3.94 3.90 3.89 3.71	21 16 31 23 9 12 16 13 34 38 42 41 39 38 39 38 34 30 24 22 16 26 11 11 9 30 10 11 8
28 MAR 1998 01 01 02 03 03 03 04 05 06 07 08 09	0515 1200 0515 1200 2015 0015 0415 0415 1200 1200 1200 1200 1200 1200 1245 0445 0445 0945 0945 1200 1215 1200 1200 1200 1200 1200 120	3.56 3.54 3.50 3.45 3.50 4.22 6.16 7.01 6.26 6.21 3.97 3.55 3.30 3.16 3.39 3.50 6.99 9.77 10.34 9.23 9.53 9.61 9.71 9.86 10.39 10.44 10.48 10.50 10.54 10.78 10.00	8 9 11 11 20 96 77 32 64 18 9 14 8 15 22 80 89 123 118 74 83 54 91 55 77 84 69 70 52 45

DATE	TIME	GAGE HEIGHT (FEET) (00065)	SEDI- MENT, SUS- PENDED (MG/L) (80154)
MAR 1998 10 10 10 11 11 12 12 13 14 15 18 18 19 19 19 19 19 19 19 19 20 20 20 20 21 21 21 21 21 21 21 22 22 22 22 23 23 23 23 23 23 23 23 23 23 24 25 26 26	0045 0845 1200 1245 1645 0845 1200 1645 0845 1200 1200 1200 1200 1200 1200 1200 120	7.95 6.26 5.84 5.76 5.39 4.42 4.31 4.00 3.81 3.75 3.63 3.49 3.40 3.21 3.06 2.99 3.52 4.56 4.64 5.36 5.02 4.83 8.47 11.00 11.35 11.39 11.46 11.72 11.74 12.23 12.10 9.76 7.22 6.42 5.99 5.98 5.66 5.93 10.92 12.87 7.22 6.42 5.99 5.98 5.66 5.93 10.92 12.87 7.15.98 15.97 15.13 11.24 8.97 15.98 15.97 15.13 11.24 8.97 15.98 15.97 15.13 11.24 8.97 15.98 15.97 15.13 11.24 8.97 15.98 15.97 15.98 15.97 15.13 11.24 8.97 15.98 15.97 15.13 11.24 8.97 15.98 15.97 15.98 15.97 15.13 11.24 8.97 15.98 15.97 15.13 11.24 8.97 15.98 15.97 15.13 11.24 8.97 15.98 15.97 15.13 11.24 8.97 15.98 15.97 15.13 11.24 8.97 15.98 15.97 15.13 11.24 8.97 8.66 8.60 6.26 5.97 5.94 5.52 4.54 4.42 3.86 3.69 3.54 3.551	39 36 15 21 21 12 24 12 10 9 11 10 21 14 10 10 8 71 19 31 37 27 28 200 212 439 182 115 51 41 35 39 47 12 15 51 130 316 268 133 185 130 63 41 44 48 37 41 27 25 27 24 20 23 32 30 20 19 17 13
27	1200 1200	3.34 3.13	12 27

DATE	TIME	GAGE HEIGHT (FEET) (00065)	SEDI- MENT, SUS- PENDED (MG/L) (80154)
MAR 1998 29 30 31	1200 1200 1200	2.95 2.83 2.83	27 22 23
	1200 1200 0345 0745 1145 1200 1545 12945 2345 1200 1200 1515 1200 1200 1200 1200 120		23 14 61 49 47 65 59 61 25 23 46 20 27 19 21 15 28 19 22 14 379 286 120 21 23 46 40 21 21 22 23 46 46 47 47 47 47 47 47 47 47 47 47
28 29 30	1200 1200 1200	2.40 2.31 2.25	15 19 19

DATE	TIME	GAGE HEIGHT (FEET) (00065)	SEDI- MENT, SUS- PENDED (MG/L) (80154)
MAY 1998 01 02 02 02 02 03 03 03 03 03 04 04 04 04 05 05 06 06 06 07 08 08 08 09 09 09 10 11 11 12 12 12 12 13 13 13 13 13 13 13 14 15 15 15 16 17	1200 0330 0730 1130 1200 2230 0230 0630 1030 1200 1430 1830 0230 1200 1430 1200 1430 1200 1430 1200 1430 1200 1430 1200 1430 1200 1430 1200 1430 1200 1430 1200 1200 1315 1215 0515 0845 1200 1205 1215 0915 1200 1315 1715 2115 0515 0845 1215 0515 0845 1200 1215 0915 1200 1315 1715 2115 0515 0815 0845 1200 1201 1201 1201 1201 1201 1201 120	2.21 3.51 4.07 3.66 3.62 3.50 6.28 6.64 5.41 5.05 4.65 4.30 4.18 5.59 4.95 4.75 4.51 4.21 3.98 3.80 3.66 3.78 4.01 3.99 4.08 3.98 3.63 3.15 3.51 6.49 9.96 10.03 10.25 10.12 8.59 7.49 7.01 6.32 8.59 7.49 7.01 8.59 8.59 8.60 8.60 8.60 8.60 8.60 8.60 8.60 8.60	16 77 57 34 107 27 115 93 71 52 45 36 25 38 32 35 24 33 35 24 33 35 24 33 35 24 33 35 24 33 35 24 33 35 24 33 35 24 33 35 24 33 35 24 33 35 27 38 19 31 27 38 19 31 27 38 19 31 27 38 19 31 27 38 19 31 27 38 19 31 27 38 19 31 27 38 19 31 27 38 19 31 27 38 19 31 27 38 19 31 27 38 19 31 27 38 29 27 18 24 22 18 21 42 21 81 21 42
18	1200	2.64	35

MAY 1998 19 1200 2.48 38 21 1200 2.29 24 22 1200 2.22 22	DED /L) 54)
23 1200 2.13 20 24 1200 2.11 22 25 1200 2.26 19 26 1200 2.36 18 27 1200 2.19 21 28 1200 2.16 20 29 1200 2.13 17 31 1200 1.99 33	4 2 0 2 9 8 1 0
JUN 1200 1.98 29 02 1200 2.08 26 03 1200 1.92 30 04 1200 1.85 26 05 1200 1.83 18 06 1200 1.82 16 07 1200 1.77 14 08 1200 1.70 20 10 1200 1.70 20 10 1200 1.70 20 11 1200 2.39 61 12 1200 2.27 53 13 1200 2.31 59 13 1200 2.31 59 13 1200 2.31 59 13 1200 2.31 59 13 1200 2.67 38 14 0630 4.47 240 14 1030 3.68 287 15 <td>50585440413913077815465935559845431150044833548138561</td>	50585440413913077815465935559845431150044833548138561

DATE	TIME	GAGE HEIGHT (FEET) (00065)	SEDI- MENT, SUS- PENDED (MG/L) (80154)
JUL 1998 01 02 03 04 05 06 07 08 09 11 12 13 14 15 16 17 18 19 20 21 22 22 22 22 22 23 24 25 26 27 28 29 30 31 AUG	1200 1200 1200 1200 1200 1200 1200 1200	2.16 2.04 1.93 1.80 1.75 1.72 1.69 1.72 1.75 1.69 1.65 1.61 1.58 1.56 1.56 1.56 1.56 1.54 1.50 1.46 1.46 1.43 1.41 1.48 1.86 1.61 1.58 1.55 1.61 1.46 1.43 1.41 1.48 1.86 1.61 1.54	15 12 14 22 27 26 30 19 20 17 21 17 16 10 13 7 6 5 8 10 7 6 12 4 5 7 5 7 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 8 9 8 9 8 9 8 9 8 8 9 8 9 8 8 9 8 8 9 8 8 9 8 8 8 9 8 8 9 8 8 9 8 8 8 8 9 8 8 8 8 9 8
01 02 03 04 05 06 07 08 09 11 11 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28 29 30 31	1200 1200 1200 1200 1200 1200 1200 1200	1.42 1.41 1.36 1.35 1.32 1.31 1.29 1.38 1.34 1.31 1.35 1.32 1.31 1.28 1.26 1.31 1.28 1.26 1.31 1.28 1.26 1.31 1.28 1.26 1.31 1.22 1.30 1.34 1.39 1.34 1.39 1.34 1.39 1.34 1.33 1.30 1.27 1.24 1.23 1.23 1.23 1.23 1.23 1.23 1.22 1.24 1.23 1.22	7 3 5 3 14 12 20 14 20 10 7 4 10 5 5 9 5 9 12 5 7 11 9 6 11 6 8 6 9 6 6

TIME	GAGE HEIGHT (FEET) (00065)	SEDI- MENT, SUS- PENDED (MG/L) (80154)
1200	1.27	9
1200	1.24	4
1200	1.22	5
1200	1.29	5
1200	1.23	4
1200	1.19	12
1200	1.17	8
0910	1.23	3
0915	1.23	2
0920	1.23	2
	1200 1200 1200 1200 1200 1200 1200 0910	TIME HEIGHT (FEET) (00065) 1200 1.27 1200 1.24 1200 1.29 1200 1.23 1200 1.19 1200 1.17 0910 1.23 0915 1.23

POTOMAC RIVER BASIN

01656120 CEDAR RUN AT ROUTE 646 NEAR ADEN, VA--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

		MEAN			MEAN			MEAN	
	MEAN	CONCEN-	SEDIMENT	MEAN	CONCEN-	SEDIMENT	MEAN	CONCEN-	SEDIMENT
	DISCHARGE	TRATION	DISCHARGE	DISCHARGE	TRATION	DISCHARGE	DISCHARGE	TRATION	DISCHARGE
DAY	(CFS)	(MG/L)	(TONS/DAY)	(CFS)	(MG/L)	(TONS/DAY)	(CFS)	(MG/L)	(TONS/DAY)
		OCTOBER		1	IOVEMBER		DF	ECEMBER	
		00102210		-	.0.12112211		2-		
1	9.6	6	.15	97	12	7.0	62	8	1.4
2	5.4	5	.08	275	21	17	58	8	1.2
3	3.7	5	.05	149	13	5.6	47	5	.68
4	3.2	6	.05	64	9	1.6	45	6	.71
5	3.3	7	.06	47	6	.77	50	7	.89
6	3.4	6	.05	34	4	.37	53	11	1.6
7	2.8	9	.06	1150	90	493	46	11	1.3
8	2.7	4	.03	2910	31	253	41	8	.92
9	3.1	4	.03	708	17	32	38	8	.86
10	2.6	7	.05	328	12	11	41	10	1.2
11	2.7	8	.06	190	12	6.2	69	9	1.6
12	2.4	8	.05	135	9	3.5	69	7	1.3
13	2.0	5	.03	106	8	2.4	60	5	.74
14	2.4	5	.03	374	18	20	52	3	.47
15	2.9	4	.04	369	14	14	47	5	.61
16	2.8	3	.02	195	11	5.8	42	6	.67
17	4.0	5	.06	127	9	3.2	44	6	.71
18	82	23	5.5	98	9	2.4	44	6	.69
19	52	15	2.3	83	9	1.9	41	5	.55
20	20	8	.42	73	8	1.6	38	4	.41
21	9.6	7	.18	68	9	1.7	34	3	.30
22	6.0	6	.10	230	20	12	33	4	.35
23	4.9	7	.09	177	9	4.4	61	7	1.4
24	5.0	5	.06	131	8	2.7	80	7	1.5
25	10	9	.27	98	5	1.4	390	39	47
26	44	9	1.1	83	4	.91	277	15	12
27	90	10	2.4	74	4	.84	184	6	3.2
28	54	7	1.0	63	6	.97	278	10	7.2
29	28	4	.31	57	6	.92	202	8	4.6
30	18	3	.15	56	6	.95	197	6	3.0
31	13	3	.11				213	6	3.4
TOTAL	495.5		14.89	8549		909.13	2936		102.46

POTOMAC RIVER BASIN
01656120 CEDAR RUN AT ROUTE 646 NEAR ADEN, VA--Continued

DAY	MEAN DISCHARGE (CFS)		SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)		DISCHARGE	MEAN DISCHARGE (CFS)		SEDIMENT DISCHARGE (TONS/DAY)
		JANUARY			FEBRUARY			MARCH	
1 2 3 4 5	131 106 120 126 114	5 5 4 4 3	1.9 1.4 1.4 1.3	304 239 205 1780 5720	20 19 19 107 79	16 12 11 723 1200	224 220 707 322 231	8 10 49 17 8	5.0 6.2 103 15 4.9
6 7 8 9 10	103 153 457 377 233	3 7 26 16 8	.84 3.7 33 17 5.0	2240 1040 567 381 290	30 19 13 8 4	188 54 20 8.0 3.4	184 159 737 2120 798	7 7 28 62 32	3.4 2.8 104 359 73
11 12 13 14 15	164 131 123 114 157	5 3 5 3 15	2.1 1.2 1.7 1.0	251 466 302 222 181	3 11 6 4 3	2.1 14 4.7 2.2 1.5	389 276 223 200 170	14 11 12 13 10	14 8.2 7.1 7.1 4.8
16 17 18 19 20	1000 439 357 262 232	69 17 11 8 5	205 20 11 5.5 3.3	157 1090 3570 1100 540	4 61 100 30 15	1.6 324 970 92 22	145 133 377 2380 1010	10 9 22 118 88	3.8 3.3 26 780 339
21 22 23 24 25	171 146 1620 2600 794	4 4 113 45 22	1.8 1.5 776 346 49	425 304 835 2200 689	10 15 48 49 23	12 12 188 297 45	5150 2160 769 444 335	221 35 25 23 18	2530 215 51 28 16
26 27 28 29 30 31	430 331 3160 3670 858 443	16 19 97 53 36 23	19 17 907 568 86 27	403 302 252 	9 8 8 	10 6.6 5.4 	274 238 201 170 151 133	14 13 24 25 22 21	11 8.0 13 12 8.9 7.5
TOTAL	19122		3130.60	26055		4245.5	21030		4770.0
		APRIL			MAY			JUNE	
1 2 3 4 5	123 386 205 230 314	21 54 31 29 20	7.1 56 18 20 18	78 272 608 469 309	24 44 60 33 33	6.0 33 115 42 28	40 47 31 25 24	38 31 29 25 19	4.4 4.2 2.4 1.7
6 7 8 9 10	199 160 143 390 998	13 11 10 123 91	6.9 4.6 3.8 231 318	327 211 1700 1190 503	36 28 100 44 23	32 16 488 154 32	23 20 18 17 30	16 14 15 19	.98 .78 .72 .89
11 12 13 14 15	396 266 205 174 162	23 20 21 22 24	25 14 12 10 10	399 817 741 390 271	22 41 30 20 18	24 103 63 21 13	90 69 112 333 231	54 58 76 283 207	12 11 29 260 158
16 17 18 19 20	143 163 202 156 594	26 48 42 22 65	10 22 23 9.5 107	199 157 120 95 79	19 35 33 34 28	10 15 11 8.6 6.0	1390 362 192 125 95	166 30 23 14 21	803 30 12 4.8 5.4
21 22 23 24 25	303 203 164 141 112	36 8 9 16 16	31 4.6 3.8 5.9 4.8	68 59 49 47 82	23 21 19 17 20	4.3 3.3 2.5 2.1 4.6	67 52 209 520 157	28 39 90 110 32	5.0 5.4 70 179 14
26 27 28 29 30 31	93 85 82 70 63	15 15 15 18 19	3.8 3.4 3.5 3.5	79 57 52 48 41 35	18 20 20 18 24 31	3.9 3.0 2.8 2.4 2.6 2.9	85 57 66 98 65	20 20 41 38 21	4.6 3.0 7.5 10 3.8
TOTAL	6925		993.2	9552		1255.0	4650		1646.47

POTOMAC RIVER BASIN

01656120 CEDAR RUN AT ROUTE 646 NEAR ADEN, VA--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L) JULY	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L) AUGUST	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		JULY			AUGUSI		51	FPIEMBER	
1	51	16	2.2	5.5	7	.10	2.5	8	.05
2	40	12	1.3	4.7	4	.05	2.1	5	.03
3	30	12	.99	3.9	4	.05	2.0	5	.03
4	23	15	.91	3.3	4	.04	2.9	5	.04
5	20	22	1.2	2.6	12	.08	1.5	5	.02
6	18	27	1.3	2.7	13	.09	.93	10	.03
7	16	28	1.2	2.4	18	.12	.80	8	.02
8	17	29	1.3	2.1	15	.09	1.1	8	.03
9	20	20	1.1	2.1	18	.10	1.1	11	.03
10	20	19	1.0	3.2	10	.09	.85	12	.03
11	16	18	.79	2.8	8	.06	.68	12	.02
12	14	20	.73	2.1	9	.05	.61	21	.03
13	12	17	.54	2.0	5	.03	.56	19	.03
14	11	15	.43	2.7	5	.04	.53	14	.02
15	9.3	11	.28	3.0	5	.04	.46	12	.01
13	7.5	11	.20	3.0	3	.01	.40	12	.01
16	9.5	12	.30	2.9	8	.06	.49	10	.01
17	9.2	7	.18	4.1	6	.06	.54	14	.02
18	9.8	6	.16	6.0	9	.14	20	37	2.3
19	9.3	5	.14	3.9	10	.11	12	36	1.2
20	8.8	8	.18	3.4	6	.05	4.2	17	.21
0.1	7.0	9	.18	0.0	7	0.6	2.0	1.0	0.6
21 22	7.2 5.5	6	.18	2.9 2.2	10	.06 .06	2.0 2.3	12 13	.06 .08
23		-	.08			.05			
	5.5	5		1.9	9		1.5	15	.06
24	23	33	3.4	2.6	7	.05	1.1	11	.03
25	27	46	3.5	2.5	9	.06	.96	10	.03
26	12	12	.39	1.8	7	.03	.94	12	.03
27	8.9	8	.19	1.7	7	.04	1.6	13	.07
28	7.9	6	.13	1.8	7	.03	1.4	17	.07
29	6.3	5	.08	2.1	8	.05	.91	12	.03
30	4.9	5	.07	1.9	6	.03	.99	8	.02
31	5.6	12	.19	1.7	6	.03			
TOTAL	477.7		24.53	88.5		1.94	69.55		4.64
YEAR	99950.25		17098.36						

01658500 SOUTH FORK QUANTICO CREEK NEAR INDEPENDENT HILL, VA

LOCATION.--Lat 38°35'14", long 77°25'44", Prince William County, Hydrologic Unit 02070011, on left bank at upstream side of bridge on State Highway 619, 3.4 mi south of Independent Hill, 5.6 mi west of Dumfries, and 6.5 mi upstream from mouth.

DRAINAGE AREA. -- 7.64 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1951 to current year.

REVISED RECORDS. -- WSP 2103: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 238.88 ft above sea level.

REMARKS.--No estimated daily discharges. Records good. No flow at times in 1954, 1957, 1962-66, 1983, 1985, 1987, 1988, 1991, 1993, and 1998.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 200 ft^3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Nov. 7	2030	409	5.72	Feb. 23	2130	282	5.01
Jan. 23	1700	521	6.23	Mar. 9	0930	214	4.51
Jan. 28	1630	616	6.60	Mar. 19	0600	253	4.81
Feb. 5	0415	652	6.73	Mar. 21	0400	*799	*7.21
Feb. 18	0145	712	6.94	Apr. 9	1915	280	5.00

No flow part or all of each day Aug. 26-28, Aug. 30 to Sept. 8, and Sept. 13-17, 29-30.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 17 8.7 7.3 2.1 .50 3.6 4.1 9.1 11 2.4 .51 .00 8 7 .42 2 72 3.3 3 9 7.8 9.3 6 8 31 1.9 1.7 .00 7.1 3 .82 3.9 3.2 4.5 2.6 6.0 29 1.7 1.4 .36 .00 238 4 90 2 4 3 4 4 4 12 19 22 1 6 1 2 3.0 0.0 5 .93 1.9 3.4 4.2 355 8.9 12 16 1.5 1.2 .25 .00 7 8 7 8 6 1.0 1.5 3 1 4 2 52 35 1.4 1.1 .22 .00 .97 .18 7 1.0 174 3.0 8.1 31 7.5 6.8 1.0 1.3 .00 8 1.1 71 2.9 14 17 35 6.2 44 1.1 1.3 .16 .11 .18 9 1.1 2.8 3.0 8.4 12 102 87 39 1.1 1.6 .10 10 1.1 10 3.6 5.3 9.8 25 38 15 2.8 .45 .07 1.2 11 1.2 5.7 4.5 4.3 9.5 13 14 14 2.8 1.0 .47 .06 12 1.2 4.1 3.8 4.0 17 9.8 9.4 39 3.0 .86 .41 .04 13 3.8 4.3 10 8.5 7.8 25 .78 .01 1.3 7.8 .30 8.4 .72 14 1.3 22 3.1 3.9 8.2 7.2 5.4 .20 .00 11 15 10 1.5 3.0 15 7.3 7.2 6.7 7.2 25 .69 .16 .00 16 1.6 5.6 2.9 6.9 6.7 5.9 5.4 32 .69 .17 .00 36 17 3.0 4.3 3.0 11 139 6.5 12 4.3 6.2 .68 .44 .03 18 26 3.9 2.9 8.5 222 35 7.6 3.5 3.1 .65 .60 .04 19 2.9 3.6 2.7 7.2 129 7.8 3.1 3.3 .63 .38 .05 20 1.7 3.4 2.7 7.4 18 48 20 2.8 2.8 .61 .32 .06 21 1.5 4.1 2.5 5.8 14 287 8.2 2.7 1.9 .52 .22 .04 22 1.5 2.4 2.5 17 2.8 4.4 10 51 6.2 .47 .16 .13 198 23 1.7 7.6 4.5 89 22 5.3 2.2 5.7 .47 .11 .11 24 2.0 5.4 3.9 49 129 16 4.7 2.4 23 .49 .07 .09 25 4.4 4.4 19 20 27 12 4.0 3.4 4.0 .93 .05 .08 26 4.2 8.0 10 15 3.7 2.7 .71 .02 .07 4.4 11 2.4 27 8 9 3 9 6 5 9.1 12 11 3 9 2 5 1 8 51 .01 .08 .04 2.8 2.6 3.8 8.6 328 1.0 9.6 3.5 2.6 4.9 .44 .05 .40 29 1.6 3.3 6.5 56 ___ 8.8 3.3 2.2 3.9 .06 .02 .01 30 1.4 3.4 6.2 18 ___ 8.1 3.3 1.9 2.7 .36 .02 31 1.4 ---5.8 11 ___ 7.6 ---1.9 .56 .00 ---TOTAL 82.27 441.9 138.8 872.0 1511 5 958 6 341 4 394 2 161 0 26.94 7 23 1 26 MEAN 2.65 14.7 4.48 28.1 54.0 30.9 11.4 12.7 5.37 .87 .23 .042 MAX 26 174 19 328 355 287 87 44 32 2.1 .60 .13 MIN .50 1.5 2.5 3.9 6.9 6.5 3.3 1.9 1.1 .36 .00 .00 CFSM .35 1.93 .59 3.68 7.07 4.05 1.49 1.66 .70 .11 .03 .01 .40 2.15 .68 4.25 7.36 4.67 1.66 1.92 .78 .13 .04 .01

01658500 SOUTH FORK QUANTICO CREEK NEAR INDEPENDENT HILL, VA--Continued

STATIST	CICS OF M	ONTHLY MEAN	DATA FO	R WATER Y	EARS 1951	- 1998,	BY WATER	YEAR (WY)				
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	3.30	5.88	8.11	10.4	12.3	14.0	11.6	8.15	4.83	2.52	2.59	3.02
MAX	23.9	19.2	24.4	31.2	54.0	35.0	33.0	42.8	48.8	15.1	24.5	37.2
(WY)	1980	1953	1997	1996	1998	1994	1983	1989	1972	1975	1955	1975
MIN	.070	.34	.58	1.01	3.60	1.77	2.90	1.57	.40	.055	.010	.000
(WY)	1989	1955	1966	1981	1968	1981	1969	1956	1991	1963	1963	1964
SUMMARY	STATIST	ICS	FOR 1	997 CALEN	DAR YEAR	F	OR 1998 WA	TER YEAR		WATER YEA	ARS 1951	- 1998
ANNUAL	TOTAL			2786.20	ı		4937.10	ı				
ANNUAL	MEAN			7.63			13.5			7.18		
HIGHEST	ANNUAL	MEAN								13.5		1998
LOWEST	ANNUAL M	IEAN								2.55		1981
HIGHEST	DAILY M	IEAN		174	Nov 7		355	Feb 5		770	Jun	22 1972
LOWEST	DAILY ME	AN		.21	Sep 17		.00	aAug 31		.00		(b)
ANNUAL	SEVEN-DA	Y MINIMUM		.23	Sep 22		.00	Aug 31		.00		(b)
INSTANT	ANEOUS P	EAK FLOW					799	Mar 21		4160	May	6 1989
INSTANT	ANEOUS P	EAK STAGE					7.21	Mar 21		11.62	May	6 1989
INSTANT	ANEOUS L	OW FLOW					.00	aAug 26		.00		(b)
ANNUAL	RUNOFF (CFSM)		1.00	l		1.77	'		.94		
ANNUAL	RUNOFF (INCHES)		13.57	'		24.04			12.78		
10 PERC	ENT EXCE	EDS		16			25			14		
50 PERC	CENT EXCE	EDS		3.6			3.6			2.8		
90 PERC	ENT EXCE	EDS		.31			.11			.20		

a No flow many days August to September. See EXTREMES FOR CURRENT YEAR. b No flow at times many years. See REMARKS.

01658500 SOUTH FORK QUANTICO CREEK NEAR INDEPENDENT HILL, VA--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1951, 1953, 1955-56, 1969, 1973-75, 1983-85, 1994 to current year.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	E. COLI WATER WHOLE TOTAL UREASE (COL / 100 ML) (31633)
OCT 1997											
15 NOV	1020	1.6	77	6.8	14.0	14.5	770	4.2	41	320	270
25 JAN 1998	1100	4.3	58	6.8	6.0	4.0	750	15.3	119	K21	K25
08	1001	14	97	6.8	19.0	12.0	749	10.2	96	140	170
27	1030	7.2	46	6.6	4.5	3.3	742	13.2	102	K17	K24
FEB											
04	1430	283	37	6.1	2.0	4.5	749	12.6	99		
24	1050	156	31	5.7	7.5	5.6	752	12.1	97	49	51
MAR											
18	1015	68	42	6.9	9.0	5.3	745	12.6	102	70	140
APR											
21	0940	8.2	45	6.7	19.5	12.0	750	10.3	97	84	84
MAY	0010	2.0		<i>-</i> -	15.0	10.4	706		0.4		100
12 JUN	0910	38	44	6.5	15.0	13.4	726	9.3	94	550	190
17	0930	6.9	44	6.4	28.0	18.7	760	7.8	84	340	360
JUL	0930	0.9	44	0.4	20.0	10.7	760	7.0	04	340	300
21	1000	.54	42	7.0	25.5	22.9	753	5.4	64	170	190
AUG	1000	.51	12	7.0	23.3	22.7	, 55	5.1	01	170	100
12	1030	.42	62	7.0	25.5	22.1	752	6.7	78	19	23
SEP			- -								
15	0945	0	54	6.8	24.5	20.4	754	4.8	54	640	780

DATE	NITRO- GEN DIS- SOLVED (MG/L AS N) (00602)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS-PHORUS ORTHO, DIS-SOLVED (MG/L AS P) (00671)
OCT 1997									
15 NOV		<.010	<.050	<.015	.23	<.20	<.010	<.010	<.010
25 JAN 1998		<.010	<.050	<.020	.16	.14	<.010	<.010	.024
08		<.010	<.050	<.020	.25	.22	.032	.028	.034
27 FEB		<.010	<.050	.041	.13	.13	<.010	<.010	.016
04	.34	<.010	.098	<.020	.44	.25	.049	<.010	.018
24 MAR		<.010	<.050	.021	.30	.22	.011	<.010	<.010
18 APR	.24	<.010	.078	.022	.36	.16	.032	<.010	<.010
21 MAY	.25	<.010	.083	.030	.24	.17	.027	<.010	<.010
12 JUN		<.010	<.050	.028	.39	.26	.019	<.010	<.010
17		<.010	<.050	.053	.35	.24	.029	<.010	.015
JUL 21	.23	<.010	.060	.040	.27	.17	<.010	.011	.011
AUG 12 SEP		<.010	<.050	.055	.22	.19	.013	<.010	<.010
15		.013	<.050	.033	.15	.21	.022	.019	.013

< Actual value is known to be less than the value shown. K results based on colony count outside the acceptance range (non-ideal colony count).

01658500 SOUTH FORK QUANTICO CREEK NEAR INDEPENDENT HILL, VA--Continued

DATE	TIME	GAGE HEIGHT (FEET) (00065)	SEDI- MENT, SUS- PENDED (MG/L) (80154)
OCT 1997 01 02 03 04 05 06 07 08 09 11 12 13 14 15 15 16 17 18 18 18 18 18 18 18 19 20 21 22 23 24 25 26 27 28 29 30 31 NOV 1997	1200 1200 1200 1200 1200 1200 1200 1200	1.61 1.49 1.50 1.52 1.53 1.54 1.55 1.55 1.55 1.55 1.55 1.57 1.57 1.58 1.58 1.60 1.61 1.61 1.61 1.61 1.61 1.60 1.59 1.60 1.61 1.60 1.61 1.60 1.69 1.60 1.61 1.60 1.60 1.61 1.60 1.61 1.60 1.61 1.60 1.61 1.60 1.61 1.60 1.61 1.60 1.61 1.60 1.61 1.60 1.61 1.61	9 6 5 10 3 10 8 3 32 17 5 13 23 20 9 3 7 10 20 22 266 313 155 344 69 18 10 8 9 18 8 13 7 6 7 7 4 5
01 01 01 01 01 01 01 01 01 01 02 03 04 05 06 07 07 07 07 07 07 07 07 07 07 07 07 07 09 09 09 08 08 08 09 10	1200 1418 1518 1618 1718 1818 1918 1200 1200 1200 1200 1200 1200 1230 1430 1630 1930 2030 2230 0030 0330 0330 0330 1200 120	1.85 2.55 2.83 2.77 2.65 2.53 1.92 1.77 1.69 1.67 1.63 2.68 3.63 4.44 4.38 4.44 4.88 5.37 5.68 5.77 5.08 3.61 3.48 3.88 3.01 2.54 1.94 1.94	13 81 156 101 191 66 67 12 16 8 4 5 33 19 190 289 118 200 161 105 103 124 98 37 69 100 10 101 17 12

01658500 SOUTH FORK QUANTICO CREEK NEAR INDEPENDENT HILL, VA--Continued

DATE	TIME	GAGE HEIGHT (FEET) (00065)	SEDI- MENT, SUS- PENDED (MG/L) (80154)
NOV 1997			
12	1200	1.71	8
13 14	1200 1200	1.67 2.40	3 18
15	1200	1.94	10
16	1200	1.77	5
17	1200	1.71	7
18 19	1200 1200	1.69 1.67	4 6
20	1200	1.65	4
21	1200	1.64	10
22 23	1200 1200	2.16 1.84	9 8
24	1200	1.74	7
25	1105	1.68	6
25 25	1106 1107	1.68 1.68	4
25	1200	1.69	6 18
26	1200	1.68	5
27	1200	1.67	6
28 29	1200 1200	1.66 1.65	5 1
30	1200	1.64	8
DEC 1997			
01 02	1200 1200	1.66 1.64	3 4
03	1200	1.63	5
04	1200	1.65	5
05 06	1200 1200	1.65 1.64	11 8
07	1200	1.63	4
08	1200	1.62	4
09	1200 1200	1.63	3
10 11	1200	1.65 1.72	8 4
12	1200	1.68	6
13	1200	1.66	7
14 15	1200 1200	1.65 1.64	7 7
16	1200	1.63	2
17	1200	1.64	2
18 19	1200 1200	1.64 1.63	4
20	1200	1.63	1
21	1200	1.62	4
22 23	1200 1200	1.63 1.77	3 3
24	1200	1.70	2
25	0730	2.50	48
25 25	0830	2.51 2.35	53 17
26	1200 1200	1.89	6
27	1200	1.80	5
28	1200	1.93	6
29 30	1200 1200	1.84 1.81	1 1
31	1200	1.81	1
JAN 1998			
03	1200 1200	1.73 1.71	5 2
05	1200	1.69	2
06	1200	1.68	3
07	1200	1.85	3 12
08 08	1000 1001	2.02	8
08	1002	2.02	11
08	1200	2.03	5
09	1200	1.87	4

01658500 SOUTH FORK QUANTICO CREEK NEAR INDEPENDENT HILL, VA--Continued

DATE	TIME	GAGE HEIGHT (FEET) (00065)	SEDI- MENT, SUS- PENDED (MG/L) (80154)
JAN 1998 10 11 12 13 14 15 15 15 16 16 16 16 16 20 23	1200 1200 1200 1200 1200 1200 1200 2015 2115 2215 2315 0015 0115 0215 0315 0415 0515 0615 1200 1200 1200 1200 1200 1200 1200 12	(FEET)	(MG/L)
24 24 24 25 26 27 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	0415 0715 1200 1200 1013 1015 1017 1200 1245 1345 1445 1545 1645 1745 1845 1945 2045 2045 2145 2245	3.15 2.88 2.61 2.20 1.97 1.86 1.86 1.88 5.45 5.54 5.70 6.03 6.63 6.63 6.65 6.60 6.48 6.33 6.10 5.78 5.08	59 51 270 87 29 11 6 11 9 37 155 93 113 99 88 70 61 61 51 46 49 59

01658500 SOUTH FORK QUANTICO CREEK NEAR INDEPENDENT HILL, VA--Continued

DATE	TIME	GAGE HEIGHT (FEET) (00065)	SEDI- MENT, SUS- PENDE (MG/L (80154
JAN 1998 29 29 29 29 29 29 30 31	0045 0145 0245 0345 0445 1045 1200 1200	3.93 3.68 3.51 3.37 3.25 2.76 2.70 2.17 1.98	61 62 61 56 52 27 123 28 12
FEB 1998 01 02 03 04 04 04 04 04 04 04 04 04 04 04 04 04 05 06 06 06 06 06 06 06 06 07 07	1200 1200 1200 0730 0830 0930 1030 1225 1230 1300 1330 1430 1530 1635 1645 1655 1730 1830 0130 0230 0430 0630 0730 1100 1105 1110 1130 1200 1505 1515 1530 1630 1830 2030 2330 0430 0730 1830 1830 1830 1830 1830 1830 1830 18	1.89 1.85 1.92 2.57 3.16 3.65 4.06 4.61 4.49 4.58 4.61 4.71 4.81 5.10 5.38 5.62 5.63 5.69 5.76 6.40 6.48 6.62 6.79 6.61 6.46 6.11 5.88 5.76 5.70 5.66 5.61 5.44 4.85 4.42 4.40 4.35 4.16 3.82 3.43 3.32 3.17 3.03 2.91 2.76 2.65 2.62 2.71 2.68 2.58 2.51	14 9 8 22 32 39 54 85 166 36 158 115 120 113 123 102 140 51 69 129 86 60 44 47 46 34 35 28 26 51 60 60 60 60 60 60 60 60 60 60
07	1200	2.43	11

01658500 SOUTH FORK QUANTICO CREEK NEAR INDEPENDENT HILL, VA--Continued

DATE	TIME	GAGE HEIGHT (FEET) (00065)	SEDI- MENT, SUS- PENDE (MG/L (80154
FEB 1998 08 09 10 11 12 13 14 15 16 17 17 17 17 17 17 17 17 17 17 17 17 17 17	1200 1200 1200 1200 1200 1200 1200 1200	2.14 2.00 1.93 1.90 2.14 1.93 1.87 1.83 1.81 2.53 3.03 3.17 3.99 4.45 4.68 4.81 4.95 5.03 5.05 5.04	66 64 3 3 2 2 2 1 1 24 96 47 67 104 103 92 81 79 69
17 17 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18	2215 2315 0015 0115 0215 0315 0415 0615 0715 0815 0945 1000 1015 1115 1200 1315 1515 1915	5.17 5.77 6.49 6.49 6.92 6.71 6.40 5.97 5.28 4.42 4.03 3.79 3.69 3.65 3.61 3.47 3.26 3.23 3.07 2.82	53 59 117 194 125 92 74 66 106 55 54 47 72 55 58 51 91 33 31 24
18 19 19 20 21 22 23 23 23 23 23 24 24 24 24	2115 2315 0315 0615 1200 1200 1200 1200 1400 1500 1600 1700 1800 2000 2100 2200 2300 0100 0300 0500 0700 1030 1035 1045	2.71 2.65 2.58 2.52 2.37 2.15 2.05 1.95 2.07 2.54 3.01 3.53 3.98 4.37 4.71 4.89 5.01 5.04 4.96 4.57 4.45 4.32 4.26 4.08 4.08	21 14 12 17 12 6 4 8 11 28 30 76 86 75 74 66 55 33 32 27 49 33 39

01658500 SOUTH FORK QUANTICO CREEK NEAR INDEPENDENT HILL, VA--Continued

DATE	TIME	GAGE HEIGHT (FEET) (00065)	SEDI- MENT, SUS- PENDE (MG/L (80154
FEB 1998 24 24 25 25 26 27 28 MAR 1998	1100 1200 1300 1200 1200 1200 1200	4.01 3.81 3.62 2.33 2.09 2.00 1.95	26 33 28 19 6 5
01 02 03 03 03 03 03 03 03 03 04 05 06 07 08 08 08 08 08 09 09 09 09 09 09 09 09 09 09 09 09 10 11 12 13 14 15 18 18 18 18 18 18 18	1200 1200 0230 0330 0430 0530 0630 0730 0830 1200 1200 1200 1200 1215 1615 1715 1815 2115 2315 0115 0245 0315 0415 0615 0715 0815 0915 0930 0935 0945 1015 1200 1245 1445 1200 1200 1200 1200 1200 1200 1200 120	1.92 1.89 2.51 2.65 2.71 2.69 2.63 2.57 2.50 2.35 2.01 1.92 1.87 1.85 2.23 2.52 2.78 3.02 3.16 3.21 3.19 2.92 2.77 2.69 2.55 2.79 3.16 3.78 4.13 4.50 4.46 4.25 4.05 3.86 3.49 3.03 2.73 2.29 2.03 1.89 1.89 1.85 1.82 2.54 3.13 3.09 3.06 3.03 2.84 2.81 2.51	6 6 6 31 31 31 36 33 29 25 16 9 4 4 4 3 14 23 27 27 30 44 4 49 22 21 9 21 30 40 70 92 133 131 137 147 95 53 90 56 76 147 147 147 147 147 147 147 147 147 147
±0	1013	4.51	۷ /

01658500 SOUTH FORK QUANTICO CREEK NEAR INDEPENDENT HILL, VA--Continued

DATE	TIME	GAGE HEIGHT (FEET) (00065)	SEDI- MENT, SUS- PENDEI (MG/L (80154
MAR 1998 19 19 19 19 19 19 19 19 20 20 20 21 21 21 21 21 21 21 21 22 22 22 23 24 25 28 29 30 APR 1998	0015 0215 0415 0615 0815 0900 0915 0930 1015 1200 1415 1200 1200 1200 1200 1200 1200 1200 12	2.52 3.66 4.67 4.83 4.56 4.45 4.40 4.30 3.95 3.51 3.05 2.78 2.55 2.37 2.54 3.09 3.55 6.24 7.24 6.76 5.88 4.42 3.99 3.75 3.53 3.22 4.90 3.12 2.78 2.78 2.70 2.59 3.12 2.78 2.79 2.70 2.70 2.70 2.78 2.78 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70	19 35 19 77 114 66 70 65 79 67 54 43 30 27 34 22 18 19 64 112 100 73 57 109 52 57 35 35 30 24 20 27 41 8 8 4 10 13 10 3 6
01 02 03 04 04 05 06 07 08 09 09 09 10 10 11 12 13	1200 1200 1200 1200 1230 1430 1200 1200 1200 1200 1201 1201 1202 1205 1715 1915 2115 2315 0315 0715 1200 1200 1200 1200 1200 1200 1200	1.82 1.82 1.78 2.42 2.50 2.57 1.98 1.87 1.82 1.80 2.29 2.56 3.44 4.81 5.03 4.57 3.63 2.96 2.68 2.48 2.06 1.93 1.87 1.85	6 6 6 44 52 48 12 7 4 9 26 35 33 64 129 151 100 61 36 47 16 9 5 7

01658500 SOUTH FORK QUANTICO CREEK NEAR INDEPENDENT HILL, VA--Continued

DATE	TIME	GAGE HEIGHT (FEET) (00065)	SEDI- MENT, SUS- PENDEI (MG/L)
APR 1998 15 16	1200 1200	1.83	7 10
17	1200	2.19	37
18	1200		13
19	1200	1.81	7 34
20	0245	2.54	50
20	1200	2.15	11
	0910	1.86	7
21	0915	1.86	8
21	0930	1.86	6
21	1200	1.89	7
22	1200	1.81	7
23	1200	1.78	8
24	1200	1.75	7
25	1200	1.72	6
26	1200	1.71	7
27	1200	1.73	9
28	1200	1.69	6
29	1200	1.68	9
30	1200	1.67	
MAY 1998 01	1200	1.67	8
01	1945 2145	2.51	70 76
02	1200 1845	1.98	30 51
02	2045	3.39	67
02	2245 0045	3.36	34 52
03	0245 0445	2.74	34 53
03	1200 2245	2.24	28 21
04	0045	2.62	11
	0245	2.53	32
04	1200	2.21	23
05	1200	1.94	216
05	2245	2.57	39
06	0045	3.61	47
06	0245	3.05	98
06	0445	2.77	169
06	0645	2.59	83
06	1200	2.34	258
07	1200	1.94	16
08	0100	2.58	38
08	0300	3.08	48
	0500	3.02	57
08	0700 0900	2.82	58 41
08	1200 1300	2.81	31 26
08	1700	2.56	26
08	2345 0145	2.50	22 22
09	0345 0745	3.10	36 42
09	1145	2.52	25
09	1200	2.81	31
10	1200	2.09	17
11	1200	2.09	16
12	0815	2.51	37
12	1000	2.66	50
12	1005	2.66	40
12	1010	2.66	48
12	1015 1200	2.70	46 63

01658500 SOUTH FORK QUANTICO CREEK NEAR INDEPENDENT HILL, VA--Continued

DATE	TIME	GAGE HEIGHT (FEET) (00065)	SEDI- MENT, SUS- PENDED (MG/L)
MAY 1998 12 12 12 12 13 13 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28 29	1215 1415 1615 1815 2015 2215 0015 0215 0215 1200 1200 12	2.90 3.02 2.92 2.77 2.70 2.73 2.54 2.31 2.00 1.86 1.78 1.65 1.63 1.62 1.66 1.57 1.59 1.68 1.61 1.60 1.57	40 46 49 44 36 29 23 23 26 27 17 19 13 13 17 10 7 20 13 13 10 7 22 15 16
30 31 31 31 31 31 31 31 31 31 02 03 04 05 06 07 08 09 11 12 13 14 15 15 16 16 16 17 17 17 17 17 18 19 20 21 22 23 24 24 24	1200 1200 1200 1200 1200 1200 1200 1200	1.55 1.54 1.60 1.53 1.52 1.50 1.49 1.47 1.46 1.66 1.62 1.65 1.60 2.53 1.74 1.71 2.58 3.62 3.81 3.53 3.17 2.78 2.51 2.20 1.81 1.81 1.81 1.85 1.70 1.76 1.66 1.60 1.56 1.67 2.62 3.15 2.77 2.09	28 20 14 13 11 5 3 5 5 4 4 12 10 12 26 156 74 35 205 304 482 343 293 151 109 45 17 13 14 13 10 12 11 11 12 16 16 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19

01658500 SOUTH FORK QUANTICO CREEK NEAR INDEPENDENT HILL, VA--Continued

DATE	TIME	GAGE HEIGHT (FEET) (00065)	SEDI- MENT, SUS- PENDE (MG/L)
JUN 1998 25 26 27 28 29 30 JUL 1998	1200 1200 1200 1200 1200 1200	1.73 1.63 1.57 1.87 1.71	12 8 8 17 11 8
01 02 03 04 05 06 07 08 09 11 12 13 14 15 16 17 18 19 20 21 21 21 21 21 21 22 23 24 25 26 27 28 29 30 31 AUG 1998	1200 1200 1200 1200 1200 1200 1200 1200	1.58 1.53 1.51 1.49 1.47 1.46 1.50 1.52 1.50 1.46 1.45 1.44 1.43 1.42 1.42 1.42 1.41 1.41 1.41 1.41 1.40 1.40 1.40 1.38 1.37 1.38 1.49 1.42 1.39 1.37 1.36 1.34 1.39	11 10 8 8 8 12 10 9 9 11 12 11 9 8 8 12 15 34 37 31 18 18 15 38 15 38 16 9 9 5 11 11 12 11 11 11 11 11 11 11 11 11 11
01 02 03 04 05 06 07 08 09 11 12 12 13 14 15 16 17 18 19 20 21 22	1200 1200 1200 1200 1200 1200 1200 1200	1.38 1.36 1.34 1.32 1.30 1.29 1.28 1.27 1.38 1.37 1.36 1.36 1.36 1.36 1.36 1.37 1.38 1.37 1.38 1.37 1.38 1.37 1.38 1.37 1.38 1.39 1.39 1.39 1.39 1.39 1.39 1.39 1.39	9 10 3 19 8 9 6 6 4 13 12 6 6 13 7 5 10 8 8 6 12 14 15 9 9 12 14 15 9 9 12 14 15 15 16 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18

01658500 SOUTH FORK QUANTICO CREEK NEAR INDEPENDENT HILL, VA--Continued

			SEDI- MENT,
		GAGE	SUS-
DATE	TIME	HEIGHT	
DAIL	TIME	(FEET)	(MG/L)
		(00065)	
		(00003)	(00134)
AUG 1998			
23	1200	1.29	9
24	1200	1.28	17
25	1200	1.26	24
26	1200	1.25	11
27	1200	1.25	13
28	1200	1.26	19
29	1200	1.29	9
30	1200	1.27	6
31	1200	1.25	39
SEP 1998			
01	1200	1.24	10
02	1200	1.25	25
03	1200	1.24	8
04	1200	1.23	6
05	1200	1.23	7
06	1200	1.22	8
07	1200	1.21	7
15	0925	1.29	9
15	0930	1.29	18
15	0935	1.29	8

01658500 SOUTH FORK QUANTICO CREEK NEAR INDEPENDENT HILL, VA--Continued

		MEAN			MEAN			MEAN	
	MEAN	CONCEN-	SEDIMENT	MEAN	CONCEN-	SEDIMENT	MEAN	CONCEN-	SEDIMENT
	DISCHARGE	TRATION	DISCHARGE	DISCHARGE	TRATION	DISCHARGE	DISCHARGE	TRATION	DISCHARGE
DAY	(CFS)	(MG/L)	(TONS/DAY)	(CFS)	(MG/L)	(TONS/DAY)	(CFS)	(MG/L)	(TONS/DAY)
		OCTOBER		1	NOVEMBER		DE	ECEMBER	
1	.50	4	.00	17	20	1.9	3.6	2	.02
2	.72	2	.00	8.7	9	.24	3.3	2	.02
3	.82	2	.00	3.9	7	.08	3.2	3	.02
4	.90	3	.01	2.4	4	.03	3.4	3	.03
5	.93	1	.00	1.9	2	.01	3.4	6	.06
6	1.0	3	.01	1.5	4	.02	3.1	5	.04
7	1.0	3	.01	174	46	32	3.0	2	.02
8	1.1	2	.00	71	32	6.1	2.9	2	.01
9	1.1	9	.03	28	23	1.8	3.0	2	.02
10	1.1	7	.02	10	10	.28	3.6	4	.04
		,	.02	10		.20	3.0	-	.01
11	1.2	3	.01	5.7	6	.09	4.5	3	.04
12	1.2	5	.01	4.1	4	.04	3.8	4	.04
13	1.3	8	.03	3.8	3	.03	3.4	4	.04
14	1.3	7	.03	22	8	.48	3.1	4	.03
15	1.5	5	.02	10	6	.17	3.0	3	.03
16	1.6	8	.03	5.6	3	.05	2.9	1	.01
17	3.0	19	.25	4.3	4	.04	3.0	1	.01
18	26	55	5.7	3.9	2	.02	2.9	3	.02
19	2.9	9	.08	3.6	3	.03	2.7	2	.01
20	1.7	4	.02	3.4	2	.02	2.7	1	.01
21	1.5	3	.01	4.1	5	.06	2.5	3	.02
22	1.5	4	.02	17	5	.23	2.8	2	.02
23	1.7	7	.02	7.6	5	.10	4.5	2	.02
24	2.0	5	.03	5.4	4	.06	3.9	2	.02
25	4.4	5	.06	4.4	4	.05	19	14	.88
25	4.4	5	.00	4.4	4	.05	19	14	.00
26	4.4	5	.07	4.2	3	.04	8.0	4	.10
27	8.9	4	.10	3.9	4	.04	6.5	3	.06
28	2.6	3	.02	3.8	3	.03	8.6	3	.08
29	1.6	3	.01	3.3	5	.04	6.5	1	.02
30	1.4	2	.01	3.4	4	.04	6.2	1	.02
31	1.4	2	.01				5.8	1	.02
TOTAL	82.27		6.63	441.9		44.12	138.8		1.79

POTOMAC RIVER BASIN

01658500 SOUTH FORK QUANTICO CREEK NEAR INDEPENDENT HILL, VA--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

MEAN MEAN MEAN MEAN MEAN CONCEN- SEDIMENT MEAN CONCEN-

		MEAN			MEAN			MEAN		
	MEAN	CONCEN-	SEDIMENT	MEAN	CONCEN-	SEDIMENT	MEAN	CONCEN-	SEDIMENT	
	DISCHARGE	TRATION	DISCHARGE	DISCHARGE	TRATION	DISCHARGE	DISCHARGE	TRATION	DISCHARGE	
DAY	(CFS)		(TONS/DAY)	(CFS)	(MG/L)	(TONS/DAY)	(CFS)	(MG/L)	(TONS/DAY)	
DIII	(CID)	(110/11)	(IOND / DIII)	(010)	(110/11)	(IOND/DIII)	(CLD)	(110/11)	(IOND/DIII)	
		JANUARY		1	FEBRUARY			MARCH		
		OTHVOTHEL			BBROING			rancen		
1	4.1	1	.02	8.7	14	.32	9.1	5	.12	
2	3.9	2	.02	7.8	11	.22	9.3	8	. 22	
3	4.5	3	.03	7.1	12	.23	26	18	1.4	
4	4.4	1	.01	238	61	46	12	8	. 26	
5	4.2	1	.01	355	42	41	8.9	4	.11	
3	1.2	_	.01	333	12	11	0.5	-		
6	4.2	2	.02	52	15	2.1	7.8	4	.08	
7	8.1	4	.11	31	9	.74	7.5	4	.08	
8	14	7	.29	17	6	.29	35	21	2.9	
9	8.4	3	.08	12	4	.14	102	47	16	
10	5.3	2	.03	9.8	3	.08	25	24	1.7	
	3.3	-	.03	3.0	3		23			
11	4.3	2	.02	9.5	3	.07	13	12	.45	
12	4.0	3	.03	17	2	.10	9.8	5	.12	
13	4.3	3	.03	10	2	.05	8.5	3	.07	
14	3.9	2	.02	8.4	2	.04	8.2	3	.06	
15	15	13	1.3	7.3	1	.02	7.2	2	.04	
1.5	23		1.5	,.5	_	.02	7.2	_	.01	
16	36	20	2.7	6.9	2	.03	6.7	2	.03	
17	11	5	.14	139	38	24	6.5	2	.04	
18	8.5	3	.08	222	47	46	35	23	2.5	
19	7.2	1	.03	29	12	.90	129	52	21	
20	7.4	2	.04	18	10	.47	48	29	3.8	
21	5.8	3	.04	14	5	.20	287	64	64	
22	4.4	2	.02	10	4	.10	51	30	4.0	
23	198	53	48	89	22	12	22	11	.72	
24	49	81	9.1	129	24	9.1	16	6	.24	
25	20	47	2.7	27	14	1.0	12	8	.25	
26	10	16	.44	15	6	.23	11	5	.15	
27	9.1	10	.32	12	4	.13	11	10	. 29	
28	328	38	37	10	4	.11	9.6	14	.36	
29	56	49	6.6				8.8	10	.24	
30	18	26	1.3				8.1	4	.09	
31	11	13	.38				7.6	6	.13	
		_3						Ü		
TOTAL	872.0		110.91	1511.5		185.67	958.6		121.45	

POTOMAC RIVER BASIN

01658500 SOUTH FORK QUANTICO CREEK NEAR INDEPENDENT HILL, VA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

		MEAN			MEAN			MEAN	
	MEAN	CONCEN-	SEDIMENT	MEAN	CONCEN-	SEDIMENT	MEAN	CONCEN-	SEDIMENT
	DISCHARGE	TRATION	DISCHARGE	DISCHARGE	TRATION	DISCHARGE	DISCHARGE	TRATION	DISCHARGE
DAY	(CFS)	(MG/L)	(TONS/DAY)	(CFS)	(MG/L)	(TONS/DAY)	(CFS)	(MG/L)	(TONS/DAY)
		APRIL			MAY			JUNE	
1	7.3	7	.14	11	27	1.7	2.4	12	.08
2	6.8	7	.13	31	46	4.1	1.9	11	.06
3	6.0	7	.12	29	32	2.7	1.7	8	.04
4	19	33	2.2	22	25	1.5	1.6	4	.02
5	12	16	.55	16	25	1.3	1.5	2	.01
6	7.8	8	.17	35	124	10	1.4	4	.01
7	6.8	6	.11	10	28	.81	1.3	4	.01
8	6.2	11	.18	44	32	4.1	1.1	3	.01
9	87	58	26	39	26	2.8	1.1	4	.01
10	38	53	6.1	15	16	.65	2.8	9	.07
10	30	33	0.1			.03	2.0		
11	14	21	.82	14	15	.57	2.8	8	.06
12	9.4	11	.28	39	31	3.5	3.0	11	.09
13	7.8	7	.14	25	20	1.4	7.8	49	2.0
14	7.2	8	.15	11	15	.46	5.4	66	1.1
15	6.7	9	.17	7.2	15	.29	25	99	18
16	5.9	14	.22	5.4	12	.17	32	86	14
17	12	34	1.2	4.3	11	.13	6.2	13	.23
18	7.6	17	.37	3.5	13	.12	3.1	9	.07
19	7.8	15	.41	3.1	8	.07	3.3	10	.09
20	20	24	1.6	2.8	7	.05	2.8	9	.07
20	20	21	1.0	2.0	,	.03	2.0	9	.07
21	8.2	9	.20	2.7	14	.10	1.9	9	.05
22	6.2	9	.15	2.4	12	.08	2.5	18	.16
23	5.3	10	.14	2.2	11	.06	5.7	46	1.4
24	4.7	8	.10	2.4	8	.05	23	63	7.1
25	4.0	7	.08	3.4	7	.07	4.0	10	.11
26	3.7	8	.08	2.7	15	.11	2.4	6	.04
27	3.9	9	.10	2.5	13	.09	1.8	7	.03
28	3.5	8	.07	2.6	14	.09	4.9	16	.19
29	3.3	9	.09	2.2	20	.12	3.9	8	.09
30	3.3	9	.08	1.9	22	.11	2.7	6	.05
31				1.9	17	.09			
TOTAL	341.4		42.15	394.2		37.39	161.0		45.25

POTOMAC RIVER BASIN

01658500 SOUTH FORK QUANTICO CREEK NEAR INDEPENDENT HILL, VA--Continued

		MEAN			MEAN			MEAN			
	MEAN	CONCEN- S	SEDIMENT	MEAN	CONCEN-	SEDIMENT	MEAN	CONCEN-	SEDIMENT		
	DISCHARGE	TRATION I	DISCHARGE	DISCHARGE	TRATION	DISCHARGE	DISCHARGE	TRATION	DISCHARGE		
DAY	(CFS)	(MG/L) (5	FONS/DAY)	(CFS)	(MG/L)	(TONS/DAY)	(CFS)	(MG/L)	(TONS/DAY)		
		JULY			AUGUST		Q.	PTEMBER			
		0001			AUGUSI		51	PLIEMPEK			
1	2.1	8	.04	.51	7	.01	.00	0	.00		
2	1.7	8	.04	.42	7	.01	.00	0	.00		
3	1.4	6	.02	.36	4	.00	.00	0	.00		
4	1.2	6	.02	.30	13	.01	.00	0	.00		
5	1.2	8	.03	.25	8	.01	.00	0	.00		
6	1.1	7	.02	.22	8	.00	.00	0	.00		
7	.97	7	.02	.18	6	.00	.00	0	.00		
8	1.3	7	.03	.16	6	.00	.11	10	.00		
9	1.6	8	.03	.18	5	.00	.10	10	.00		
10	1.2	9	.03	.45	11	.01	.07	8	.00		
11	1.0	8	.02	.47	11	.01	.06	8	.00		
12	.86	6	.01	.41	6	.01	.04	7	.00		
13	.78	6	.01	.30	9	.01	.01	8	.00		
14	.72	8	.02	.20	8	.00	.00	9	.00		
15	.69	11	.02	.16	7	.00	.00	0	.00		
16	.69	21	.04	.17	11	.00	.00	0	.00		
17	.68	22	.04	.44	14	.02	.03	16	.00		
18	.65	24	.04	.60	14	.02	.04	20	.00		
19	.63	20	.03	.38	10	.01	.05	13	.00		
20	.61	13	.02	.32	11	.01	.06	9	.00		
0.1	50	1.0	0.0	22	11	0.1	0.4	1.0	0.0		
21	.52	12	.02	. 22	11	.01	.04	10	.00		
22	. 47	22	.03	.16	9	.00	.13	14	.00		
23	. 47	16	.02	.11	10	.00	.11	12	.00		
24	.49	15	.02	.07	17	.00	.09	14	.00		
25	.93	12	.03	.05	21	.00	.08	9	.00		
26	.71	7	.01	.02	12	.00	.07	7	.00		
27	.51	5	.01	.01	13	.00	.08	5	.00		
28	. 44	9	.01	.04	17	.00	.05	6	.00		
29	.40	22	.02	.06	9	.00	.02	4	.00		
30	.36	14	.01	.01	8	.00	.02	5	.00		
31	.56	8	.01	.00	0	.00					
TOTAL	26.94		0.72	7.23		0.15	1.26		0.00		
YEAR	4937.10		596.23								

01660100 CHOPAWAMSIC CREEK AT RUSSELL ROAD NEAR JOPLIN, VA

LOCATION.--Lat. 38°31'23", long 77°22'26", Prince William County, Hydrologic unit 02070011, on left bank at upstream side of Russell Road, 4.5 miles southwest of Dumfries and 2.6 miles upstream from mouth.

DRAINAGE AREA. -- Not determined.

PERIOD OF RECORD. -- February 1996 to current year.

GAGE.--Water stage recorder. Elevation of gage is 30 ft above sea level, from topographic map.

REMARKS.--Records fair.

EXTREMES FOR CURRENT YEAR.--Maximum discharge 851 $\rm ft^3/s$ Feb. 5, gage height 6.55 ft, minimum daily 0.02 $\rm ft^3/s$ Sept. 24-26, 28, 29.

		DISCHARGE	;, IN C	CUBIC FEET	PER SECOND), WATER MEAN VA		BER 1997	TO SEPTEM	MBER 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.59	11	11	11	36	40	29	35	11	10	.61	.07
2	.81	23	6.3	11	29	38	27	67	9.8	7.5	.45	.07
3	1.0	7.3	5.1	11	26	61	25	89	e8.5	6.1	.43	.05
4	.84	4.2	6.1	11	281	44	56	76	e7.0	5.5	.41	.05
5	.14	3.1	6.8	10	555	36	52	53	7.4	5.1	.39	.05
6	.17	2.8	5.7	9.6	146	31	37	67	7.0	4.4	.39	.05
7	.17	e100	5.5	11	101	29	32	45	6.1	3.7	.41	.05
8	.18	e110	5.0	20	68	66	29	96	5.7	5.0	.39	.04
9	.27	61	4.6	18	51	208	132	96	5.4	6.7	.40	.04
10	.37	34	5.0	13	40	95	130	63	15	5.3	.57	.05
11	.39	18	5.9	11	36	58	67	54	16	3.7	1.8	.05
12	.46	12	6.1	9.1	49	45	50	75	18	2.6	2.6	.05
13	.54	8.3	5.7	9.5	36	39	43	77	17	2.0	1.9	.05
14	.71	28	5.6	8.7	29	38	39	51	27	1.8	1.6	.05
15	.95	26	5.2	14	26	33	38	40	65	1.6	1.2	.05
16	1.3	14	5.2	63	24	29	34	33	122	1.6	1.6	.05
17	2.2	9.6	5.1	35	142	27	56	28	42	1.8	3.0	.05
18	8.1	8.2	5.1	25	294	60	45	23	21	4.7	4.3	.05
19	.91	7.9	5.1	20	92	184	42	20	16	3.0	.92	.05
20	.92	6.6	5.1	19	65	108	67	18	15	2.5	.31	.05
21	1.2	6.4	4.9	16	54	415	46	17	10	1.7	.20	.05
22	1.4	27	5.0	14	43	136	38	15	8.4	1.2	.17	.05
23	1.7	19	9.1	211	107	80	34	15	11	.92	.18	.03
24	1.9	10	8.2	137	245	61	31	15	82	.85	.43	.02
25	3.8	8.1	40	69	99	52	27	20	28	.72	.29	.02
26	3.5	8.5	25	44	65	46	26	e17	14	.69	.23	.02
27	6.6	9.0	18	35	53	43	25	13	9.5	.61	.20	.03
28	4.0	7.2	20	408	45	39	23	14	26	1.1	.20	.02
29	2.1	6.1	18	174		36	22	14	19	2.2	.16	.02
30	1.4	6.8	16	73		33	22	12	14	.74	.09	.03
31	1.3		15	48		30		11		.76	.08	
TOTAL	49.92	603.1	294.4	1568.9	2837	2240	1324	1269	663.8	96.09	25.91	1.31
MEAN	1.61	20.1	9.50	50.6	101	72.3	44.1	40.9	22.1	3.10	.84	.044
MAX	8.1	110	40	408	555	415	132	96	122	10	4.3	.07
MIN	.14	2.8	4.6	8.7	24	27	22	11	5.4	.61	.08	.02

e Estimated.

01660100 CHOPAWAMSIC CREEK AT RUSSELL ROAD NEAR JOPLIN, VA--Continued

STATISTICS	OF	MONTHLY	MEAN	DATA	FOR	WATER	YEARS	1996	-	1998,	BY	WATER	YEAR	(WY))
------------	----	---------	------	------	-----	-------	-------	------	---	-------	----	-------	------	------	---

39

8.5

.83

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	16.7	27.5	32.1	41.3	71.0	51.7	38.3	29.8	13.5	8.57	5.25	11.5
MAX	31.7	34.9	54.7	50.6	101	72.3	44.1	40.9	22.1	18.6	13.9	33.0
(WY)	1997	1997	1997	1998	1998	1998	1998	1998	1998	1996	1996	1996
MIN	1.61	20.1	9.50	32.0	40.7	35.0	29.6	13.7	7.98	3.10	.84	.044
(WY)	1998	1998	1998	1997	1997	1996	1997	1997	1997	1998	1998	1998
SUMMARY	STATIST:	ICS	FOR 1	1997 CALENI	DAR YEAR	F	OR 1998 WA	TER YEAR		WATER YE	ARS 1996	- 1998
ANNUAL	TOTAL			6311.63			10973.43	1				
ANNUAL	MEAN			17.3			30.1			27.5		
	ANNUAL 1									30.1 24.9		1998 1997
HIGHEST	C DAILY M	EAN		145	Mar 3		555	Feb 5		555	Feb	5 1998
LOWEST	DAILY ME	AN		.14	Oct 5		.02	aSep 24		.02	aSep 2	24 1998
ANNUAL	SEVEN-DAY	Y MINIMUM		.24	Oct 5		.02	Sep 23		.02	Sep 2	23 1998
INSTANT	TANEOUS PI	EAK FLOW					851	Feb 5		851	Feb	5 1998

Feb

8

.02 bSep

6.55

.17

67 11

59

18

6.55

.02

.83

Feb

bSep

5 1998

8 1998

INSTANTANEOUS PEAK STAGE

INSTANTANEOUS LOW FLOW

10 PERCENT EXCEEDS

50 PERCENT EXCEEDS 90 PERCENT EXCEEDS

a Also Sept. 25, 26, 28, 29, 1998. b Also Sept. 9, 23-30, 1998.

01660110 CHOPAWAMSIC CREEK AT I-95 NEAR JOPLIN, VA WATER QUALITY RECORDS

PERIOD OF RECORD. -- February 1996 to current year.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	ATURE WATER	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	NITRO- GEN DIS- SOLVED (MG/L AS N) (00602)
OCT 1997										
15	1145	1.2	434	3.6	15.0	15.0	770	4.2	41	
NOV 26	0830	8.2	58	6.6	4.0	4.5	745	14.7	116	.17
JAN 1998 08	1245	21	60	6.8	16.5	12.2	744	12.1	116	
27 FEB	1145	31	55	6.4	5.0	4.3	742	12.7	100	.26
04	1330	288	38	6.4	2.5	4.9	749	12.8	102	.31
24 MAR	1430	229	38	5.8	10.0	7.1	747	12.4	104	
18 APR	1200	73	41	6.7	8.5	6.9	743	12.5	99	
21 MAY	1045	48	47	6.5	19.0	13.2	755	10.8	104	.22
12 JUN	1110	72	47	6.4	15.0	15.0	731	9.3	96	
17 JUL	1115	43	43	6.6	25.0	21.0	761	8.3	93	
21 AUG	1210	1.7	81	6.5	27.0	26.3	753	5.8	73	.21
11 SEP	0900	.93	145	6.3	23.5	22.6	749	6.6	77	.24
15	1115	.05	953	3.0	26.5	22.4	755	3.6	42	
DATE	CALCIUM DIS- SOLVED	MAGNE- SIUM, DIS-	SODIUM, DIS-		SULFATE	CHLO- RIDE,	FLUO- RIDE, DIS-	SILICA, DIS- SOLVED	AT 180	NITRO- GEN, NITRATE
	(MG/L AS CA) (00915)	SOLVED (MG/L AS MG)	SOLVED (MG/L AS NA) (00930)	(MG/L AS K)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (MG/L AS CL) (00940)	SOLVED (MG/L AS F) (00950)		DIS- SOLVED (MG/L)	DIS- SOLVED (MG/L AS N) (00618)
OCT 1997	(MG/L AS CA)	SOLVED (MG/L AS MG)	SOLVED (MG/L AS NA)	SOLVED (MG/L AS K)	SOLVED (MG/L AS SO4)	SOLVED (MG/L AS CL)	SOLVED (MG/L AS F)	(MG/L AS SIO2)	DIS- SOLVED (MG/L)	SOLVED (MG/L AS N)
15	(MG/L AS CA)	SOLVED (MG/L AS MG)	SOLVED (MG/L AS NA)	SOLVED (MG/L AS K)	SOLVED (MG/L AS SO4)	SOLVED (MG/L AS CL)	SOLVED (MG/L AS F)	(MG/L AS SIO2)	DIS- SOLVED (MG/L)	SOLVED (MG/L AS N)
15 NOV 26	(MG/L AS CA) (00915)	SOLVED (MG/L AS MG) (00925)	SOLVED (MG/L AS NA) (00930)	SOLVED (MG/L AS K) (00935)	SOLVED (MG/L AS SO4) (00945)	SOLVED (MG/L AS CL) (00940)	SOLVED (MG/L AS F) (00950)	(MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L) (70300)	SOLVED (MG/L AS N) (00618)
15 NOV	(MG/L AS CA) (00915)	SOLVED (MG/L AS MG) (00925)	SOLVED (MG/L AS NA) (00930)	SOLVED (MG/L AS K) (00935)	SOLVED (MG/L AS SO4) (00945)	SOLVED (MG/L AS CL) (00940)	SOLVED (MG/L AS F) (00950)	(MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L) (70300)	SOLVED (MG/L AS N) (00618)
15 NOV 26 JAN 1998 08 27	(MG/L AS CA) (00915) 17 4.6	SOLVED (MG/L AS MG) (00925) 11	SOLVED (MG/L AS NA) (00930) 3.9	SOLVED (MG/L AS K) (00935) 2.8	SOLVED (MG/L AS SO4) (00945)	SOLVED (MG/L AS CL) (00940) 6.4 4.9	SOLVED (MG/L AS F) (00950) <.10	(MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L) (70300)	SOLVED (MG/L AS N) (00618)
15 NOV 26 JAN 1998 08 27 FEB	(MG/L AS CA) (00915) 17 4.6 3.5 3.0	SOLVED (MG/L AS MG) (00925) 11 2.5 1.9	SOLVED (MG/L AS NA) (00930) 3.9 3.7 3.5 2.4	SOLVED (MG/L AS K) (00935) 2.8 1.5 1.2 1.4	SOLVED (MG/L AS SO4) (00945) 170 18 10	SOLVED (MG/L AS CL) (00940) 6.4 4.9 3.5 2.6	SOLVED (MG/L AS F) (00950) <.10 <.10 <.10 <.10	(MG/L AS SIO2) (00955) 15 11 14 9.6	DIS- SOLVED (MG/L) (70300) 298 62 51 58	SOLVED (MG/L AS N) (00618)
15 NOV 26 JAN 1998 08 27	(MG/L AS CA) (00915) 17 4.6 3.5	SOLVED (MG/L AS MG) (00925) 11 2.5	SOLVED (MG/L AS NA) (00930) 3.9 3.7	SOLVED (MG/L AS K) (00935) 2.8 1.5	SOLVED (MG/L AS SO4) (00945) 170 18	SOLVED (MG/L AS CL) (00940) 6.4 4.9 3.5	SOLVED (MG/L AS F) (00950) <.10 <.10 <.10	(MG/L AS SIO2) (00955) 15 11	DIS- SOLVED (MG/L) (70300) 298 62 51	SOLVED (MG/L AS N) (00618)
15 NOV 26 JAN 1998 08 27 FEB 04 24 MAR	(MG/L AS CA) (00915) 17 4.6 3.5 3.0	SOLVED (MG/L AS MG) (00925) 11 2.5 1.9 1.8	SOLVED (MG/L AS NA) (00930) 3.9 3.7 3.5 2.4 1.9 2.0	SOLVED (MG/L AS K) (00935) 2.8 1.5 1.2 1.4	SOLVED (MG/L AS SO4) (00945) 170 18 10 13 7.7 6.4	SOLVED (MG/L AS CL) (00940) 6.4 4.9 3.5 2.6 2.2 2.0	SOLVED (MG/L AS F) (00950) <.10 <.10 <.10 <.10 <.10 <.10	(MG/L AS SIO2) (00955) 15 11 14 9.6 7.1 9.1	DIS- SOLVED (MG/L) (70300) 298 62 51 58 41	SOLVED (MG/L AS N) (00618)
15 NOV 26 JAN 1998 08 27 FEB 04 24 MAR 18 APR	(MG/L AS CA) (00915) 17 4.6 3.5 3.0 2.1 2.0	SOLVED (MG/L AS MG) (00925) 11 2.5 1.9 1.8 1.3 1.2	SOLVED (MG/L AS NA) (00930) 3.9 3.7 3.5 2.4 1.9 2.0	SOLVED (MG/L AS K) (00935) 2.8 1.5 1.2 1.4	SOLVED (MG/L AS SO4) (00945) 170 18 10 13 7.7 6.4 7.0	SOLVED (MG/L AS CL) (00940) 6.4 4.9 3.5 2.6 2.2 2.0	SOLVED (MG/L AS F) (00950) <.10 <.10 <.10 <.10 <.10 <.10 <.10 <.1	(MG/L AS SIO2) (00955) 15 11 14 9.6 7.1 9.1	DIS- SOLVED (MG/L) (70300) 298 62 51 58 41 41	SOLVED (MG/L AS N) (00618)
15 NOV 26 JAN 1998 08 27 FEB 04 24 MAR 18 APR 21 MAY	(MG/L AS CA) (00915) 17 4.6 3.5 3.0 2.1 2.0 2.3	SOLVED (MG/L AS MG) (00925) 11 2.5 1.9 1.8 1.3 1.2 1.4	SOLVED (MG/L AS NA) (00930) 3.9 3.7 3.5 2.4 1.9 2.0 2.3	SOLVED (MG/L AS K) (00935) 2.8 1.5 1.2 1.4 1.2 1.0	SOLVED (MG/L AS SO4) (00945) 170 18 10 13 7.7 6.4 7.0 7.9	SOLVED (MG/L AS CL) (00940) 6.4 4.9 3.5 2.6 2.2 2.0 2.3	SOLVED (MG/L AS F) (00950) <.10 <.10 <.10 <.10 <.10 <.10 <.10 <.1	(MG/L AS SIO2) (00955) 15 11 14 9.6 7.1 9.1	DIS- SOLVED (MG/L) (70300) 298 62 51 58 41 41 38	SOLVED (MG/L AS N) (00618) .053
15 NOV 26 JAN 1998 08 27 FEB 04 24 MAR 18 APR 21 MAY 12 JUN	(MG/L AS CA) (00915) 17 4.6 3.5 3.0 2.1 2.0 2.3 2.8	SOLVED (MG/L AS MG) (00925) 11 2.5 1.9 1.8 1.3 1.2 1.4	SOLVED (MG/L AS NA) (00930) 3.9 3.7 3.5 2.4 1.9 2.0 2.3 2.5	SOLVED (MG/L AS K) (00935) 2.8 1.5 1.2 1.4 1.2 1.0 .85	SOLVED (MG/L AS SO4) (00945) 170 18 10 13 7.7 6.4 7.0 7.9 8.4	SOLVED (MG/L AS CL) (00940) 6.4 4.9 3.5 2.6 2.2 2.0 2.3 2.5	SOLVED (MG/L AS F) (00950) <.10 <.10 <.10 <.10 <.10 <.10 <.10 <.1	(MG/L AS S102) (00955) 15 11 14 9.6 7.1 9.1	DIS- SOLVED (MG/L) (70300) 298 62 51 58 41 41 38 43	SOLVED (MG/L AS N) (00618)
15 NOV 26 JAN 1998 08 27 FEB 04 24 MAR 18 APR 21 MAY 12	(MG/L AS CA) (00915) 17 4.6 3.5 3.0 2.1 2.0 2.3	SOLVED (MG/L AS MG) (00925) 11 2.5 1.9 1.8 1.3 1.2 1.4	SOLVED (MG/L AS NA) (00930) 3.9 3.7 3.5 2.4 1.9 2.0 2.3	SOLVED (MG/L AS K) (00935) 2.8 1.5 1.2 1.4 1.2 1.0	SOLVED (MG/L AS SO4) (00945) 170 18 10 13 7.7 6.4 7.0 7.9	SOLVED (MG/L AS CL) (00940) 6.4 4.9 3.5 2.6 2.2 2.0 2.3	SOLVED (MG/L AS F) (00950) <.10 <.10 <.10 <.10 <.10 <.10 <.10 <.1	(MG/L AS SIO2) (00955) 15 11 14 9.6 7.1 9.1	DIS- SOLVED (MG/L) (70300) 298 62 51 58 41 41 38	SOLVED (MG/L AS N) (00618) .053
15 NOV 26 JAN 1998 08 27 FEB 04 24 MAR 18 APR 21 MAY 12 JUN 17	(MG/L AS CA) (00915) 17 4.6 3.5 3.0 2.1 2.0 2.3 2.8	SOLVED (MG/L AS MG) (00925) 11 2.5 1.9 1.8 1.3 1.2 1.4	SOLVED (MG/L AS NA) (00930) 3.9 3.7 3.5 2.4 1.9 2.0 2.3 2.5	SOLVED (MG/L AS K) (00935) 2.8 1.5 1.2 1.4 1.2 1.0 .85	SOLVED (MG/L AS SO4) (00945) 170 18 10 13 7.7 6.4 7.0 7.9 8.4	SOLVED (MG/L AS CL) (00940) 6.4 4.9 3.5 2.6 2.2 2.0 2.3 2.5	SOLVED (MG/L AS F) (00950) <.10 <.10 <.10 <.10 <.10 <.10 <.10 <.1	(MG/L AS S102) (00955) 15 11 14 9.6 7.1 9.1	DIS- SOLVED (MG/L) (70300) 298 62 51 58 41 41 38 43 39 47	SOLVED (MG/L AS N) (00618) .053 .026
15 NOV 26 JAN 1998 08 27 FEB 04 24 MAR 18 APR 21 MAY 12 JUN 17 JUL 21	(MG/L AS CA) (00915) 17 4.6 3.5 3.0 2.1 2.0 2.3 2.8 3.0	SOLVED (MG/L AS MG) (00925) 11 2.5 1.9 1.8 1.3 1.2 1.4 1.7 1.6 1.6	SOLVED (MG/L AS NA) (00930) 3.9 3.7 3.5 2.4 1.9 2.0 2.3 2.5 2.7	SOLVED (MG/L AS K) (00935) 2.8 1.5 1.2 1.4 1.2 1.0 .85 1.0	SOLVED (MG/L AS SO4) (00945) 170 18 10 13 7.7 6.4 7.0 7.9 8.4 5.2	SOLVED (MG/L AS CL) (00940) 6.4 4.9 3.5 2.6 2.2 2.0 2.3 2.5 2.4	SOLVED (MG/L AS F) (00950) <.10 <.10 <.10 <.10 <.10 <.10 <.10 <.1	(MG/L AS SIO2) (00955) 15 11 14 9.6 7.1 9.1 11 12	DIS- SOLVED (MG/L) (70300) 298 62 51 58 41 41 38 43 39	SOLVED (MG/L AS N) (00618) .053 .026

< Actual value is known to be less than the value shown.

POTOMAC RIVER BASIN

01660110 CHOPAWAMSIC CREEK AT I-95 NEAR JOPLIN, VA WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DATE	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL) (01105)	ARSENIC TOTAL (UG/L AS AS) (01002)
OCT 1997										
15 NOV	<.010	<.050	.023	.21	<.20	<.010	<.010	<.010	3400	<1
26	<.010	.051	<.020	.17	.11	<.010	<.010	.023	360	<1
JAN 1998										
08	<.010	<.050	<.020	.14	< .10	<.010	<.010	.018	200	<1
27	.013	.066	.073	.19	.19	<.010	<.010	.015	410	<1
FEB										
04	<.010	.088	<.020	.35	.22	.022	<.010	.014	990	<1
24	<.010	<.050	.033	.20	.17	<.010	<.010	<.010	430	<1
MAR	. 010	<.050	.026	.14	<.10	<.010	<.010	<.010	240	<1
18 APR	<.010	<.050	.026	.14	<.10	<.010	<.010	<.010	240	< 1
21	.053	.079	.033	.36	.14	.021	.014	<.010	210	<1
MAY	.033	.075	.033	.50		.021	.011	1.010	210	1
12	<.010	<.050	.026	.23	.13	<.010	<.010	<.010	270	<1
JUN										
17	<.010	<.050	.051	.25	.16	<.010	<.010	.015	170	<1
JUL										
21	<.010	.071	.045	.18	.14	<.010	<.010	<.010	200	<1
AUG										
11	<.010	.107	.070	.21	.14	<.010	<.010	<.010	420	<1
SEP 15	.012	<.050	.349	.38	.35	<.010	.013	.017	2500	<1
тэ	.012	<.050	. 349	.38	.35	<.010	.013	.01/	2500	< T

 $[\]mbox{\ensuremath{$<$}}$ Actual value is known to be less than the value shown.

POTOMAC RIVER BASIN

01660110 CHOPAWAMSIC CREEK AT I-95 NEAR JOPLIN, VA

		BERYL-			CHRO-					
	BARIUM,	LIUM,	BORON,	CADMIUM	MIUM,	COBALT,	COPPER,	IRON,		LEAD,
	TOTAL	TOTAL	TOTAL	WATER	TOTAL	TOTAL	TOTAL	TOTAL	IRON,	TOTAL
	RECOV-	RECOV-	RECOV-	UNFLTRD	RECOV-	RECOV-	RECOV-	RECOV-	DIS-	RECOV-
	ERABLE	ERABLE	ERABLE	TOTAL	ERABLE	ERABLE	ERABLE	ERABLE	SOLVED	ERABLE
DATE	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L
	AS BA)	AS BE)	AS B)	AS CD)	AS CR)	AS CO)	AS CU)	AS FE)	AS FE)	AS PB)
	(01007)	(01012)	(01022)	(01027)	(01034)	(01037)	(01042)	(01045)	(01046)	(01051)
OCT 1997										
15	<100	<10	20	<1	1	80	9	26000	20900	<1
NOV										
26	<100	<10	20	<1	<1	7	4	3200	2900	1
JAN 1998										
08	<100	<10	<10	<1	<1	3	1	1800	1400	2
27	<100	<10	<10	<1	<1	5	3	2300	1300	5
FEB	100	1.0	1.0			2	_	0000	000	
04	<100	<10	<10	<1	2	3	5	2000	280	6
24	<100	<10	<10	<1	<1	2	4	880	400	7
MAR 18	<100	<10	<10	<1	<1	1	2	790	420	2
APR	<100	~10	<±0	~1	<u> </u>		2	790	420	2
21	<100	<10	10	<1	<1	2	2	1300	670	2
MAY	-100	-10				-	-	1300	0.0	-
12	<100	<10	<10	<1	<1	2	2	1400	620	2
JUN										
17	<100	<10	20	<1	<1	2	2	1600	790	4
JUL										
21	<100	<10	20	<1	<1	6	2	4300	2400	1
AUG										
11	<100	<10	10	<1	<1	20	5	7800	6800	<1
SEP				_	_		_			_
15	<100	<10	20	<1	<1	100	5	67000	60000	<1

 $^{\,}$ $\,$ Actual value is known to be less than the value shown.

POTOMAC RIVER BASIN

01660110 CHOPAWAMSIC CREEK AT I-95 NEAR JOPLIN, VA WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

		MANGA-			MOLYB-				STRON-	
	LITHIUM	NESE,	MANGA-	MERCURY	DENUM,	NICKEL,		SILVER,	TIUM,	ZINC,
	TOTAL	TOTAL	NESE,	TOTAL	TOTAL	TOTAL	SELE-	TOTAL	TOTAL	TOTAL
	RECOV-	RECOV-	DIS-	RECOV-	RECOV-	RECOV-	NIUM,	RECOV-	RECOV-	RECOV-
	ERABLE	ERABLE	SOLVED	ERABLE	ERABLE	ERABLE	TOTAL	ERABLE	ERABLE	ERABLE
DATE	(UG/L									
	AS LI)	AS MN)	AS MN)	AS HG)	AS MO)	AS NI)	AS SE)	AS AG)	AS SR)	AS ZN)
	(01132)	(01055)	(01056)	(71900)	(01062)	(01067)	(01147)	(01077)	(01082)	(01092)
OCT 1997										
15	<10	5100	5090	<.10	<1	68	<1	<1	100	90
NOV										
26	<10	460	498	< .10	2	5	<1	<1	50	<10
JAN 1998										
08	<10	230	240	< .10	<1	3	<1	<1	50	<10
27	<10	280	289	<.10	<1	5	<1	<1	30	10
FEB										
04	<10	230	147	< .10	<1	4	<1	<1	30	20
24	<10	130	110	<.10	<1	3	<1	<1	20	10
MAR	1.0	110	110	1.0	-		-	-		1.0
18	<10	110	117	<.10	<1	2	<1	<1	50	<10
APR 21	<10	120	160	<.10	<1	2	<1	<1	<10	<10
MAY	<10	120	100	<.10	< 1	2	< 1	< T	<10	<10
12	<10	160	159	<.10	<1	3	<1	<1	60	<10
JUN	110	100	133	1.10	**	5	1.	`-	00	110
17	<10	160	199	<.10	<1	2	<1	<1	40	<10
JUL										
21	<10	450	506	< .10	<1	5	<1	<1	20	<10
AUG										
11	<10	1600	1670	< .10	<1	15	<1	<1	70	20
SEP										
15	<10	10000	9960	< .10	<1	60	<1	<1	90	80

 $^{\,{\}mbox{<}}\,$ Actual value is known to be less than the value shown.

01660500 BEAVERDAM RUN NEAR GARRISONVILLE, VA

LOCATION.--Lat. 38°30'25", long 77°25'46", Stafford County, Hydrologic unit 02070011, on left bank 3.4 miles upstream from mouth and 2.2 miles north of Garrisonville.

DRAINAGE AREA.--12.7 \min^2 .

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--May 1951 to June 1957, and March 1997 to current year.

GAGE.--Water stage recorder. Datum of gage is 150.43 ft above sea level. May 1951 to June 1957, at site 500 ft. upstream at same datum.

REMARKS.--Records fair. Flow regulated by Lunga Reservoir 2.5 mi upstream, capacity 420 acre-ft.

EXTREMES FOR CURRENT YEAR.--Maximum discharge 276 ${\rm ft}^3/{\rm s}$ Feb. 5, gage height 2.74 ${\rm ft}$; minimum 0.74 ${\rm ft}^3/{\rm s}$, Oct. 1.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.8	13	7.2	7.0	47	30	18	17	8.2	12	7.3	7.2
2	1.7	9.0	7.4	7.2	36	28	17	31	8.3	9.8	7.2	7.4
3	2.3	7.7	7.6	7.2	30	39	15	42	8.3	8.6	7.2	7.4
4	2.8	7.6	8.2	7.5	97	35	26	46	8.3	8.5	7.1	7.3
5	2.8	7.3	8.4	7.2	250	30	28	41	8.5	8.8	7.1	7.3
6	3.2	e6.0	8.4	7.2	173	26	23	40	8.5	8.6	7.0	7.6
7	3.1	e29	8.5	7.4	117	23	20	34	8.7	8.5	7.0	7.5
8	3.5	18	6.7	7.8	82	34	18	49	8.1	9.1	7.2	7.8
9	3.3	13	7.1	7.6	58	74	42	53	8.2	8.8	7.2	7.6
10	3.0	11	7.7	7.2	44	68	64	43	13	8.4	7.3	7.7
11	3.2	10	7.2	7.3	36	50	51	36	9.5	8.5	7.4	7.4
12	3.6	10	7.0	7.2	36	38	39	43	10	8.5	7.3	6.1
13	3.6	10	6.9	7.1	30	30	31	45	11	8.3	7.0	5.9
14	3.2	13	6.8	7.2	25	27	26	38	9.8	8.3	7.1	5.8
15	3.2	11	6.6	10	21	23	24	31	11	8.3	7.1	5.8
16	4.0	10	6.8	13	19	19	21	24	19	8.3	7.1	5.7
17	5.6	9.6	7.5	8.9	55	18	29	20	25	8.5	8.1	5.5
18	13	9.3	e6.8	8.5	146	28	28	16	20	8.7	8.3	5.7
19	3.6	8.7	5.9	8.5	108	71	26	14	16	8.7	7.7	5.9
20	3.1	8.8	6.1	7.8	76	75	33	12	15	8.3	7.7	5.9
21	2.9	9.6	6.1	7.4	58	177	28	10	11	7.9	7.8	5.7
22	3.1	12	6.5	e7.0	43	131	24	9.5	9.6	8.2	7.6	6.0
23	3.1	9.6	6.9	e25	57	91	21	8.3	10	8.3	7.4	5.7
24	3.7	8.4	6.9	20	110	65	19	8.4	45	8.1	7.2	5.7
25	7.9	8.4	12	23	86	48	17	12	38	8.0	7.1	5.9
26	7.8	8.8	8.6	23	60	38	15	11	27	7.8	7.2	5.9
27	7.5	8.3	8.8	24	46	31	15	9.0	20	7.6	7.1	6.0
28	6.0	8.6	8.9	127	37	28	12	5.6	17	8.5	7.0	5.5
29	7.3	8.5	8.0	144		24	11	7.0	16	8.1	7.2	5.5
30	6.9	8.6	8.3	98		21	10	9.3	13	7.7	7.4	5.7
31	7.2		7.9	67		19		8.6		8.2	7.4	
TOTAL	137.0	312.8	233.7	724.2	1983	1439	751	773.7	441.0	263.9	226.8	192.1
MEAN	4.42	10.4	7.54	23.4	70.8	46.4	25.0	25.0	14.7	8.51	7.32	6.40
MAX	13	29	12	144	250	177	64	53	45	12	8.3	7.8
MIN	1.7	6.0	5.9	7.0	19	18	10	5.6	8.1	7.6	7.0	5.5
CFSM	.35	.82	.59	1.84	5.58	3.66	1.97	1.97	1.16	.67	.58	.50
IN.	.40	.92	.68	2.12	5.81	4.22	2.20	2.27	1.29	.77	.66	.56

e Estimated.

01660500 BEAVERDAM RUN NEAR GARRISONVILLE, VA--Continued

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1951*, 1952 - 1956, 1957*, BY WATER YEAR (WY)
[UNREGULATED]

						[UNREGULAT	ED]					
MEAN MAX (WY) MIN (WY)	OCT 2.95 6.79 1957 .33 1955	NOV 9.63 27.1 1953 .64 1955	4.68	JAN 13.4 25.0 1953 3.42 1955	FEB 14.5 25.5 1957 5.17 1954	21.8 37.0	APR 20.3 42.2 1952 9.87 1955	MAY 9.45 19.5 1953 3.50	JUN 7.61 18.6 1951 1.58 1954	JUL 3.18 7.16 1952 .20 1954	AUG 11.9 64.0 1955 .088 1954	SEP 2.02 5.88 1952 .040 1954
SUMMAR	Y STATIST	TICS		WZ	ATER YEAR	RS 1951* -	1957*					
ANNUAL ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL INSTAN INSTAN INSTAN ANNUAL 10 PER 50 PER 90 PER	TOTAL MEAN T ANNUAL T ANNUAL T DAILY ME DAILY ME TANEOUS I TANEOUS I TANEOUS I TANEOUS I TANEOUS I CENT EXCE	MEAN MEAN MEAN MEAN MEAN MEAN MY MINIMUM MEAK FLOW MEAK STAGE LOW FLOW MINIMUM MEAK MEAK MEAK MEAK MEAN MEAN MEAN MEAN MEAN MEAN MEAN MEAN		1	10.4 14.4 5.24 564 .01 .01 1370 7.03 .01 .82 11.12 20 5.0 .38	Aug 13 aSep 26 Sep 26 Aug 15 Aug 15 aSep 26	1953 1954 1955 1954 1954 1955 1955 1955					
STATIST	ICS OF MO	NTHLY MEAN	DATA FOR V	ATER YEAR	S 1997* -	1998, BY W	ATER YEAR	(WY) [REGU	LATED, UN	ADJUSTED]		
MEAN MAX (WY) MIN (WY)	4.42	NOV 10.4 10.4 1998 10.4 1998	DEC 7.54 7.54 1998 7.54 1998	JAN 23.4 23.4 1998 23.4 1998	FEB 70.8 70.8 1998 70.8 1998	MAR 46.4 46.4 1998 46.4 1998	APR 20.9 25.0 1998 16.8 1997	MAY 17.8 25.0 1998 10.6 1997	JUN 11.0 14.7 1998 7.35 1997	JUL 6.91 8.51 1998 5.30 1997	AUG 4.64 7.32 1998 1.97 1997	SEP 4.23 6.40 1998 2.05 1997
SUMMARY	STATIST				FOR 1	.998 WATER	YEAR			WATER YEA	ARS 1997	* - 1998
ANNUAL ANNUAL HIGHEST LOWEST ANNUAL INSTANT INSTANT INSTANT ANNUAL 10 PERC 50 PERC	MEAN	MEAN EAN EAN AN MINIMUM EAK FLOW EAK STAGE OW FLOW CFSM) EDS EDS				1.7 O 2.5 O 2.76 F 2.74 F	eb 5 ct 2 ct 1 eb 5 eb 5 ct 1			20.5 20.5 20.5 250 1.4 1.7 276 2.74 .74 1.61 21.92 38 8.3 2.1	Aug 1 Aug 1 Feb Feb	1998 1998 5 1998 5 1997 13 1997 5 1998 5 1998 1 1997

^{*} Partial water year, March to September 1997. a Many days in 1954 and 1955.

01660500 BEAVERDAM RUN NEAR GARRISONVILLE, VA--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- March 1997 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DATE	TIME	DIS CHARG INST CUBI FEE PEF SECC (0006	SE, SPE- C. CIF C CON- ET DUCT ANCION (US/O	IC WHO - FIE I- (STA E AR CM) UNI	ER LE LD TEMI ND- AT LD A TS) (DE	JRE A' IR W. 3 C) (D:	MPER- TURE ATER EG C) 0010)	BARO- METRI PRES- SURI (MM OF HG)	IC - E OXYG DI SOL (MG	SC EN, (P S- C VED SA /L) AT	GEN, IS- DLVED ER- ENT TUR- TON) 301)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	E. COLI WATER WHOLE TOTAL UREASE (COL / 100 ML) (31633)
OCT 1997 15	0840	2.9	9 38	6.	7 11	c 1	5.9	770	6.	6	66	190	170
NOV	0040	2.3	, 30	0.	, 11		5.9	770	0.	0	00	190	170
25	0900	8.3	38	6.	7	. 5	3.8	755	11.	7	90	K23	K28
JAN 1998	0044	7.0	- 40	_	0 10	F 1	1.1	7.47	1.0	c	99	67	70
08 27	0844 0830	7.6 21	5 42 38	6. 6.			3.8	747 742	10. 12.		99	67 K16	70 K4
30	0845	103	35			5.5	6.0	757			101		
*30	0846	103	35				6.0	757	12.		01		
FEB													
04	1145	80	35	6.	6 3	. 0	4.6	749	12.	8 1	01		
24	0900	117	29	6.	4 4	. 0	6.6	752	12.	2 1	01	67	K40
MAR				_	_								
18	0900	30	33	7.	0 5	. 0	6.5	745	12.	8 1	06	77	K34
APR 21	0840	29	29	6.	9 17	5 1.	4.0	750	10.	2 1	.01	к31	80
MAY	0040	2,5	2,5	٠.	J 17.	. 5	1.0	750	10.		.01	KJI	00
12	0900	42	30	6.	6 15	.5 1	6.7	730	9.	1	98	120	120
JUN													
17	0835	25	31	6.	5 27	. 5 2	0.6	760	7.	5	84	140	160
JUL													
21	0845	7.6	33	6.	7 24	. 5 2	2.9	754	7.	4	87	96	67
AUG 12	0020	7.0	33	6.	4 25	0 0	2 0	752	5.	0	71	56	65
SEP	0830	/. () 33	٥.	4 25	.0 2	3.8	/52	э.	9	/ 1	50	0.5
15	0915	5.7	7 34	6.	6 24	.3 2	2.6	754	6.	1	72	260	320
				•		_				=	-		
DATE	D SO (ITRO- GEN IS- LVED MG/L S N) 0602)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	DIS- SOLVED (MG/L AS N)	ORGANIO TOTAL (MG/L AS N)	GEN H MONI C ORGA DIS (MO	S. G/L N)	PHOS-PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	(MG/ AS P	US PHO, E- EED L	
OCT 1997 15 NOV			<.010	<.050	<.015	.31	<	20	<.010	<.010	<.0	10	
25			<.010	<.050	<.020	.24		18	<.010	<.010	.0	22	
JAN 1998 08			<.010	<.050	<.020	. 28		22	.012	<.010	^	18	
27		.29	<.010	.074	.068	.28		22 22	<.012	<.010		12	
30		.31	<.010	.062	.078	.36		25	<.010	<.010		12	
30		.34	<.010	.059	.067	.29		28	<.010	<.010	.0	14	
FEB		.32	<.010	.114	<.020	.37		21	.038	<.010	.0	1 2	
04 24		. 28	<.010	.066	.050	.31		22	<.010	<.010	<.0		
MAR													
18 APR			<.010	<.050	.039	. 27		17	.012	<.010	<.0	10	
21		.24	<.010	.077	.034	.23		16	<.010	<.010	.0	10	
MAY 12			<.010	<.050	.030	.31	.:	17	<.010	<.010	<.0	10	
JUN 17			<.010	<.050	.041	.33		16	<.010	<.010	.0	15	
JUL 21		.33	<.010	.069	.048	.31		26	<.010	<.010	.0		
AUG 12		.33	<.010	.078	.061	.35		25	<.010	<.010	<.0	1.0	
SEP			~.U±U	.070	.001			23	~.UIU	~.U±U	×.0	10	
15			.013	<.050	.040	.36	.:	23	.719	<.010	<.0	10	

^{*} Replicate sample. < Actual value is known to be less than the value shown. K Results based on colony count outside the acceptance range (non-ideal colony count).

DATE	TIME	GAGE HEIGHT (FEET) (00065)	SEDI- MENT, SUS- PENDED (MG/L) (80154)
OCT 1997 01 02 03 04 05 06 07 08 09 11 12 13 14 15 15 15 15 18 18 18 18 18 18 18 20 21 22 23 24 25 26 27 28 29 30 31 NOV 1997	1200 1200 1200 1200 1200 1200 1200 1200	.78 .75 .77 .80 .78 .78 .78 .78 .77 .76 .77 .77 .76 .77 .75 .75 .75 .75 .75 .76 .78 .79 .77 .77 .76 .78 .77 .77 .77 .76 .78 .75 .76 .78 .78 .79 .70 .77 .77 .77 .77 .77 .77 .77 .77 .77	19 21 14 13 20 24 18 18 19 29 17 21 6 3 10 24 14 155 69 116 57 34 28 172 40 24 25 17 24 22 20 30 29 11 11 10
01 02 03 04 05 06 07 07 07 07 07 07 07 10 11 12 13 14 15 16 18 19 20 21 22 23	1200 1200 1200 1200 1200 1200 1115 1200 1400 1500 1600 2000 1200 1200 1200 1200 1200 12	.91 .80 .79 .77 .77 .77 1.07 1.07 1.13 1.24 1.47 1.40 .23 1.07 1.00 .91 .85 .80 .80 .79 .78 .84 .80 .81 .79 .86 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80	30 41 4 13 13 38 50 114 54 156 576 214 78 65 58 113 39 14 9 42 30 25 15 18 17 39 11 14 15 15 15 15 15 15 15 15 15 15 15 15 15

DATE	TIME	GAGE HEIGHT (FEET) (00065)	SEDI- MENT, SUS- PENDED (MG/L) (80154)
NOV 1997 25 25 25 25 26 27 28 29 30	0905 0906 0907 1200 1200 1200 1200 1200	.82 .82 .80 .79 .80 .80 .79	2 2 2 101 34 24 24 28 27
DEC 1997 01 02 04 05 06 07 08 09 10 11 12 16 17 20 21 22 23 24 25 26 27 30	1200 1200 1200 1200 1200 1200 1200 1200	.78 .79 .80 .83 .80 .89 .77 .78 .78 .80 .81 .79 .76 .77 .76 .77 .76 .77 .77 .85 .81 .79 .78	19 24 16 20 19 98 31 14 13 16 14 17 17 11 12 14 8 13 22 24 19
JAN 1998 02 03 04 05 06 08 08 08 10 11 12 13 14 16 17 18 20 23	1200 1200 1200 1200 1200 0843 0844 0845 1200 1200 1200 1200 1200 1200 1200 120	.78 .77 .79 .79 .77 .80 .83 .83 .83 .80 .77 .77 .79 .78 .79 .78 .79 .77 .84 .79 .80 .80 .78 .77 .103 1.21 1.40 1.45 1.53 1.50 1.41 1.32 1.26 1.21 1.16 1.11	10 14 9 14 13 17 7 2 11 11 30 21 21 19 20 27 70 39 23 25 15 351 334 70 159 84 335 244 165 105 42 30 31 18 11 15

DATE	TIME	GAGE HEIGHT (FEET) (00065)	SEDI- MENT, SUS- PENDED (MG/L) (80154)
JAN 1998 24 24 24 25 25 27 27 27 28 28 28 28 28 28 29 29 29 30 30 30 30 31 31	0015 0315 1200 0445 0715 1200 0843 0845 0847 1200 1200 1201 1300 1400 1500 1600 1700 1800 1900 2000 2100 0500 0900 01200 0825 0830 0853 0930 0853 0930 1200 1430 1900 0030 0630 1200	1.00 .96 .90 .96 .96 .96 1.00 1.00 1.00 1.00 2.09 2.01 2.07 2.19 2.29 2.19 2.29 2.19 2.09 2.09 2.09 2.09 2.09 2.05 1.97 1.93 1.70 1.70 1.63 1.63 1.61 1.58 1.52 1.46 1.40 1.37	164 309 40 331 345 17 2 4 2 318 378 64 465 316 224 172 154 132 41 79 57 48 120 97 69 49 16 11 10 7 15 10 10 10 10 10 10 10 10 10 10 10 10 10
FEB 1998 01 02 03 03 04 04 04 04 04 04 04 04 04 04 04 05 05 05 05 05 05	1200 1200 0930 1200 1530 0030 0530 0630 0730 1200 1230 1330 1355 1400 1410 1430 1530 1630 1630 0330 0230 0230 0330 0230 0530 0930 1000 1000 1005 1010 1030 1200 1530	1.20 1.09 1.03 1.03 1.05 1.01 1.14 1.16 1.21 1.27 1.49 1.55 1.70 1.75 1.75 1.80 1.83 1.89 1.94 1.99 2.00 2.27 2.41 2.50 2.60 2.70 2.70 2.70 2.69 2.69 2.58	59 30 27 49 12 15 19 22 19 25 170 57 78 51 78 82 82 73 73 57 47 117 219 246 193 197 205 207 191 52 114

DATE	TIME	GAGE HEIGHT (FEET) (00065)	SEDI- MENT, SUS- PENDED (MG/L) (80154)
FEB 1998 05 05 06 06 06 07 07 07 07 10 11 12 13 14 15 17 17 17 18	1930 2330 0630 0930 1200 1500 2200 0500 1200 1200 1200 120	2.48 2.38 2.28 2.20 2.11 2.09 2.03 1.93 1.84 1.74 1.71 1.48 1.16 1.09 1.09 1.09 1.54 1.50 1.54 1.81 1.97 1.92 1.94 1.98 2.00 1.98 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97	100 82 61 54 48 26 29 20 24 38 12 46 37 58 50 44 77 52 37 23 45 66 37 29 161 64 56 47 41 32 66 37 29 18 19 19 19 19 19 19 19 19 19 19 19 19 19
01 02 03 04 05 06	1200 1200 1200 1200 1200 1200 1200	1.05 1.00 1.14 1.08 1.04 .99	21 20 20 19 7 16 24

DATE	TIME	GAGE HEIGHT (FEET) (00065)	SEDI- MENT, SUS- PENDED (MG/L) (80154)
MAR 1998 08 09 09 09 09 09 10 11 12 13 14 15 16 17 18 18 19 20 20 20 21	1200 0615 0815 1030 1035 1040 1200 1215 2115 1200 1200 1200 1200 120	1.07 1.46 1.51 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.39 1.24 1.13 1.01 1.06 1.03 1.01 1.08 1.04 1.04 1.04 1.04 1.03 1.44 1.38 1.46 1.47 1.49 1.57 1.83 2.37 2.48 2.29 2.13 2.11 2.13 2.15 2.13 2.11 2.13 2.15 2.13 2.11 2.13 2.15 2.13 2.11 2.13 2.15 2.13 2.15 2.13 2.11 2.13 2.15 2.13 2.11 2.13 2.15 2.13 2.11 2.13 2.15 2.13 2.15 2.13 2.11 2.13 2.15 2.13 2.11 2.13 2.15 2.13 2.11 2.13 2.15 2.13 2.11 2.13 2.15 2.13 2.11 2.13 2.15 2.13 2.11 2.13 2.15 2.13 2.11 2.13 2.15 2.13 2.11 2.13 2.15 2.13 2.11 2.13 2.15 2.13 2.11 2.13 2.15 2.13 2.11 2.13 2.15 2.13 2.11 2.13 2.15 2.13 2.11 2.13 2.15 2.13 2.11 2.13 2.15 2.13 2.11 2.13 2.15 2.13 2.14 2.13 2.15 2.19 2.09 2.05 1.83 1.54 1.33 1.19 1.10 1.05 1.02 97 94 .93	23 54 39 27 20 17 21 37 10 12 26 9 4 20 25 14 20 15 8 9 10 19 21 17 23 20 15 23 20 40 40 40 40 40 40 40 40 40 4
01 02 03 04 05 06 07 08 09 09 10 11 12 13	1200 1200 1200 1200 1200 1200 1200 1200	.92 .90 .88 1.10 1.01 .96 .93 .92 .98 .91 .92 .90 1.36 1.36 1.13	16 31 24 61 34 42 34 33 36 184 161 128 16 22 38 38

DATE	TIME	GAGE HEIGHT (FEET) (00065)	SEDI- MENT, SUS- PENDEI (MG/L)
APR 1998			
14 15	1200 1200	1.00 .96	39 43
16	1200	.94	75
17	1200	1.12	142
18	1200	1.01	124
19 20	1200 1200	.98 1.07	101 162
21	0810	1.07	16
21	0815	1.05	9
21 21	0830 1200	1.05	20 24
22	1200	1.00 .97	24 96
23	1200	.94	85
24	1200	.91	99
25 26	1200 1200	.87 .86	130 171
27	1200	.86	82
28	1200	.82	19
29	1200 1200	.80 .81	54
30 MAY 1998	1200	.81	43
01	1200	.80	41
02	1200	.98	69
03	1200 1200	1.13 1.17	25 37
05	1200	1.12	25
06	1200	1.13	28
07 08	1200 1200	1.04	50 50
09	1200	1.20 1.24	24
10	1200	1.16	19
11	1200	1.08	17
12 12	0845 0850	1.18 1.18	17 9
12	0855	1.18	15
12	1200	1.18	20
13 14	1200 1200	1.17 1.09	19 8
15	1200	1.03	19
16	1200	.96	23
17 18	1200 1200	.92 .87	33 53
19	1200	.83	40
20	1200	.81	17
21	1200	.80	32
22	1200 1200	.79 .76	31 32
24	1200	.76	39
25	1200	.82	55
26 27	1200 1200	.82 .80	48 59
28	1200	.73	64
29	1200	.74	94
30	1200	.79	40
31 JUN 1998	1200	.79	59
01	1200	.78	31
02	1200	.78	52
03	1200 1200	.78 .78	60 38
05	1200	.78	39
06	1200	.78	51
07	1200	.78	29
08 09	1200 1200	.78 .77	31 43
10	1200	.90	72
11	1200	.80	102
12 13	1200 1200	.80 .79	68 63
14	1200	.79	89
15	1200	.84	56

DATE	TIME	GAGE HEIGHT (FEET) (00065)	SEDI- MENT, SUS- PENDED (MG/L) (80154)
JUN 1998	1200	0.0	23
16 17	0815	.92 1.03	25
17	0820	1.03	17
17	0825	1.03	24
17	1200	.99	33
18	1200	.93	95
19 20	1200 1200	.89 .87	55 36
21	1200	.83	61
22	1200	.80	62
23	1200	.79	52
24	1200	1.23	40
25 25	1200 1400	1.12 1.11	34 17
25	2300	1.06	10
26	0500	1.03	10
26	1200	1.01	87
26	1300 1200	1.00 .93	9
27 28	1200	. 89	14 22
29	1200	.88	31
30	1200	.85	61
JUL 1998	1000	0.0	0.0
01 02	1200 1200	.83 .80	29 25
03	1200	.78	37
04	1200	.77	52
05	1200	.78	51
06	1200	.77	45
07 08	1200 1200	.78 .78	29 68
09	1200	.78	50
10	1200	.78	60
11	1200	. 78	88
12 13	1200 1200	.78 .77	59 76
14	1200	.77	80
15	1200	.77	61
16	1200	. 77	84
17 18	1200 1200	.77 .78	180 138
19	1200	.78	97
20	1200	.77	43
21	0822	.82	28
21	0825	.82	3
21 21	0830 1200	.82 .77	11 21
22	1200	.77	88
23	1200	.77	68
24	1200	.76	52
25 26	1200 1200	.76 .76	87 88
27	1200	.76	54
28	1200	.78	54
29	1200	.79	146
30 31	1200	.77	61 50
31 AUG 1998	1200	.78	58
01	1200	.77	54
02	1200	.78	61
03	1200	.78	50
04 05	1200 1200	.77 .77	52 36
06	1200	.77	67
07	1200	.77	58
08	1200	.77	44
09 10	1200 1200	.78 .78	55 53
11	1200	.78	66
12	0810	.82	36
12	0815	.82	7

DATE	TIME	GAGE HEIGHT (FEET) (00065)	SEDI- MENT, SUS- PENDED (MG/L) (80154)
AUG 1998			
12	0820	.82	16
12	1200	.77	27
13	1200	.77	55
14	1200	.77	65
15	1200	.77	61
16	1200	.77	57
17	1200	.77	57
18	1200	.78	106
19	1200	.77	64
20	1200	.77	76
21	1200	.77	69
22	1200	.77	119
23	1200	.77	89
24	1200	.77	77
25 26	1200 1200	.76 .77	61
26		.77	88
27	1200 1200	. 76	46 42
29	1200	.77	36
30	1200	. 78	38
31	1200	.78	34
SEP 1998	1200	. / /	34
01	1200	. 77	26
02	1200	.77	32
03	1200	.77	32
04	1200	.76	35
05	1200	.78	39
06	1200	.78	13
07	1200	.77	39
15	0855	1.78	25
15	0900	1.78	8
15	0905	1.78	8

POTOMAC RIVER BASIN
01660500 BEAVERDAM RUN NEAR GARRISONVILLE, VA--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

MEAN MEAN MEAN CONCEN- SEDIMENT MEAN CONCEN- SEDIMENT MEAN CONCEN- SEDIMENT MEAN DISCHARGE TRATION DISCHARGE DISCHARGE TRATION DISCHARGE DISCHARGE TRATION DISCHARGE DAY (CFS) (MG/L) (TONS/DAY) (CFS) (MG/L) (TONS/DAY) (CFS) (MG/L) (TONS/DAY) OCTOBER NOVEMBER DECEMBER 1.8 .02 13 12 7.2 18 .36 9.0 7.7 7.6 .15 7.4 7.6 8.2 .02 1.7 4 6 3 20 .40 3 .34 3 17 2.8 .02 .31 3 14 5 2.8 4 .03 7.3 10 .19 8.4 .37 16 3.2 5 .04 e6.0 19 e.31 8.5 6.7 7.1 3.1 4 .03 e29 81 e8.0 56 . 47 8 4 .04 18 58 2.8 26 3.3 .04 13 28 1.0 10 3.0 5 .04 11 11 .33 7.7 10 .21 10 9 11 3.2 4 .04 7.2 11 12 3.6 5 .05 10 25 .72 7.0 10 .19 13 3.6 3 .03 10 23 6.9 10 .19 3.2 .03 19 .68 6.8 15 3.2 2 .02 11 13 .38 6.6 11 .19 16 4.0 4 .05 10 15 .40 6.8 11 .20 9.6 15 17 7.5 e6.8 17 5.6 8 .20 .39 11 .22 13 18 11 .52 .42 9 e.17 3.6 19 10 .10 8.7 27 .65 5.9 20 3.1 8 .06 8.8 12 .29 6.1 6 .10 .06 9.6 13 21 2.9 8 .34 6.1 7 .11 2.2 3.1 7 .05 12 9.6 16 .53 6.5 .12 23 8 .07 .08 5 13 3.7 8 .08 8.4 10 .24 6.9 6 7.9 25 9 .18 8.4 4 .09 12 10 .34 7.8 7.5 12 .26 5.8 11 . 25 26 8.8 25 8.6 2.7 12 .24 8.3 24 .54 8.8 8 .19 .09 23 .54 8.9 28 6.0 6 5 8.6 .15 .58 29 7.3 .10 8.5 25 8.0 5 .11 30 6.9 5 .09 8.6 24 .56 8.3 4 .09 31 7.2 6 .12 7.9 .08 TOTAL 137.0 2.74 312.8 22.62 233.7 7.86 ---------JANUARY FEBRUARY MARCH 1 2 7.0 7.2 5.3 2.3 .06 47 42 30 28 .06 28 26 36 28 3 2.6 7.2 .09 30 18 1.5 39 25 7.5 4 5 07 97 32 11 35 21 1.9 4 250 93 30 .08 136 .83 10 7.2 7.4 173 117 6 7 4 0.8 42 20 26 17 1.2 4 .07 38 23 24 12 8 7.8 .07 82 54 12 7.6 7.2 .16 5.5 2.3 9 8 7 58 51 8 0 74 29 10 .14 44 51 6.0 68 13 7.3 7.2 .16 8.2 85 50 11 8 36 2.0 2.8 8 12 .16 36 101 38 11 1.1 7.1 9 .18 30 91 13 14 15 .30 25 82 5.6 27 23 1.6 15 10 45 1.3 21 71 4.1 23 16 .98 19 2.4 19 .96 16 13 40 1.4 46 18 .59 8.9 24 55 84 19 18 .69 17 14 18 8.5 16 146 73 29 28 15 1.2 5 3 19 8.5 16 .37 108 18 71 2.0 3 8 7.8 3.0 75 4.9 20 76 21 15 .31 15 21 7.4 63 1.2 58 2.0 3 1 177 66 35 e7.0 344 e6.6 43 20 2.3 5.7 131 7.0 19 23 e25 95 e6.8 57 33 91 13 24 20 110 6.2 110 21 6.1 65 11 1.9 25 23 3.4 48 181 11 86 15 1.5 11 20 1.3 13 2.2 26 23 60 38 22 2.2 182 46 28 24 31 2.8 127 285 85 37 25 2.5 2.8 24 1.8

24

19

1439

20

26

2.8

1.3

1.4

101.16

144

67

724.2

43

15

13

18

2.3

161.32

1983

292.5

29

30

31

TOTAL

e Estimated.

POTOMAC RIVER BASIN

01660500 BEAVERDAM RUN NEAR GARRISONVILLE, VA--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

		MEAN			MEAN			MEAN	
	MEAN	CONCEN-	SEDIMENT	MEAN	CONCEN-	SEDIMENT	MEAN	CONCEN-	SEDIMENT
	DISCHARGE	TRATION	DISCHARGE	DISCHARGE	TRATION	DISCHARGE	DISCHARGE	TRATION	DISCHARGE
DAY	(CFS)	(MG/L)	(TONS/DAY)	(CFS)	(MG/L)	(TONS/DAY)	(CFS)	(MG/L)	(TONS/DAY)
		APRIL			MAY			JUNE	
1	18	16	.77	17	33	1.9	8.2	23	.51
2	17	22	1.0	31	35	2.8	8.3	32	.71
3	15	18	.75	42	16	1.8	8.3	36	.81
4	26	32	2.5	46	18	2.3	8.3	27	.59
5	28	28	2.1	41	15	1.6	8.5	27	.61
6	23	29	1.8	40	16	1.7	8.5	31	.70
7	20	25	1.3	34	25	2.3	8.7	21	. 49
8	18	23	1.1	49	38	5.2	8.1	22	.47
9	42	47	7.3	53	19	2.7	8.2	30	.67
10	64	18	3.1	43	11	1.3	13	48	1.7
11	51	15	2.0	36	9	.92	9.5	63	1.6
12	39	22	2.4	43	10	1.2	10	48	1.3
13	31	23	1.9	45	10	1.2	11	45	1.3
14	26	23	1.6	38	6	.62	9.8	55	1.5
15	24	27	1.7	31	10	.85	11	37	1.1
16	21	44	2.5	24	13	.88	19	18	.92
17	29	72	5.8	20	19	1.1	25	24	1.6
18	28	66	5.0	16	28	1.2	20	54	2.8
19	26	58	4.1	14	22	.83	16	38	1.7
20	33	59	5.3	12	12	.38	15	27	1.1
21	28	15	1.1	10	18	.49	11	37	1.1
22	24	41	2.6	9.5	19	.49	9.6	38	.99
23	21	44	2.5	8.3	20	.44	10	32	.87
24	19	51	2.6	8.4	24	.56	45	24	3.0
25	17	67	3.0	12	32	1.0	38	15	1.6
26	15	78	3.2	11	31	.89	27	6	.41
27	15	40	1.7	9.0	36	.88	20	8	.42
28	12	14	.46	5.6	42	.63	17	12	.55
29	11	24	.73	7.0	51	.94	16	17	.72
30	10	23	.66	9.3	29	.74	13	26	.93
31				8.6	33	.76			
TOTAL	751		72.57	773.7		40.60	441.0		32.77

POTOMAC RIVER BASIN

01660500 BEAVERDAM RUN NEAR GARRISONVILLE, VA--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		JULY			AUGUST		SE	EPTEMBER	
1	12	15	.50	7.3	14	.28	7.2	15	. 29
2	9.8	13	.34	7.2	15	.30	7.4	17	.35
3	8.6	17	.39	7.2	13	.26	7.4	18	.36
4	8.5	22	.51	7.1	13	.25	7.3	20	.40
5	8.8	22	.52	7.1	11	.22	7.3	23	. 45
6	8.6	18	.43	7.0	17	.31	7.6	24	.48
7	8.5	14	.32	7.0	16	.30	7.5	24	.48
8	9.1	23	.56	7.2	13	.25	7.8	24	.50
9	8.8	20	.48	7.2	15	.30	7.6	29	.60
10	8.4	23	.51	7.3	16	.31	7.7	30	.63
11	8.5	27	.63	7.4	18	.35	7.4	34	.67
12	8.5	21	.48	7.3	10	.20	6.1	34	.55
13	8.3	23	.52	7.0	16	.30	5.9	25	.40
14	8.3	23	.51	7.1	20	.39	5.8	10	.15
15	8.3	18	.41	7.1	21	.40	5.8	17	.27
16	8.3	24	.55	7.1	20	.39	5.7	23	.36
17	8.5	41	.94	8.1	23	.51	5.5	26	.40
18	8.7	33	.77	8.3	34	.76	5.7	26	.41
19	8.7	21	.49	7.7	27	.56	5.9	22	.36
20	8.3	10	.22	7.7	29	.61	5.9	18	.28
21	7.9	6	.12	7.8	31	.64	5.7	21	.33
22	8.2	15	.33	7.6	45	.92	6.0	13	.20
23	8.3	14	.31	7.4	39	.78	5.7	13	.21
24	8.1	12	.26	7.2	34	.65	5.7	19	. 29
25	8.0	18	.39	7.1	30	.58	5.9	23	.36
26	7.8	19	.39	7.2	36	.71	5.9	21	.33
27	7.6	13	.27	7.1	24	.45	6.0	23	.37
28	8.5	13	.30	7.0	21	.39	5.5	28	.42
29	8.1	14	.30	7.2	19	.36	5.5	27	.41
30	7.7	15	.31	7.4	19	.39	5.7	40	.61
31	8.2	14	.31	7.4	18	.35			
TOTAL	263.9		13.37	226.8		13.47	192.1		11.92
YEAR	7478.2		772.90						

01660810 UPPER MACHODOC CREEK AT DAHLGREN, VA

LOCATION.--Lat 38°19'10" long 77°02'08", Hydrologic Unit 02070011, on pier 350 ft south of security gate at intersection of Tisdale Road and° Welch° Road, at the Naval Surface Warfare Center, Dahlgren Laboratory, in Dahlgren, and 0.5 mi upstre°am from confluence of Potomac River.

PERIOD OF RECORD. -- October 1992 to September 1998 (discontinued).

GAGE.--Water-stage recorder. Datum of gage is 4.86 ft below sea level; gage readings have been adjusted to sea level.

REMARKS. -- Records good.

EXTREMS FOR PERIOD OF RECORD.--Maximum elevation, 5.86 ft, Sept. 6, 1996. Minimum elevation, -3.31 ft, Apr. 1, 1997

EXTREMES FOR CURRENT YEAR.--Maximum elevation, 3.87 ft, Feb. 5; minimum, -2.17 ft, Dec. 31.

ELEVATION, FEET, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	OCT	OBER	NOVE	MBER	DEC	EMBER	JAÌ	WARY	FEBI	RUARY	MA	ARCH
1	1.12	68	2.74	.86	2.16	72	.05	-2.13	2.27	.13	2.84	.54
2	1.78	01	2.80	1.02	1.05	-1.16	.50	-1.62	2.40	.38	2.85	.39
3	1.95	.19	2.17	.55	1.24	62	.40	-1.65	2.27	.36	2.21	.13
4	1.96	. 25	1.75	16	1.24	57	.81	-1.23	3.62	.61	2.23	.19
5	1.93	.25	1.49	17	1.57	35	1.23	81	3.87	2.07	2.07	.15
6	1.60	.01	1.88	.14	1.02	52	1.82	11	3.78	2.37	1.94	13
7	1.47	05	2.62	.87	.56	-1.14	1.84	.03	3.62	1.77	2.30	.57
8	1.97	.19	3.30	1.75	.90	-1.39	2.26	.32	3.18	1.59	2.64	.35
9	1.93	.34	2.47	.76	1.70	66	2.20	.53	3.16	1.26	3.52	1.62
10	1.83	.35	2.23	.55	2.24	.17	1.99	.19	2.72	.42	2.71	-1.26
11	1.99	.05	2.04	.17	2.28	.32	2.34	.36	2.22	.12	.18	-1.63
12	2.29	.52	1.95	.03	2.31	.33	2.12	.33	2.39	.10	.28	-1.37
13	2.31	.39	2.13	.06	2.24	.13	2.29	.21	1.57	42	1.13	74
14	2.40	.34	2.69	.46	1.69	62	1.28	38	1.42	28	1.57	29
15	2.36	19	2.71	.46	1.37	55	1.80	.15	1.97	.01	1.07	93
16	2.13	.02	2.05	59	1.37	51	1.99	. 23	2.10	.40	1.17	48
17	2.90	.58	1.07	78	1.66	42	2.81	.47	3.66	.89	1.76	24
18	2.90	.83	1.49	43	1.73	.10	2.62	1.00	3.15	1.46	2.05	.17
19	2.84	.93	1.72	01	1.79	.03	2.67	.90	2.44	1.06	1.85	.10
20	2.64	.90	1.66	.24	1.03	50	2.03	.50	2.25	.85	2.52	.25
21	2.64	.78	1.58	.15	1.51	35	1.85	.02	1.83	.05	3.56	1.93
22	2.34	.19	1.62	.37	1.88	.47	2.51	1.01	1.60	19	2.55	1.06
23	1.37	27	2.00	.32	1.37	.10	3.12	1.47	2.87	.35	2.56	.76
24	1.98	.33	1.84	45	2.39	.32	2.50	.40	2.40	-1.24	1.92	32
25	1.73	.06	1.15	76	2.46	1.06	1.42	47	1.26	-1.42	1.80	51
26	2.73	.12	1.31	41	2.12	.42	1.86	09	2.18	01	1.94	29
27	2.60	.95	.37	-1.41	1.65	03	1.93	17	2.80	.37	1.63	-1.00
28	1.30	80	1.01	88	1.62	85	2.97	.65	2.92	.57	1.38	-1.04
29	1.47	21	1.88	23	2.78	.59	3.60	.95			1.56	93
30	1.25	44	2.41	.55	2.46	18	3.59	.61			1.72	62
31	1.94	09			.51	-2.17	2.03	.13			1.99	42
MONTH	2.90	80	3.30	-1.41	2.78	-2.17	3.60	-2.13	3.87	-1.42	3.56	-1.63

01660810 UPPER MACHODOC CREEK AT DAHLGREN, VA--Continued

ELEVATION, FEET, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DAY	MAX	MIN										
	AF	PRIL	М	AY	JU	NE	JU	ILY	AUG	UST	SEPT	EMBER
1	1.78	41	1.97	30	2.05	06	1.30	41	2.41	.83	2.40	.65
2	1.83	32	2.47	.41	2.36	.11	1.64	.06	2.17	.55	2.49	1.21
3	2.10	.08	2.13	.63	2.28	.46	1.75	.24	2.14	.61	2.49	.40
4	2.93	.69	2.39	.60	1.80	.13	2.25	. 44	2.14	.46	2.65	.57
5	1.86	.20	2.50	.98	1.81	06	2.26	03	2.21	.44	2.48	.31
6	2.10	.58	2.36	.28	1.55	81	2.00	.37	2.39	.57	2.31	.03
7	2.18	.50	2.34	.53	.96	89	2.20	.62	2.38	.51	1.93	24
8	2.28	.38	2.68	1.09	1.01	62	2.33	.39	2.39	.48	1.58	44
9	2.65	.63	2.80	.16	1.49	15	2.29	.14	2.42	.32	1.55	52
10	2.38	.71	2.39	.73	2.44	.74	2.35	.15	2.43	.25	1.57	42
11	2.86	.24	3.09	1.24	2.53	.19	2.23	.15	2.30	.19	1.94	17
12	2.21	.35	2.93	1.28	2.25	.38	2.20	.15	2.02	.05	1.97	.04
13	2.19	.51	3.17	1.54	2.43	.44	2.30	.14	2.53	.10	2.19	.15
14	2.42	.62	3.53	1.23	2.05	.27	2.48	.56	2.80	.96	2.46	.67
15	2.41	.64	2.88	.70	2.45	.46	2.16	.26	2.23	.42	2.37	.59
16	2.42	.64	2.31	.45	2.53	.51	2.09	.10	2.16	.31	2.11	.10
17	2.36	.31	2.28	.48	2.05	.16	2.07	.08	2.14	.18	1.76	.04
18	1.00	83	2.23	.44	1.90	11	1.89	16	1.98	09	2.21	.52
19	2.08	01	1.92	.15	2.09	.07	2.29	.27	1.94	48	2.59	.95
20	1.30	50	2.21	.28	2.10	04	2.31	04	2.16	.48	2.61	.72
21	1.90	24	2.33	.47	2.13	08	1.92	36	2.22	.11	2.32	.54
22	2.31	.36	2.25	18	2.26	.14	1.88	30	1.99	08	2.23	.37
23	2.81	.83	2.30	.00	2.47	.18	1.96	07	2.23	.32	1.85	.19
24	2.96	.76	2.34	30	2.53	01	1.97	25	2.24	.14	2.38	.69
25	2.77	30	2.35	.05	2.25	06	2.03	01	1.77	05	2.13	.54
26	2.17	28	2.49	16	2.14	04	2.14	.22	1.92	06	1.71	.26
27	2.47	14	2.28	.02	1.85	03	1.95	.22	2.36	.49	1.78	.27
28	2.39	39	2.36	.04	2.61	08	2.14	.43	2.93	1.26	1.46	.02
29	2.01	39	2.25	.09	2.80	1.15	1.74	.19	2.81	1.24	2.12	.36
30	2.12	18	2.06	.10	1.86	.27	1.98	.22	2.04	.36		
31			1.81	.02			2.00	.38	2.11	.85		
MONTH	2.96	83	3.53	30	2.80	89	2.48	41	2.93	48		

01664000 RAPPAHANNOCK RIVER AT REMINGTON, VA

LOCATION.--Lat 38°31'50", long 77°48'50", Fauquier County, Hydrologic Unit 02080103, on left bank 80 ft upstream from bridge on alternate U.S. Highway 29, at Remington, 0.3 mi upstream from Tinpot Run, 0.4 mi downstream from Ruffans Run, and 2.5 mi downstream from Hazel River.

DRAINAGE AREA. -- 620 mi².

PERIOD OF RECORD. -- October 1942 to current year.

REVISED RECORDS. -- WSP 1171: 1944. WSP 2103: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 252.53 ft above sea level. Prior to Nov. 21, 1951, nonrecording gage at bridge 80 ft downstream at same datum.

REMARKS.--No estimated daily discharges. Records good. National Weather Service gage-height telemeter at station. Maximum discharge, $90,000 \text{ ft}^3/\text{s}$, from rating curve extended above $43,000 \text{ ft}^3/\text{s}$ on basis of slope-area measurement of peak flow. Minimum gage height, 2.31 ft, Sept. 13, 1966. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum flood since at least 1828, that of Oct. 16, 1942.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 6,000 ${\rm ft}^3/{\rm s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Nov. 8	0730	12,700	16.49	Feb. 18	1115	16,800	18.43
Jan. 9	0700	13,600	16.65	Mar. 19	1130	6,280	11.21
Jan. 23	2200	7,140	11.99	Mar. 21	1700	*17,600	*18.84
Jan. 29	0415	15,100	17.50	Apr. 10	0245	6,660	11.56
Feb. 5	1415	14,600	17.20	May 8	2345	12,400	16.01

Minimum discharge, 15 ft³/s, Sept. 15, 17, 18.

		DISCHAR	GE, IN CU	BIC FEET		ID, WATER LY MEAN VA		BER 1997	TO SEPTEM	BER 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	221	187	400	463	2030	1700	1220	839	633	453	82	25
2	160	988	374	465	1710	1600	1500	1520	632	387	74	24
3	134	924	341	508	1530	1560	1170	1570	549	335	67	23
4	122	544	339	576	4470	1390	1300	2060	514	311	60	20
5	113	394	361	687	13200	1280	1540	1980	513	306	57	18
6	105	320	340	679	7100	1200	1210	2060	510	297	51	18
7	96	2580	313	732	3610	1130	1110	1610	488	270	49	17
8	91	8640	301	3530	2680	1910	1070	8040	462	276	45	22
9	86	2760	299	9740	2140	4970	1830	7400	447	342	46	21
10	84	1770	323	3010	1860	3440	4190	3200	609	314	55	23
11	85	1310	394	2010	1680	2280	2110	2450	763	274	96	23
12	83	1060	372	1560	2370	1880	1680	2590	683	230	102	23
13	79	884	338	1340	1920	1640	1470	2480	933	206	85	21
14	77	972	318	1150	1690	1510	1350	1880	1270	193	77	18
15	80	1120	303	1130	1520	1380	1290	1600	789	183	123	18
16	86	866	290	2440	1390	1260	1230	1410	2520	178	118	17
17	98	729	288	1650	4260	1190	1240	1290	1870	179	94	17
18	146	652	285	1400	14100	1510	1180	1150	1090	264	133	24
19	154	593	277	1200	5220	4700	1140	1050	806	210	131	35
20	130	549	272	1090	3310	2870	2600	970	740	166	90	31
21	105	509	272	966	2710	14200	1710	904	636	152	68	25
22	94	643	271	895	2190	8060	1420	842	582	138	59	21
23	88	649	354	3380	2320	3510	1280	793	602	125	52	22
24	85	540	366	4000	4240	2630	1190	791	1080	170	48	21
25	113	473	690	2470	2730	2170	1080	1000	624	151	45	22
26	228	449	819	1810	2190	1880	1010	898	498	126	42	22
27	270	435	630	1540	1950	1700	973	778	440	113	36	21
28	273	404	688	8830	1780	1560	914	781	449	103	34	21
29	183	392	603	11300		1430	853	722	616	99	33	18
30	148	388	613	3750		1330	818	663	542	92	29	22
31	134		575	2590		1250		621		85	27	
TOTAL	3951	32724	12409	76891	97900	80120	42678	55942	22890	6728	2108	653
MEAN	127	1091	400	2480	3496	2585	1423	1805	763	217	68.0	21.8
MAX	273	8640	819	11300	14100	14200	4190	8040	2520	453	133	35
MIN	77	187	271	463	1390	1130	818	621	440	85	27	17
CFSM	.21	1.76	.65	4.00	5.64	4.17	2.29	2.91	1.23	.35	.11	.04
IN.	.24	1.96	.74	4.61	5.87	4.81	2.56	3.36	1.37	.40	.13	.04

01664000 RAPPAHANNOCK RIVER AT REMINGTON, VA--Continued

STATIST	rics of Mo	NASM YLHTMC	DATA FO	OR WATER	YEARS 1	943	- 1998,	BY WATER	YEAR (WY)				
	OCT	NOV	DEC	JAN	FEB	3	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	497	587	728	873	1025		1209	1057	845	600	344	373	361
MAX	4895	2575	2172	2480	3496		3751	3784	2177	3520	974	2926	2815
(WY)	1943	1986	1951	1998	1998		1993	1983	1989	1972	1949	1955	1996
MIN	27.3	61.8	61.1	78.3	212		292	248	198	71.8	30.1	13.2	15.4
(WY)	1987	1966	1966	1966	1989		1981	1981	1977	1977	1966	1966	1985
SUMMARY	Y STATIST	ICS	FOR 1	1997 CALE	NDAR YE	AR	F	OR 1998 W	ATER YEAR		WATER YEA	ARS 1943	- 1998
ANNUAL	TOTAL			208491				434994					
ANNUAL	MEAN			571				1192			707		
	r annual i										1231		1996
LOWEST	ANNUAL MI	EAN									251		1981
HIGHEST	r daily Mi	EAN		8640	Nov	8		14200	Mar 21		64000	Oct	16 1942
LOWEST	DAILY ME	AN		20	Sep	8		17	Sep 7		2.9	Sep	12 1966
ANNUAL	SEVEN-DAY	Y MINIMUM		26	Sep	3		20	Sep 11		3.2	Sep	7 1966
INSTANT	TANEOUS PI	EAK FLOW						17600	Mar 21		90000	Oct	16 1942
INSTANT	CANEOUS PI	EAK STAGE						18.8	4 Mar 21		a30.00	Oct	16 1942
INSTANT	CANEOUS LO	OW FLOW						15	bSep 15		1.1	Sep	10 1966
ANNUAL	RUNOFF (CFSM)		.9	2			1.9	2		1.14		
ANNUAL	RUNOFF (INCHES)		12.5	1			26.1	0		15.48		
10 PERC	CENT EXCE	EDS		1140				2590			1420		
50 PERC	CENT EXCE	EDS		431				616			424		
90 PERC	CENT EXCE	EDS		61				44			77		

a From floodmarks. a Also Sept. 17, 18, 1998.

01668000 RAPPAHANNOCK RIVER NEAR FREDERICKSBURG, VA

LOCATION.--Lat 38°19'20", long 77°31'05", Spotsylvania County, Hydrologic Unit 02080104, on right bank 1.6 mi upstream from Virginia Power dam, 2.2 mi downstream from Motts Run, and 3.8 mi upstream from Fredericksburg.

DRAINAGE AREA.--1,596 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--September 1907 to current year. Monthly discharge only for some periods, published in WSP 1302.

REVISED RECORDS.--WSP 801: 1924(M). WSP 951: 1937(M). WSP 1302: 1907-12, 1913(M), 1916(M), 1918(M), 1920-21(M). WSP 2103: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 55.18 ft above sea level. Prior to Jan. 15, 1922, nonrecording gage, and Jan. 15, 1922, to Aug. 2, 1966, water-stage recorder at same site at datum 1.00 ft higher.

REMARKS.--Records good except those for periods of doubtful gage-height record, Nov. 18-21, and Dec. 2, 3, 13-17, which are fair. Maximum discharge, $140,000~{\rm ft}^3/{\rm s}$, from rating curve extended above $76,000~{\rm ft}^3/{\rm s}$ on basis of flow-over-dam and slope-area measurements at gage heights $26.1~{\rm ft}$ and $26.9~{\rm ft}$, present datum.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood in June 1889 was probably several feet lower than that of Oct. 16, 1942.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of $16,000~\text{ft}^3/\text{s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Nov. 8	1000	28,800	10.81	Feb. 18	2300	39,900	12.70
Jan. 9	1400	20,700	9.26	Mar. 19	1830	17,200	8.52
Jan. 24	0500	19,800	9.08	Mar. 22	1300	40,200	12.75
Jan. 29	0900	35,300	11.92	May 9	0800	29,300	10.90
Feb 5	1400	*43 000	*13 20	-			

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Minimum discharge, 75 ${\rm ft}^3/{\rm s}$, Sept. 30; minimum gage height, 1.18 ft, Sept. 17.

		DISCE	ARGE, IN	COBIC FE		AILY MEAN		_10bER 193	/ IO SEPI	EMBER 1990	0	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	679 441 349 312 291	406 983 1900 1350 932	769 e780 e720 692 709	1160 916 952 1030 1140	4160 3360 2930 10300 39800	3200 3120 3690 3210 2680	2260 2520 2290 2370 3650	1550 2780 4570 3650 4980	1150 1170 1050 988 936	860 707 609 559 531	251 233 215 196 182	120 112 106 100 93
6 7 8 9	278 258 236 231 218	745 7200 25500 9290 4440	726 688 654 648 670	1190 1280 3400 17900 7190	23100 11300 7840 5440 4160	2440 2270 3080 13000 9850	2620 2250 2070 3010 9490	5560 3670 13600 23000 7950	940 920 856 816 872	515 496 485 557 593	171 162 155 155 163	89 86 94 92 90
11 12 13 14 15	211 208 208 204 209	2930 2320 1950 2040 2660	735 864 e790 e685 e615	4050 3010 2500 2180 1890	3520 4780 4470 3550 3100	5420 4110 3440 3050 2760	4850 3530 2950 2630 2440	5460 5400 6460 4260 3410	1220 1190 1230 2100 1640	555 487 433 403 383	199 295 323 310 243	112 111 104 98 93
16 17 18 19 20	207 215 453 557 436	2070 1660 e1380 e1200 e1050	e565 e545 565 558 545	5940 4400 3100 2620 2290	2770 7620 34800 17800 7560	2470 2300 2640 11600 8250	2250 2530 2850 2220 5460	2920 2600 2420 2130 1940	3010 3200 2190 1350 1110	370 359 377 515 444	256 303 288 464 403	90 83 103 98 88
21 22 23 24 25	333 275 245 232 251	e960 1260 1580 1210 1020	539 540 568 761 1210	2000 1760 5950 14100 6360	6040 4650 5000 12100 6610	31300 25100 8450 5770 4560	4400 3140 2690 2420 2190	1790 1660 1530 1480 1610	1080 911 1050 3050 1640	371 349 340 308 321	293 239 212 195 183	92 110 113 103 92
26 27 28 29 30 31	288 660 863 611 447 377	908 873 826 778 767	2040 1410 1440 1450 1270 1360	4230 3190 18300 31300 9910 5660	4570 3860 3450 	3850 3410 3090 2820 2590 2410	1990 1870 1770 1630 1540	1940 1540 1470 1460 1320 1220	983 801 722 798 1030	316 295 273 257 254 253	170 160 150 138 132 128	97 92 85 82 79
TOTAL MEAN MAX MIN CFSM IN.	10783 348 863 204 .22 .25	82188 2740 25500 406 1.72 1.92	26111 842 2040 539 .53 .61	170898 5513 31300 916 3.45 3.98	248640 8880 39800 2770 5.56 5.80	185930 5998 31300 2270 3.76 4.33	87880 2929 9490 1540 1.84 2.05	125330 4043 23000 1220 2.53 2.92	40003 1333 3200 722 .84 .93	13575 438 860 253 .27	6967 225 464 128 .14 .16	2907 96.9 120 79 .06

e Estimated.

01668000 RAPPAHANNOCK RIVER NEAR FREDERICKSBURG, VA--Continued

STATIS	TICS OF M	ONTHLY MEAN	N DATA F	OR WATER	YEARS 1	907	- 1998,	BY WATER	YEAR (WY)					
	OCT	NOV	DEC	JAN	FEB	3	MAR	APR	MAY	JUN	JUL	AUG	SE	P
MEAN	1157	1335	1685	2234	2538	}	2719	2508	1920	1433	920	1022	94	9
MAX	11090	6522	5357	6472	8880)	8505	9484	10310	7112	3368	7190	692	4
(WY)	1943	1986	1949	1996	1998	}	1993	1983	1924	1972	1949	1955	199	6
MIN	15.3	75.4	147	268	224		526	587	492	224	78.6	21.1	46.	5
(WY)	1931	1931	1931	1966	1931	=	1931	1981	1956	1977	1930	1930	193	0
SUMMAR	Y STATIST	rics	FOR	1997 CALE	NDAR YE	AR	F	OR 1998 W <i>P</i>	TER YEAR		WATER YE	ARS 1907	- 199	8
ANNUAL	TOTAL			529511				1001212						
ANNUAL	MEAN			1451				2743			1697			
HIGHES	T ANNUAL	MEAN									3072		199	6
LOWEST	ANNUAL M	IEAN									440		193	1
HIGHES	T DAILY M	IEAN		25500	Nov	8		39800	Feb 5		127000	Oct	16 194	2
LOWEST	DAILY ME	AN		109	Sep	9		79	Sep 30		5.0	a0ct	11 193	0
ANNUAL	SEVEN-DA	MUMINIM Y		123	Sep	4		90	Sep 24		8.3	Oct	9 193	0
INSTAN	TANEOUS P	EAK FLOW						43000	Feb 5		140000	Oct	16 194	2
INSTAN	TANEOUS P	EAK STAGE						13.20	Feb 5		b26.90	Oct	16 194	2
INSTAN	TANEOUS L	OW FLOW						75	Sep 30		5.0	Oct	11 193	0
ANNUAL	RUNOFF (CFSM)		.9	1			1.72	2		1.06			
ANNUAL	RUNOFF (INCHES)		12.3	4			23.34	ŀ		14.45			
10 PER	CENT EXCE	EDS		2920				5840			3340			
50 PER	CENT EXCE	EDS		910				1170			1000			
90 PER	CENT EXCE	EDS		208				158			237			

a Also Oct. 12, 1930. b From floodmarks.

01668000 RAPPAHANNOCK RIVER NEAR FREDERICKSBURG, VA--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1929-30, 1956, 1967-74, 1978 to current year.

PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: October 1955 to September 1956, April 1968 to August 1974. October 1991 to September 1993. WATER TEMPERATURE: October 1955 to September 1956, April 1968 to August 1974.

COOPERATION.--Chemical data as noted were provided by the Virginia Division of Consolidated Laboratory Services (VDCLS) and reviewed by the U.S. Geological Survey.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	TUR- BID- ITY (NTU) (00076)	OXYGEN, DIS- SOLVED (MG/L) (00300)
OCT 1997 08	0900	243	77	6.8	16.0	22.0	776	VDCLS	2.9	7.5
20	1030	437	82	6.6	10.0	13.0	766	VDCLS	4.9	9.4
NOV 05	0900	953	87	7.0	8.0	9.0	780	VDCLS	11	10.6
09	1200	8130	68	6.4	13.0	10.0	757	VDCLS	74	10.4
21	0930	934	84	6.8	8.0	5.0	769	VDCLS	5.7	12.8
DEC 03	1300	710	85	6.8	9.0	5.5	769	VDCLS	4.1	11.6
*03	1315	710	85	6.8	9.0	5.5	769	VDCLS	3.3	11.6
17 JAN 1998	1100	573	86	6.9	5.5	4.0	758	VDCLS	5.3	13.0
05	0915	1150	69	7.2	6.5	3.5	751	VDCLS	5.9	14.1
08	1000	2340	82	6.8	21.0	11.0	757	VDCLS	8.5	10.6
09 *09	1000 1015	19600 19700	48 48	6.7 6.7	17.0 17.0	13.0 13.0	758 758	VDCLS VDCLS	790 790	9.0 9.0
10	1145	6470	61	7.0	9.5	11.0	771	VDCLS	170	10.8
22	1130	1750	79	7.0	5.0	4.0	776	VDCLS	13	13.2
24 28	1000 1000	16300 15200	66 65	5.7 7.4	5.5 4.0	4.0 5.0	762 759	VDCLS VDCLS	180 57	12.4 12.5
*28	1015	15600	65	7.4	4.0	5.0	759	USGS		12.5
31	1000	5760	62	6.5	4.0	6.0	768	VDCLS	65	12.0
FEB 03	1030	2940	68	6.2	6.0	5.0	772	VDCLS	28	12.5
06	1100	21700	59		5.0	5.0 5.0	764	VDCLS	56	12.0
08 19	1000 1100	7960 14300	63 54	6.8 5.7	6.5 13.0	5.0 9.0	765 761	VDCLS VDCLS	62 91	12.9 11.0
27	1030	3860	54 65	6.6	10.0	7.0	761	VDCLS	19	12.0
MAR										
04 10	0930 0915	3250 11000	71 58	6.4 6.7	6.0 8.5	7.0 10.0	764 733	VDCLS VDCLS	28 110	11.6 10.7
19	1000	11500	68	7.2	10.0	7.0	764	VDCLS	35	12.0
26	1000	3870	62	6.8	17.0	8.0	779	VDCLS	24	11.9
APR 02	0930	2330	67	6.6	20.5	18.0	763	VDCLS	9.6	8.9
*02	0945	2340	67	6.6	20.5	18.0	763	USGS		8.9
10	1030	11600	62	6.8	8.0	14.0	759	VDCLS	150	9.6
*10 14	1045 1000	11600 2650	62 62	6.8 6.5	8.0 18.0	14.0 13.5	759 762	VDCLS VDCLS	190 7.2	9.6 10.2
20	1030	5870	66	6.9	17.5	14.3	760	VDCLS	20	10.1
MAY	1045	2000	0.5		10.0	1.7.1	7.57	TIDGI G	60	0 0
04 06	1045 0930	3980 5140	85 61	7.0 6.4	18.0 16.0	17.1 15.0	757 771	VDCLS VDCLS	68 230	8.2 8.8
08	0915	8200	58	6.7	20.0	16.7	752	VDCLS	56	8.9
*09	1020	29200	52	6.6	19.0	16.0	758	USGS		8.6
09 20	1035 0930	29200 1980	52 69	6.6 6.6	19.0 22.0	16.0 22.0	758 764	VDCLS VDCLS	130 8.7	8.6 8.2
JUN	0,50	1700	0,5	0.0	22.0	22.0	701	VDCID	0.7	0.2
10	0930	861	76	6.6	16.0	19.0	774	VDCLS	2.0	8.9
11 16	1330 1000	1320 1800	76 74	6.6 7.2	20.0 25.0	19.0 22.5	770 760	VDCLS VDCLS	24	9.1 7.4
24	1415	4390	81	6.1	30.0	26.0	769	VDCLS	110	7.3
JUL	1000	450	5 0		05.0	06.0	7.64		0 0	0 1
08 23	1200 0930	478 340	78 92	7.1 7.6	25.0 27.5	26.0 29.5	764 752	VDCLS VDCLS	2.3 1.5	8.1 5.8
AUG										
05	1030	182	87	7.9	24.0	26.0	760	VDCLS	1.3	7.1
21 SEP	1000	299	87	6.5	24.5	23.5	760	VDCLS	1.7	7.8
02	0945	113	84	7.7	23.0	26.0	748	VDCLS	1.6	5.8
16	1030	91	91	6.8	28.5	26.0	775	VDCLS	1.6	7.6

^{*} Replicate sample.

01668000 RAPPAHANNOCK RIVER NEAR FREDERICKSBURG, VA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DATE	OXYGEN, DIS- SOLVED (PER- CENT SATUR-	SILICA, DIS- SOLVED (MG/L AS	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED	RESIDUE FIXED NON FILTER- ABLE	RESIDUE VOLA- TILE, SUS- PENDED	NITRO- GEN DIS- SOLVED (MG/L	NITRO- GEN, NITRATE DIS- SOLVED (MG/L	NITRO- GEN, NITRITE DIS- SOLVED (MG/L	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L
DATE	ATION) (00301)	SIO2) (00955)	(MG/L) (00530)	(MG/L) (00540)	(MG/L) (00535)	AS N) (00602)	AS N) (00618)	AS N) (00613)	AS N) (00631)	AS N) (00608)
OCT 1997										
08 20 NOV	84 89	6.3 6.4	<3 <3	<3 <3	<3 <3	.209 .246	.013 .047	.002	.013 .047	.010
05	90	12	5	3	<3	.704	.385	.002	.387	.017
09	93	8.9	127	111	16	1.00	.675	.002	.677	.010
21 DEC	99	13	3	3	3	.879	.730	.002	.730	.008
03 *03	91 91	13 13	<3 <3	<3 <3	<3 <3	.784 .730	.624 .630	<.002 <.002	.624 .630	<.004 <.004
17	100	10	3	3	<3	.586	.498	<.002	.498	.004
JAN 1998			-	-						
05	108	11	3	<3	<3	.788	.659	<.002	.659	<.004
08 09	97 86	10 7.1	19 664	15 568	4 96	.703 .800	.552 .385	.002	.554 .389	<.004 .029
*09	86	7.1	725	620	105	.697	.380	.004	.384	.029
10	97	11	182	160	22	.740	.554	.002	.556	.011
22	99	13	8	6	<3	.865	.752	.002	.754	.008
24 28	95 98	7.8 9.5	219 68	189 60	30 8	1.01 .927	.480 .516	.003	.483 .518	.050 .035
*28	98	8.7	124	114	10	.94			.52	.050
31	96	11	59	52	7	.411	.609	<.002	.609	.012
FEB	0.7	1.0	1.0	1.0	2	000	515	000	515	010
03 06	97 94	13 7.4	16 99	13 86	3 13	.830 .720	.715 .423	<.002	.715 .425	.010
08	101	10	53	45	8	.805	.568	<.002	.568	.020
19	95	8.8	135	120	15	.652	.437	.003	.440	<.004
27 MAR	99	12	16	13	3	.719	.561	<.002	.561	.006
04 10	95 99	12 9.0	23 106	19 91	4 15	.773 .764	.548 .396	.003	.551 .399	<.004 .017
19	99	10	103	90	13	.658	.464	.003	.467	.017
26	98	12	21	18	<3	.662	.550	<.002	.550	.005
APR 02	94	11	9	7	<3	.552	.428	<.002	.428	.004
*02	94	11	<1		4	.58			.43	<.002
10	93	8.0	286			.742	.336	.005	.341	.050
*10 14	93 98	8.1 12	308			.724	.338	.005	.343	.053
20	98	2.2				.445 .527	.046 .325	.002 <.002	.048	.014
MAY										
04	86	11	64	53	11	.829	.418	.005	.423	.043
06 08	86 93	8.9 12	224	192	32	.906 .616	.464 .409	.007	.471 .411	.067 .020
*09	93 88	7.1	182	150	32	.45	.409	.002	.048	.020
09	88	7.6	210	168	42	.856	.362	.005	.367	.047
20	94	13	8	6	<3	.658	.452	<.002	.452	.004
JUN 10	94	2.2	<3	<3	<3	.534	.372	.002	.374	.016
11	97	12	<3	<3	<3	.575	.421	.002	.423	.022
16	86		21	16	5	.811				
24 JUL	89	12	208	177	31	.789	.565	.005	.570	.020
08	100	9.0	<3	<3	<3	.341	.150	<.002	.150	.013
23 AUG	77	7.5	<3	<3	<3	.324	.109	.002	.111	.016
05	88	5.0	<3	<3	<3	.172	.007	<.002	.007	.007
21 SEP	92	5.4	<3	<3	<3	.238	.043	<.002	.043	<.004
02	73	4.3	<3	<3	<3	.266	.005	<.002	.005	.008
16	92	4.1	<3	<3	<3	.171	.005	<.002	.005	

^{*} Replicate sample.
* For these constituents, there are differences in the minimum constituent reporting levels between the analyzing agencies.
< Actual value is known to be less than the value shown.

01668000 RAPPAHANNOCK RIVER NEAR FREDERICKSBURG, VA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DATE	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	NITROGN TOTAL SEDIMNT SUSP TOTAL AS N (MG/L) (00601)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS TOTAL SEDIMNT SUSP TOTAL AS P (MG/L) (00667)	CARBON, INORG + ORGANIC SUSP. TOTAL (MG/L AS C) (00694)
OCT 1997								
08			.015		.011	.005	.002	.21
20			.028		.013	.010	.003	.24
NOV			.346		0.07	010	0.07	4 06
05 09			.346		.027	.018 .025	.007 .080	4.26 3.77
21			.022		.018	.011	.009	.21
DEC								
03			.026		.010	.010	.006	.25
*03			.020		.010	.010	.010	.22
17			.020		.007	.008	.008	.28
JAN 1998 05			.032		.010	.006	.010	.31
08			.137		.020	.004	.035	.96
09			1.920		.030	.016	.771	19.66
*09			1.499		.038	.020	.663	14.53
10			.424		.020	.016	.199	4.40
22			.026 .700		.019 .047	.013	.013	. 29
24 28			.362		.030	.038	.240 .131	6.56 3.53
*28	.5	. 4	.502	.09	<.01	.023		
31			.139		.020	.016	.074	1.23
FEB								
03			.065		.010	.010	.027	.64
06			.246 .160		.030 .031	.031	.114	2.15
08 19			.295		.003	.023 .016	.066 .146	1.45 2.85
27			.070		.019	.012	.027	.68
MAR								
04			.097		.028	.009	.041	.83
10			.310		.041	.017	.138	3.08
19 26			.223 .061		.022 .019	.019 .013	.076 .028	2.08 .57
APR			.001		.015	.013	.020	. 5 /
02			.043		.014	.011	.015	.38
*02	.1	. 2		.03	.015	.008		
10			.991		.044	.031	.321	9.17
*10 14			.891 .052		.040 .016	.025	.262 .020	8.47 .49
20			.137		.016	.008	.043	1.25
MAY								
04			.292		.033	.015	.093	2.37
06			.907		.191	.020	.349	8.43
08 *09	 .6	.4	.294	.11	.020	.017 .009	.098	2.91
09	. 0		.600		.066	.028	.258	5.37
20			.042		.019	.008	.015	.34
JUN								
10			.021		.009	.004	.007	.13
11			.032		.008	.002	.008	.47
16 24			.096 .821		.025 .031	.020	.031 .208	.78 7.82
JUL			.021		.031	.020	. 200	1.02
08			.022		.019	.009	.006	.14
23			.021		.011	.008	.006	.15
AUG								
05			.009		.014	.005	.004	.07
21 SEP			.013		.009	.002	.004	.12
02			.021		.012	.002	.007	.23
16			.028		.011	.002	.006	.19

^{*} Replicate sample.
* For these constituents, there are differences in the minimum constituent reporting levels between the analyzing agencies.
< Actual value is known to be less than the value shown.

THIS IS A BLANK PAGE

01673000 PAMUNKEY RIVER NEAR HANOVER, VA

LOCATION.--Lat 37°46'03", long 77°19'57", Hanover County, Hydrologic Unit 02080106, on right bank 100 ft downstream from bridge on State Highway 614, 0.3 mi upstream from Mechumps Creek, 2.0 mi east of Hanover, and 7.0 mi upstream from Millpond Creek.

DRAINAGE AREA. -- 1,081 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1941 to current year. Monthly discharge only for some periods, published in WSP 1302.

REVISED RECORDS.--WSP 1302: 1944(M). WSP 1382: 1949. WSP 2103: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 14.72 ft above sea level. Prior to Oct. 15, 1976, nonrecording gage at same site and datum.

REMARKS.--Records fair. Some regulation since January 1972 by Lake Anna, capacity, 373,000 acre-ft, and occasional diurnal fluctuation at low flow caused by mill upstream from station. Unknown amount of diversion for irrigation upstream from gage. Maximum discharge, 40,300 ft³/s, from rating curve extended above 22,000 ft³/s.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in August 1928 reached a stage of 32.6 ft, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, $16,800~{\rm ft}^3/{\rm s}$, Feb. 7, gage height, 23.70 ft; minimum, 49 ft $^3/{\rm s}$, Sept. 7, 29, 30; minimum gage height, 2.42 ft, Oct. 10, 12-15.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

		DISCHA	MGE, IN	CODIC FEE.		ILY MEAN		ODER 1997	TO DEFIE	MDER 1990		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	120	284	563	1040	10200	1710	1300	861	573	445	110	64
2	136	267	569	855	7860	2250	1620	1150	519	424	102	61
3	135	276	559	711	4940	2570	2310	1750	496	384	100	62
4	124	278	559	660	3810	2770	1680	1580	511	260	107	62
5	112	276	608	646	8060	1850	3710	1530	493	239	100	59
6	107	272	636	636	14600	1450	4890	1500	486	233	97	57
7	99	380	646	621	16400	1340	3310	1320	394	204	88	54
8	94	2970	578	673	14000	1520	1810	1260	324	193	91	66
9	93	5320	535	1310	11100	4460	1590	4440	309	203	77	69
10	88	6540	519	1630	8610	8280	2530	6510	354	372	96	73
11	89	6740	571	1300	5660	9200	2610	6750	421	377	128	63
12	86	3890	617	1040	3790	7370	1780	5010	429	251	124	61
13	86	1520	655	836	3500	3870	1470	2630	496	223	132	62
14	86	1310	618	990	3130	1900	1350	2760	624	204	155	61
15	92	1390	574	772	1910	1550	1320	1790	696	177	141	55
16	100	1430	543	1510	1650	1420	1120	1410	1070	167	107	55
17	113	1300	513	2900	2080	1350	1460	1140	1030	152	104	55
18	132	941	494	3000	5160	1560	4250	956	1080	147	103	56
19	230	695	481	1960	e9430	3760	6030	867	1050	142	127	55
20	599	572	474	1620	e11400	8870	6160	806	914	144	127	57
21	478	540	466	1290	10000	e11300	4700	769	911	136	95	58
22	347	736	468	1030	7780	e14300	2780	737	706	129	82	62
23	262	1230	484	1730	5190	e15500	1780	651	751	124	86	67
24	213	1390	399	5610	5240	e12700	1500	625	757	121	90	61
25	192	1050	671	8910	7120	e9900	1370	623	787	119	90	59
26	196	830	1160	9250	7750	6650	1280	639	787	121	86	60
27	269	655	1370	7770	5820	3540	1190	666	640	127	89	61
28	403	595	1300	6530	3110	1780	971	793	511	135	89	59
29	566	559	1220	10500		1510	905	711	490	127	72	54
30	447	536	1230	13900		1420	873	680	470	126	69	57
31	330		1390	12700		1340		629		114	69	
TOTAL	6424	44772	21470	103930	199300	148990	69649	53543	19079	6320	3133	1805
MEAN	207	1492	693	3353	7118	4806	2322	1727	636	204	101	60.2
MAX	599	6740	1390	13900	16400	15500	6160	6750	1080	445	155	73
MIN	86	267	399	621	1650	1340	873	623	309	114	69	54
CFSM	.19	1.38	.64	3.10	6.58	4.45	2.15	1.60	.59	.19	.09	.06
IN.	.22	1.54	.74	3.58	6.86	5.13	2.40	1.84	.66	.22	.11	.06

e Estimated.

01673000 PAMUNKEY RIVER NEAR HANOVER, VA--Continued

STATIST	ICS OF MC	NTHLY MEAN	DATA F	OR WATER	YEARS 1942	- 1971,	BY WATER	YEAR (WY)	[UNREG	GULATED]		
MEAN MAX (WY) MIN (WY)	1943	NOV 633 1910 1953 112 1942	DEC 996 3782 1949 166 1966	JAN 1242 3051 1949 207 1966	FEB 1450 3288 1961 552 1968	MAR 1712 3585 1962 816 1959	APR 1327 2743 1948 523 1968	MAY 925 2570 1946 321 1969	JUN 578 2493 1971 223 1970	JUL 490 2697 1945 91.9 1957	AUG 818 6381 1969 63.1 1966	SEP 355 1123 1944 30.3 1954
SUMMARY	STATISTI	CS	V	ATER YEAR	S 1942 - 19	971						
LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL ANNUAL 10 PERC 50 PERC	' ANNUAL M	CAN		915 1606 434 39300 13 15 40300 a31.12 12 .85 11.50 1960 511	1	L966 L966 L969 L969						
STATIST	CICS OF MC	NTHLY MEAN	DATA F	OR WATER	YEARS 1972	- 1998,	BY WATER	YEAR (WY)	[REGUI	LATED, UNADJ	USTED]	
	86.2	1986	216	197		5430 1994 248	1797 5009 1984 434	MAY 1204 2821 1978 265 1991	140	JUL 549 2747 1975 128 1977	AUG 451 2025 1985 92.8 1983	SEP 509 2939 1975 60.2 1998
				1997 CALE	NDAR YEAR	F		ATER YEAR			ARS 1972 -	- 1998
LOWEST		AN		350640 961 6740	Nov 11		678415 1859	Feb 7		1168 1859 265 25000	Jun 23	1998 1981 3 1972
LOWEST ANNUAL INSTANT INSTANT	DAILY MEA SEVEN-DAY ANEOUS PE ANEOUS PE	N MINIMUM CAK FLOW CAK STAGE		74 78			54 56 16800 23.7	cSep 7 Sep 15 Feb 7		47 52 29900 29.22	Sep 18 Sep 12 Jun 23 Jun 23	3 1991 2 1991 3 1972 3 1972
ANNUAL	ANEOUS LC	PSM)		.8			49 1.7			47 1.08	Sep 18	3 1991
10 PERC	RUNOFF (I	DS		12.0 1950			23.3 6080	5		14.68 2730		
	ENT EXCEE			599 113			646 86			630 124		

a From floodmarks. b Also Sept. 7, 1997. c Also Sept. 29, 1998. d Also Sept. 29, 30, 1998.

01673000 PAMUNKEY RIVER NEAR HANOVER, VA--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1946, 1952, 1968 to current year.

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: April 1968 to January 1976, October 1991 to September 1994.
WATER TEMPERATURE: October 1945 to September 1946, April 1968 to January 1976.

COOPERATION.--Chemical data as noted were provided by the Virginia Division of Consolidated Laboratory Services (VDCLS) and reviewed by the U.S. Geological Survey.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	TUR- BID- ITY (NTU) (00076)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)
OCT 1997												
15 NOV	1300	93	243	7.0	14.0	17.5	773	VDCLS	4.3	7.8	80	
08	1430	3600	70	7.0	11.0	10.0	757	VDCLS	110	10.0	89	
10	1125	6550	60	6.3	13.5	11.0	764	VDCLS	49	9.6	87	
*10	1135	6550	60	6.3	13.5	11.0	764	VDCLS	37	9.6	87	
13	0900	1540	78	6.8	6.0	1.0	770	VDCLS	13	10.8	75	
20 DEC	0915	575	98	6.9	11.5	5.5	771	VDCLS	7.4	11.4	89	
22 JAN 1998	1030	461	104	6.8	4.0	5.5	776	VDCLS	6.4	12.4	97	
10	1030	1660	81	6.6	9.0	11.0	770	VDCLS	19	10.4	93	
14	1245	1010	86	6.5	3.0	8.0	778	VDCLS	9.8	11.2	93	
17	1000	2650	73	6.5	6.0	6.5	766	VDCLS	29	12.0	97	
25	1030	8900	51	6.7	6.0	6.6	737	VDCLS	41	11.3	95	
28	1230	6310	61	7.0	4.0	5.0	752	VDCLS	87	11.4	90	
*28	1245	6310	61	7.0	4.0	5.0	752	USGS		11.4	90	
30	1220	14100	44	6.7	12.4	7.0	772	VDCLS	41	13.4	109	
FEB												
02	1415	7670	54		11.0	6.0	773	VDCLS	32	11.5	91	
06	1330	14900	43		4.0	6.0	765	VDCLS	100	11.4	91	
07	1100	16700	46	6.3	7.0	6.5	766	VDCLS	38	11.4	92	
18	0930	4940	85	6.4	5.0	9.0	757	VDCLS	83	11.6	101	
*18	0945	4950	85	6.4	5.0	9.0	757	VDCLS	88	11.6	101	
MAR												
18	1315	1580	69	6.8	10.5	8.0	773	VDCLS	10	11.4	95	
22	0830	13600	41	6.7	4.0	8.5	729	VDCLS	56	10.7	96	
APR												
17	0930	1180	68	6.8	20.0	17.8	733	USGS	13	8.5	93	7.0
18	1630	4720	52	6.7	20.5	16.5	750	VDCLS	25	8.6	89	
20	1315	6200	53	6.6	18.5	15.3	760	VDCLS	25	8.6	86	
*20 MAY	1330	6170	53	6.6	18.5	15.3	760	USGS		8.6	86	
04	1300	1530	64	7.1	20.5	18.2	757	VDCLS	13	8.3	89	
05	1245	1540	67	6.8	20.0	18.0	763	VDCLS	10	8.3	88	
19	0830	870	74	6.6	23.0	21.0	769	VDCLS		7.7	86	
*19 JUN	0845	870	74	6.6	23.0	21.0	769	VDCLS		7.7	86	
22	1030	701	83	6.9	29.0	25.0	770	VDCLS	6.0	6.8	82	
*22	1045	699	83	6.9	29.0	25.0	770	USGS		6.8	82	
JUL												
15 AUG	0755	187	150	7.1	25.0	24.5	755	VDCLS	5.4	5.8	71	
18 SEP	1100	107	232	6.7	30.0	26.0	760	VDCLS	2.0	5.9	73	
21	1330	59	297	7.1	31.5	25.0	760	VDCLS	1.0	5.5	67	

^{*} Replicate sample.

01673000 PAMUNKEY RIVER NEAR HANOVER, VA--Continued

								RESIDUE				NITRO-
	MAGNE-		POTAS-		CHLO-	FLUO-	SILICA,	TOTAL	RESIDUE	RESIDUE	NITRO-	GEN,
	SIUM,	SODIUM,	SIUM,	SULFATE	RIDE,	RIDE,	DIS-	AT 105	FIXED	VOLA-	GEN	NITRATE
	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	SOLVED	DEG. C,	NON	TILE,	DIS-	DIS-
	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	(MG/L	SUS-	FILTER-	SUS-	SOLVED	SOLVED
DATE	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	AS	PENDED	ABLE	PENDED	(MG/L	(MG/L
	AS MG)	AS NA)	AS K)	AS SO4)	AS CL)	AS F)	SIO2)	(MG/L)	(MG/L)	(MG/L)	AS N)	AS N)
	(00925)	(00930)	(00935)	(00945)	(00940)	(00950)	(00955)	(00530)	(00540)	(00535)	(00602)	(00618)
								**	* *	**	**	
OCT 1997												
15							7.6	<3	<3	<3	1.01	.573
NOV												
08							12	202	166	36	.659	.198
10							9.8	98	84	14	.434	.086
*10							9.7	95	81	14	.444	.086
13							12	22	18	4	.491	.198
20							13	4	4	3	.536	.233
DEC												
22							14	<3	<3	<3	.508	.259
JAN 1998												
10							14	24	21	3	.370	.192
14							13	6	4	<3	.452	.227
17							14	66	56	10	.477	.194
25							9.5	27	21	6	.536	.183
28							9.4	140	122	18	.602	.297
*28							8.5	92	74	18	.58	
30							7.9	24	19	5	.326	.132
FEB												
02							9.6	9	7	<3	.723	.190
06							7.0	23	18	5	.442	.143
07							7.6	15	11	4	.432	.144
18							9.5	92	78	14	.477	.220
*18							9.6	93	78	15	.490	.222
MAR									. •			
18							11	14	12	<3	.645	.325
22							7.2	23	19	4	.446	.168
APR										-		
17	.77	2.4	. 9	4.5	3.9	<.1	11				.444	.191
18							1.9	63	51	12	.461	.158
20							1.9				.560	.139
*20							9.2	13	8	5	.44	
MAY												
04							12	19	16	<3	.416	.161
05							12	22	18	4	.446	.172
19							14	8	6	<3	.460	.252
*19							13	9	7	<3	.483	.248
JUN							-	-		-		
22							12	8	6	<3	.548	.320
*22							11	4		8	.56	
JUL								=		-		
15							13	4	3	<3	.755	.450
AUG								=	-			5
18							10	3	<3	<3	1.20	.856
SEP								5		- 3		
21							19				.903	.485
												. 103

^{*} Replicate sample.

** For these constituents, there are differences in the minimum constituent reporting levels between the analyzing agencies.

< Actual value is known to be less than the value shown.

01673000 PAMUNKEY RIVER NEAR HANOVER, VA--Continued

	NITRO- GEN, NITRITE	NITRO- GEN, NO2+NO3	NITRO- GEN, AMMONIA	NITRO- GEN,AM- MONIA +	NITRO- GEN,AM- MONIA +	NITROGN TOTAL SEDIMNT	PHOS-	PHOS- PHORUS	PHOS- PHORUS ORTHO,	PHOS TOTAL SEDIMNT	CARBON, INORG + ORGANIC
	DIS-	DIS-	DIS-	ORGANIC	ORGANIC	SUSP	PHORUS	DIS-	DIS-	SUSP	SUSP.
D.3.000	SOLVED	SOLVED	SOLVED	TOTAL	DIS.	TOTAL	TOTAL	SOLVED	SOLVED	TOTAL	TOTAL
DATE	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	AS N	(MG/L	(MG/L	(MG/L	AS P	(MG/L
	AS N) (00613)	AS N) (00631)	AS N) (00608)	AS N) (00625)	AS N) (00623)	(MG/L) (00601)	AS P) (00665)	AS P) (00666)	AS P) (00671)	(MG/L) (00667)	AS C) (00694)
	**	**	**	(00023)	(00023)	(00001)	(00003)	**	(00071)	(00007)	(00094)
OCT 1997	,										
15	.003	.576	.007			.001		.111	.103	.005	.08
NOV											
08	.004	.202	.004			.820		.022	.015	.109	8.21
10	.002	.088	.004			.185		.029	.014	.049	1.79
*10	.002	.088	.004			.368		.026	.012	.054	3.40
13	.002	.200	.014			.076		.024	.013	.015	.83
20	.002	.233	.012			.038		.026	.016	.012	.32
DEC											
22	.018	.277	.013			.022		.033	.028	.010	.24
JAN 1998		104	010			000		000	010	005	0.1
10	.002	.194	.012			.080		.020	.018	.025	.81
14 17	.003	.230 .196	.010 .019			.033 .207		.020 .021	.018 .016	.011 .056	.36 1.99
25	.002	.185	.019			.134		.021	.016	.030	1.12
28	.002	.299	.015			.377		.030	.013	.113	3.81
*28		. 29	.026	.7	.3		.09	.01	.018		
30	.002	.134	.008			.122		.016	.010	.042	1.11
FEB	.002	.131	.000			.122		.010	.010	.012	1.11
02	.002	.192	.012			.080		.010	.009	.022	.66
06	.002	.145	.015			.119		<.010	.013	.040	1.04
07	.002	.146	.012			.090		.018	.011	.030	.82
18	.002	.222	.034			.338		.040	.024	.094	3.24
*18	.002	.224	.033			.299		.026	.025	.090	2.93
MAR											
18	<.002	.325	.032			.057		.026	.012	.021	.61
22	.002	.170	.033			.143		.022	.016	.045	1.15
APR											
17	.003	.194	.020			.058		.028	.014	.021	.55
18	.003	.161	.016			.171		.027	.012	.049	1.6
20	.002	.141	.024			.097		.038	.012	.033	.85
*20 MAY		.12	.017	. 4	.3		.06	.03	.011		
04	.002	.163	.014			.066		.026	.015	.021	.67
05	<.002	.172	.014			.068		.020	.013	.021	.81
19	<.002	.252	.027			.034		.027	.025	.015	.32
*19	<.002	.248	.033			.035		.027	.022	.015	.34
JUN											
22	.004	.324	.016			.035		.034	.024	.011	. 43
*22		.31	.008	. 4	. 2		.03	.03	.021		
JUL											
15		.450	.020			.036		.053	.050	.012	.27
AUG											
18	.006	.862	.016			.124		.135	.120	.010	.21
SEP											
21	.006	.491				.022		.173	.143	.011	.16

^{*} Replicate sample.

** For these constituents, there are differences in the minimum constituent reporting levels between the analyzing agencies.

< Actual value is known to be less than the value shown.

THIS IS A BLANK PAGE

01674500 MATTAPONI RIVER NEAR BEULAHVILLE, VA

LOCATION.--Lat 37°53'02", long 77°09'55", King William County, Hydrologic Unit 02080105, on right bank, 10 ft upstream from bridge on State Highway 628, 2.4 mi north of Beulahville, and 3.3 mi downstream from Maracossic Creek

DRAINAGE AREA. -- 601 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- September 1941 to September 1987, October 1989 to current year.

REVISED RECORDS. -- WSP 2103: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 12.43 ft above sea level (levels by Virginia Department of Transportation). Prior to Oct. 14, 1942, nonrecording gage. Oct. 14, 1942, to Aug. 8, 1974, water-stage recorder on right bank at site 0.6 mi upstream at same datum. Aug. 8, 1974, water-stage recorder on left bank 80 ft downstream from previous site, at same datum. Sept. 8, 1987, to Aug. 31, 1989, nonrecording gage on downstream side of bridge at same datum. Sept. 1, 1989, to Mar. 31, 1994, water-stage recorder on upstream side of bridge at same datum. Apr. 1, 1994, to Sept. 28, 1995, nonrecording gage on downstream side of bridge at same datum. Sept. 29, 1995, water-stage recorder at present site and datum.

REMARKS.--Records fair. Diurnal fluctuation at times during low flow caused by gristmill on Po River. Maximum discharge, 16,900 ft³/s, from rating curve extended above 11,760 ft³/s. Minimum gage height, 0.94 ft, Sept. 14, 1966.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 6,560 ft³/s, Feb. 9, gage height, 18.42 ft; minimum 11 ft³/s, Sept. 16-17, gage height, 1.52 ft.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

					DA:	ILY MEAN V	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	58	175	355	e560	4570	2530	1280	694	397	297	59	30
2	54	181	352	506	4540	2050	1200	757	360	272	54	29
3	49	190	364	451	3620	1740	1250	905	332	237	50	e26
4	46	192	353	408	2780	1630	1360	1050	299	202	47	23
5	40	191	363	377	2820	1580	1540	1170	281	178	48	23
6	37	186	381	358	3530	1570	1690	1260	267	165	49	21
7	39	235	385	344	4330	1570	1790	1400	e250	151	42	18
8	38	510	359	378	6000	1510	1860	1370	e240	143	38	18
9	37	895	324	498	6360	1590	1920	1320	e230	146	37	21
10	34	1190	305	559	5340	2130	1850	1530	286	175	58	18
11	33	1350	323	549	4110	2570	1680	1840	385	215	187	16
12	33	1440	348	495	3080	e2850	1610	2120	453	190	121	16
13	32	1580	368	452	2420	e3130	1630	2240	437	159	82	14
14	29	1540	352	443	1960	2800	1670	2100	435	137	68	13
15	32	880	325	441	1710	2260	1580	1800	502	119	59	12
16	44	679	301	526	1600	1780	1300	1560	626	107	52	12
17	49	606	292	656	1540	1470	1180	1410	675	101	49	11
18	75	528	276	800	1610	1310	1380	1130	588	104	47	14
19	112	452	263	857	1690	1490	1580	769	584	93	45	21
20	157	398	255	870	1770	2020	1830	605	542	e95	40	22
21	213	357	248	753	2380	2640	2200	528	445	e90	38	19
22	206	457	245	622	3520	3430	2470	480	373	e82	36	18
23	166	561	284	714	3290	4480	2320	445	334	83	34	29
24	136	611	318	1320	2700	5160	2050	425	447	80	31	30
25	116	e600	387	1760	2310	5180	1800	420	612	76	29	24
26	116	565	455	1960	2150	4290	1440	419	644	78	28	21
27	158	498	542	2270	2370	3220	1070	432	713	72	29	19
28	198	432	625	2900	2690	2490	878	474	611	68	37	18
29	237	382	649	3320		2010	795	503	388	66	44	16
30	225	355	648	3250		1710	731	493	316	63	38	16
31	197		613	3630		1460		449		59	33	
TOTAL	2996	18216	11658	33027	86790	75650	46934	32098	13052	4103	1609	588
MEAN	96.6	607	376	1065	3100	2440	1564	1035	435	132	51.9	19.6
MAX	237	1580	649	3630	6360	5180	2470	2240	713	297	187	30
MIN	29	175	245	344	1540	1310	731	419	230	59	28	11
CFSM	.16	1.01	.63	1.77	5.16	4.06	2.60	1.72	.72	. 22	.09	.03
IN.	.19	1.13	.72	2.04	5.37	4.68	2.91	1.99	.81	.25	.10	.04

e Estimated.

YORK RIVER BASIN

01674500 MATTAPONI RIVER NEAR BEULAHVILLE, VA--Continued

STATIST	TICS OF M	ONTHLY MEA	N DATA I	FOR WATER	YEARS 1942	- 1987,	1989 -	1998, BY W	ATER YEAR	R (WY)		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	321	433	635	818	945	1096	971	659	411	293	331	231
MAX	1801	1461	2115	2418	3100	2483	3291	1912	3217	2119	2409	1287
(WY)	1980	1973	1949	1978	1998	1979	1984	1978	1972	1945	1969	1975
MIN	26.1	49.9	96.8	131	286	229	288	130	46.3	43.5	20.3	17.4
(WY)	1942	1992	1966	1981	1992	1981	1995	1942	1991	1966	1977	1980
SUMMARY	Y STATIST	ICS	FOR	1997 CALE	ENDAR YEAR	F	OR 1998	WATER YEAR		WATER YE	EARS 1942	- 1987
											1989	- 1998
7 NTNTTT 7 T	шошат.			104400			206701					
ANNUAL				194488			326721			502		
ANNUAL				533			895			593		1070
	T ANNUAL I ANNUAL M									1210 185		1972 1981
				1070			6260	T - 1- 0			T	
	DAILY ME			1970 29	Mar 9 Oct 14		6360	Feb 9		16200		25 1972
				33			11	Sep 17		6.3	_	13 1966
		Y MINIMUM		33	Oct 9		13 6560	Sep 12 Feb 9		7.8 16900	-	7 1966
	TANEOUS PI						18.			24.09		25 1972
												23 1969
	TANEOUS LO				20		11	aSep 16		5.9		14 1966
	RUNOFF (.8 12.0			1. 20.			.99 13.41		
					14			. 22			-	
	CENT EXCE			1150			2370			1340		
	CENT EXCE			387			432			378		
90 PER	CENT EXCE	FDS		51			32			65		

a Also Sept. 17, 1998.

01674500 MATTAPONI RIVER NEAR BEULAHVILLE, VA--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1968, 1969, 1979 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1991 to September 1994. WATER TEMPERATURE: October 1991 to September 1994.

COOPERATION.--Chemical data as noted were provided by the Virginia Division of Consolidated Laboratory Services (VDCLS) and reviewed by the U.S. Geological Survey.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	TUR- BID- ITY (NTU) (00076)	OXYGEN, DIS- SOLVED (MG/L) (00300)
OCT 1997										
15	1130	28	58	6.8	14.0	17.0	776	VDCLS	4.2	7.6
NOV	1100	20	30	0.0	11.0	17.0	,,,	12025		
08	1145	473	56	6.1	10.0	10.4	747	VDCLS	11	9.2
10	0900	1140	56	5.9	8.0	11.0	764	VDCLS	16	9.5
*10	0910	1150	56	5.9	8.0	11.0	764	VDCLS	21	9.5
15	0900	897	61	5.5	6.0	7.5	766	VDCLS	8.3	9.4
20	1145	394	59	6.8	13.5	4.0	771	VDCLS	8.0	12.2
DEC	1143	394	39	0.0	13.3	4.0	//1	VDCLIS	0.0	12.2
22	0900	247	60	7.0	2.0	4.0	777	TIDOT O	5.6	13.4
	0900	247	60	7.0	2.0	4.0	///	VDCLS	5.6	13.4
JAN 1998										
10	0830	555	59	7.2	4.0	11.0	772	VDCLS	12	9.8
14	1130	442	59	6.5	3.0	6.5	780	VDCLS	9.0	11.6
17	0845	631	56	6.8	5.0	5.0	766	VDCLS	8.1	12.0
25	0900	1740	43	6.1	5.0	5.4	737	VDCLS	14	11.8
28	1015	2810	41	6.6	3.5	4.0	758	VDCLS	26	11.4
*28	1030	2810	41	6.6	3.5	4.0	758	USGS		11.4
30	0955	3240	40	6.3	6.9	2.8	772	VDCLS	15	
FEB										
02	1130	4620	36	7.4	8.0	5.0	775	VDCLS	27	11.8
07	0930	4070	36	6.9	5.0	5.0	766	VDCLS	19	11.2
08	0930	5860	35	5.7	4.0	5.0	766	VDCLS	26	11.3
19	1445	1690	43		18.0	10.0	762	VDCLS	8.4	10.2
MAR										
18	1100	1300	43	7.4	6.0	7.0	773	VDCLS	6.8	11.4
23	0830	4340	33	6.3	4.5	6.3	740	VDCLS	15	10.3
26	1230	4270	33	5.6	22.0	9.0	778	VDCLS	18	10.4
*26	1245	4270	33	5.6	22.0	9.0	778	VDCLS	18	10.4
APR	1243	4270	33	5.0	22.0	9.0	776	VDCLIS	10	10.4
17	0755	1140	41	6.3	17.8	10.0	733	TIDOT O	6.2	9.2
		1140				18.0		VDCLS		
17	0800	1140	41	6.3	17.8	18.0	733	USGS	6.2	9.2
19	1245	1560	38	6.5	16.5	17.0	758	VDCLS	7.2	7.8
22	0930	2470	38	6.7	15.5	14.0	770	VDCLS	9.0	7.9
*22	0945	2470	38	6.7	15.5	14.0	770	USGS		7.9
MAY										
05	0945	1150	43	5.9	18.0	18.0	763	VDCLS	8.0	7.8
*05	1000	1150	43	5.9	18.0	18.0	763	USGS		7.8
07	0945	1390	42	6.1	20.5	18.0	766	VDCLS	15	7.4
19	1000	771	48	6.9	26.0	21.0	769	VDCLS		7.3
*19	1015	771	48	6.9	26.0	21.0	769	VDCLS		7.3
JUN										
22	0900	364	50	6.4	27.0	24.0	770	VDCLS	7.0	7.1
*22	0915	364	50	6.4	27.0	24.0	770	USGS		7.1
JUL										
15	0950	120	52	6.6	26.5	23.7	755	VDCLS	4.6	6.5
AUG		120	22					525		5
18	0915	46	56	6.2	14.5	24.0	760	VDCLS	3.4	6.3
SEP	0,10	40	50	0.2	11.5	21.0	, 50	ADCHO	5.4	0.5
21	1030	29	58	7.2	27.0	23.0	760	VDCLS	1.9	5.8
41	1030	رے	50	/ . 4	27.0	23.0	, 00	ADCTO	1.9	5.0

^{*} Replicate sample.

YORK RIVER BASIN

01674500 MATTAPONI RIVER NEAR BEULAHVILLE, VA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

NOT 1997 15 77 5.4 15 77 5.4 15 78 5.4 15 78 5.4 15 78 8.2 10 86 8.2 15 78 8.2 15 78 8.2 15 78 8.2 15 78 8.2 15 78 6.2 15 78 6.2 15 78 6.2 15 78 6.2 15 78 6.2 15 78 6.2 15 78 6.2 15 78	DATE	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	BROMIDE DIS- SOLVED (MG/L AS BR) (71870)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)
NOV 08 84	OCT 1997										
88. 84		77									5.4
10 866 8.2 *10 86 8.2 15 78 8.2 20 92 6.2 DEC 22 100 6.2 JAN 1998 10 88 9.1 14 92 9.5 17 93 8.9 25 97		0.4									0.0
*10 86											
15 78											
DEC 22 100 6.2 DEC 22 100 11 JAN 1998 10 88 9.5 14 92 9.5 17 93											
22 100 11 JAN 1998 10 88 9.1 14 92 9.5 17 93 8.9 25 97 7.1 28 87 7.1 30 7.1 30 91 7.1 30 91 7.1 30 91											
JAN 1998 10 88 9.5 17 93 9.5 25 97 7.1 28 87 7.9 *28 87 7.0 *28 87 7.0 *EB 02 91 6.6 07 87 5.5 08 88 5.5 08 88 5.5 18 93 5.6 23 86 5.5 *26 88	DEC										
10 88		100									11
14 92 9.5 17 93 8.9 25 97 7.1 28 87 7.1 30 7.1 30 7.1 30 97 7.0 FEB 02 91 7.0 6.6 07 87 6.6 07 88 5.5 18 93 6.6 23 86 5.5 26 88 5.5 26 88 5.5 26 88 5.5 26 88 5.5 22 76 5.3 *22 76 5.3 *22 76 5.3 *22 76 5.3 *22 76 5.3 *22 76 5.3 *22 76 5.3 *22 76 5.3 *22 76 5.3 *22 76 5.3 *22 76 5.3 *22 76 5.3 *22 76 5.3 *22 76 5.3 *22 76 5.3 *22 76 5.3 *22 76											
17 93 8.9 25 97 7.1 28 87 7.9 *28 87 7.9 *28 87 7.9 *28 87 7.0 FEB 02 91 5.5 08 88 5.5 19 90 5.5 19 90 5.5 26 88 5.5 26 88 5.5 26 88 5.5 26 88 5.5 26 88 5.5 26 88 5.5 26 88 5.5 26 88 5.5 *26 88 5.5 *26 88 5.5 *26 88 5.5 *26 88 5.5 *26 88 5.5 *26 88 5.5 *26 88 5.5 *26 88 5.5 *26 88 5.5 *26 88 5.5 *26 88 5.5 *26 88 5.5 *26 88 5.5 *26 88 5.5 *26 88 5.5 *27 76											
25 97 7.1 28 87 7.9 *28 87 7.9 *28 87 7.1 30											
28 87 7.9 *28 87 7.1 30 7.0 FEB 02 91 6.6 07 87 5.5 08 88 6.4 MAR 18 93 5.5 26 88 5.5 *26 88 5.5 *26 88 5.5 *26 88 5.5 *27 88 5.5 *28 88 5.5 *29 88 5.5 *20 88 5.5 *20 88 5.5 *20 88 5.5 *20 88 5.5 *20 88 5.5 *20 88 5.5 *20 88 5.5 *20 88 5.5 *20 88 5.5 *20 88 5.5 *20 88 5.5 *20 81											
*28 87											
30											
02 91	30										7.0
07 87	FEB										
08 88	02	91									6.6
MAR 18 93 5.6 23 86 5.5 26 88 5.5 *26 88 5.5 *26 88 5.5 *27 88 5.5 *28 88 5.5 *29 88 5.5 *29 88											
MAR 18 93 5.6 23 86 5.5 26 88 5.5 *26 88 5.5 *26 88 5.5 *26 88 5.5 *26 88 5.4 APR 17 101 2.4 1.4 2.6 1.1 4.2 3.5 <.1 <.01 19 81 5.3 *22 76 5.3 *22 76 6.1 MAY 05 82 6.1 *05 82 6.5 07 78 6.5 07 78 8.2 *19 81 8.4 JUN 22 83 8.4 JUN 22 83 8.0 JUN 22 83 8.0 JUL 15 78 7.7 AUG 18 75 7.2 SEP											
18 93 5.6 23 86 5.5 26 88 5.5 *26 88 5.5 *26 88 5.5 *26 88 5.5 *26 88 5.5 *26 88 5.5 *26 88 5.5 *26 89 5.5 *26 89		90									6.4
23 86		0.2									E 6
26 88 5.5 *26 88 5.4 APR 17 4.7 17 101 2.4 1.4 2.6 1.1 4.2 3.5 <.1 <.01 19 81 90 22 76 5.3 *22 76 5.3 *22 76 6.1 MAY 05 82 6.1 *05 82 6.5 07 78 8.2 *19 81 8.4 JUN 22 83 8.4 JUN 22 83 8.0 JUL 15 78 8.0 JUL 15 78 7.7 AUG 18 75 7.2 SEP											
*26 88											
17											
17 101 2.4 1.4 2.6 1.1 4.2 3.5 <.1 <.01 19 8190 22 76 5.3 *22 76 6.1 MAY 05 82 7.1 *05 82 6.5 07 78 6.1 19 81 8.2 *19 81 8.2 *19 81 8.4 JUN 22 83 9.7 *22 83 8.0 JUL 15 78 7.7 AUG 18 75 7.2 SEEP	APR										
19 8190 22 76 5.3 *22 76 5.3 *22 76 6.1 MAY 05 82 7.1 *05 82 6.5 07 78 6.1 19 81 8.2 *19 81 8.4 JUN 22 83 9.7 *22 83 8.0 JUL 15 78 7.7 AUG 18 75 7.2 SEEP											4.7
22 76 5.3 *22 76 6.1 MAY 05 82 7.1 *05 82 6.5 07 78 6.1 19 81 8.2 *19 81 8.4 JUN 22 83 9.7 *22 83 8.0 JUL 15 78 7.7 AUG 18 75 7.2 SEEP											
*22 76 6.1 MAY 05 82 7.1 *05 82 6.5 07 78 6.1 19 81 8.2 *19 81 8.4 JUN 22 83 9.7 *22 83 8.0 JUL 15 78 7.7 AUG 18 75 7.2 SEEP											
MAY 05 82 7.1 *05 82 6.5 07 78 6.1 19 81 8.2 *19 81 8.4 JUN 22 83 8.4 JUN 22 83 8.0 JUL 15 78 7.7 AUG 18 75 7.2 SEP											
05 82 7.1 *05 82 6.5 07 78 6.1 19 81 8.2 *19 81 8.4 JUN 22 83 9.7 *22 83 8.0 JUL 15 78 7.7 AUG 18 75 7.2 SEEP		76									0.1
*05 82 6.5 07 78 6.1 19 81 8.2 *19 81 8.4 JUN 22 83 9.7 *22 83 8.0 JUL 15 78 7.7 AUG 18 75 7.2 SEEP		82									7 1
19 81 8.2 *19 81 8.4 JUN 22 83 9.7 *22 83 8.0 JUL 15 78 7.7 AUG 18 75 7.2 SEEP											
*19 81 8.4 JUN 22 83 9.7 *22 83 8.0 JUL 15 78 7.7 AUG 18 75 7.2 SEP	07	78									6.1
JUN 22 83 9.7 *22 83 8.0 JUL 15 78 7.7 AUG 18 75 7.2 SEP	19	81									8.2
22 83 9.7 *22 83 8.0 JUL 15 78 7.7 AUG 18 75 7.2 SEEP		81									8.4
*22 83 8.0 JUL 15 78 7.7 AUG 18 75 7.2 SEP											
JUL 15 78 7.7 AUG 18 75 7.2 SEP											
15 78 7.7 AUG 18 75 7.2 SEP		83									8.0
AUG 18 75 7.2 SEP		70									7 7
18 75 7.2 SEP		70									1.1
SEP		75									7.2
21 68 6.5											
	21	68									6.5

^{*} Replicate sample. < Actual value is known to be less than the value shown.

01674500 MATTAPONI RIVER NEAR BEULAHVILLE, VA--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

YORK RIVER BASIN

	201 102	DEGIDIN				NT TO O	NT FFD O	NT TO O	NT TO O	NT TO O
	SOLIDS,	RESIDUE				NITRO-	NITRO-	NITRO-	NITRO-	NITRO-
	RESIDUE	TOTAL	RESIDUE	RESIDUE	NITRO-	GEN,	GEN,	GEN,	GEN,	GEN,AM-
	AT 180	AT 105	FIXED	VOLA-	GEN	NITRATE	NITRITE	NO2+NO3	AMMONIA	MONIA +
	DEG. C	DEG. C,	NON	TILE,	DIS-	DIS-	DIS-	DIS-	DIS-	ORGANIC
	DIS-	SUS-	FILTER-	SUS-	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	TOTAL
DATE	SOLVED	PENDED	ABLE	PENDED	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L
	(MG/L)	(MG/L)	(MG/L)	(MG/L)	AS N)	AS N)	AS N)	AS N)	AS N)	AS N)
	(70300)	(00530)	(00540)	(00535)	(00602)	(00618)	(00613)	(00631)	(00608)	(00625)
		**	**	**	**		**	**	* *	
OCT 1997			_							
15		<3	<3	<3	.289	.038	.002	.038	.004	
NOV										
08		25	19	6	.310	.065	.002	.065	.010	
10		26	19	7	.274	.021	<.002	.021	< .004	
*10		24	19	5	.390	.021	<.002	.021	.004	
15		8	6	3	.406	.023	.002	.025	.004	
20		4	<3	<3	.371	.075	.002	.075	.011	
DEC										
22		3	<3	<3	.410	.181	<.002	.181	.020	
JAN 1998										
10		7	6	<3	.387	.134	.002	.136	.027	
14		4	<3	<3	.364	.141	.002	.143	.010	
17		12	8	<3	.429	.162	.002	.164	.023	
25		13	10	3	.453	.173	< .002	.173	.015	
28		7	4	3	.394	.091	< .002	.091	.007	
*28		1		7	.42			.078	< .002	. 4
30		7	4	3	.340	.117	< .002	.117	< .004	
FEB										
02		8	6	<3	.285	.064	< .002	.064	.004	
07		7	5	<3	.479	.140	< .002	.140	.008	
08		8	5	3	.420	.114	< .002	.114	.006	
19		6	4	<3	.453	.174	.002	.176	< .004	
MAR										
18		6	5	<3	.628	.206	< .002	.206	.014	
23		5	3	<3	.329	.101	< .002	.101	.007	
26		5	4	<3	.300	.076	<.002	.076	.004	
*26		6	4	<3	.341	.076	.002	.076	.005	
APR										
17					.44	.117	<.002	.117	.021	
17	38									
19					.508	.096	.002	.098	.035	
22		5	3	<3	.422	.049	<.002	.049	.017	
22		2		4	.47			.038	.017	. 6
MAY		-		-	• • •			.050	.01,	
05		13	10	<3	.448	.134	<.002	.134	.044	
*05		4		8	.45			.11	.037	. 5
07		12	10	<3	.499	.143	.003	.146	.060	
19		<3	<3	<3	.455	.166	.003	.169	.054	
*19		8	6	<3	.527	.169	.003	.172	.057	
JUN		O	0	~ 5	. 527	.105	.005	.1/2	.037	
22		4	3	<3	.484	.190	<.002	.190	.027	
*22		<1		9	.53			.18	.014	. 4
JUL		~ ±		,				. 10	.014	, 1
15		<3	<3	<3	.402	.160		.160	.020	
AUG		~ 3	~ 3	~ 3	.402	.100		.100	.020	
18		<3	<3	<3	.404	.095	<.002	.095	.022	
SEP		\3	\ 3	\ 3	. 404	.093	<.UUZ	.093	.022	
21		<3	<3	<3	.379	.057	<.002	.057		
∠⊥		< 3	< 3	< 3	.3/9	.05/	<.00∠	.05/		

^{*} Replicate sample.

** For these constituents, there are differences in the minimum constituent reporting levels between the analyzing agencies.

< Actual value is known to be less than the value shown.

YORK RIVER BASIN

01674500 MATTAPONI RIVER NEAR BEULAHVILLE, VA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DATE	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	NITROGN TOTAL SEDIMNT SUSP TOTAL AS N (MG/L) (00601)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS TOTAL SEDIMNT SUSP TOTAL AS P (MG/L) (00667)	CARBON, INORG + ORGANIC SUSP. TOTAL (MG/L AS C) (00694)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)
OCT 1997									
15		.020		.026	.016	.004	. 24		
NOV		.020		.020	.010	.001			
08		.140		.019	.012	.022	1.57		
10		.122		.016	.014	.027	1.21		
*10		.163		.032	.013	.027	1.51		
15		.048		.023	.012	.012	.56		
20		.043		.018	.009	.017	.36		
DEC		.015		.010	.005	.017	.50		
22		.022		.027	.020	.013	.31		
JAN 1998		.022		.027	.020	.013	. 51		
10		.048		.020	.016	.022	.58		
14		.033		.030	.024	.015	.40		
17		.062		.018	.018	.021	.75		
25		.094		.020	.016	.021	.89		
28		.086		.030	.014	.029	.77		
*28	.3	.080	.03	<.01	.011	.020			
30		.068		.020	.008	.022	1.14		
FEB		.000		.020	.006	.022	1.14		
02		.073		.010	.008	.024	.67		
07		.068		.010	.010	.024	.59		
08		.077		.013	.009	.026	.67		
19		.055		.020	.006	.016	.50		
MAR		0.00		010	0.00	0.7.4	4.0		
18		.038		.018	.007	.014	.42		
23		.055		.016	.008	.020	.47		
26		.060		.015	.007	.016	.46		
*26		.052		.017	.007	.017	.42		
APR									
17		.05		.023	.012	.020	.53		
17								540	94
19		.070		.024	.014	.027	.76		
22		.057		.032	.013	.022	.54		
*22	. 4		.06	.03	.012				
MAY									
05		.065		.018	.017	.025	.80		
*05	. 3		.03	<.01	.010				
07		.073		.021	.022	.037	.79		
19		.053		.023	.026	.024	.59		
*19		.047		.035	.025	.024	.55		
JUN									
22		.034		.039	.024	.014	.39		
*22	. 3		.04	.03	.021				
JUL									
15		.022		.016	.020	.009	.22		
AUG									
18		.124		.033	.015	.015	.21		
SEP									
21		.018		.034	.016	.006	.13		

^{*} Replicate sample.

** For these constituents, there are differences in the minimum constituent reporting levels between the analyzing agencies.

< Actual value is known to be less than the value shown.

SOUTH ATLANTIC SLOPE BASINS

JAMES RIVER BASIN

02011400 JACKSON RIVER NEAR BACOVA, VA

LOCATION.--Lat 38°02'32", long 79°52'54", Bath County, Hydrologic Unit 02080201, on left bank 0.1 mi downstream from ford, 1.8 mi upstream from Back Creek, and 2.2 mi southwest of Bacova.

DRAINAGE AREA. -- 158 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1974 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,639.20 ft above sea level.

REMARKS.--Records good except for period with ice effect, Jan. 2, which is fair. U.S. Army Corps of Engineers satellite water temperature, precipitation and gage-height telemeter at station. Maximum discharge, $30,000 \, \mathrm{ft}^3/\mathrm{s}$, from rating curve extended above 1,300 ft $^3/\mathrm{s}$ on basis of slope-area measurements at gage heights 8.88 ft, 11.40 ft, 13.88 ft, and 22.25 ft. Minimum gage height, 2.42 ft, Aug. 18, 19, 1988.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 21, 1972, reached a stage of 11.40 ft, discharge, 4,800 ft³/s, and flood of Dec. 26, 1973, reached a stage of 13.88 ft, discharge, 7,560 ft³/s, from rating curve extended as explained above.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 1,500 ft³/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 8	1330	*4,180	*10.87	Mar. 19	0530	1,520	7.42
Feb. 17	2230	2,830	9.34	Mar. 21	1030	3,600	10.25
Mar. 9	1830	1,560	7.49	Apr. 19	2300	2,250	8.56

 $\mbox{Minimum discharge, 18 ft}^3/\mbox{s, Sept. 15-17, 18-19, 24-25, 27-28, 29, 30, gage height, 2.78 ft. } \\$

		DISCH	ARGE, IN	CUBIC FEE		OND, WATE		TOBER 1997	7 TO SEPT	EMBER 1998	8	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	32	74	52	57	327	443	223	191	73	104	31	21
2	29	162	47	e55	295	399	224	235	66	83	30	21
3	28	122	44	64	301	343	191	233	62	71	29	21
4	27	94	48	72	485	292	365	314	58	66	28	20
5	26	77	50	120	495	257	427	353	58	71	31	20
6	26	61	46	233	502	224	347	338	59	61	28	20
7	26	119	43	296	436	201	298	300	55	56	27	20
8	25	246	40	2710	383	274	269	398	52	68	30	25
9	25	220	40	1410	373	1010	611	372	51	69	31	26
10	25	147	50	733	356	1000	747	310	57	57	34	22
11	25	111	86	484	393	629	537	276	56	51	48	20
12	24	86	78	362	653	471	413	244	55	48	36	21
13	24	73	70	309	754	375	338	215	58	46	31	20
14	24	78	65	250	620	328	298	187	61	45	30	19
15	25	105	59	246	484	280	267	167	227	45	49	19
16	24	91	54	398	407	239	236	153	148	43	53	19
17	24	79	51	348	1450	212	264	143	125	44	54	19
18	24	70	49	293	1940	295	225	128	97	42	65	19
19	24	64	46	247	1200	1160	924	117	132	41	39	19
20	24	58	44	215	908	1190	1480	110	169	40	32	19
21	23	57	43	181	761	2930	806	105	120	38	29	21
22	23	73	45	164	589	1520	582	98	97	37	27	20
23	23	78	47	412	566	921	472	98	83	39	26	20
24	25	68	48	544	546	659	396	108	74	39	25	19
25	41	63	69	453	471	501	315	102	65	35	24	18
26	41	59	75	350	427	401	271	88	59	34	24	19
27	47	57	74	301	396	337	251	114	62	34	23	19
28	41	54	71	369	402	292	217	113	86	35	23	18
29	32	50	67	401		259	191	90	135	33	22	19
30	29	49	70	428		232	178	79	124	32	22	19
31	27		65	380		210		73		32	22	
TOTAL	863	2745	1736	12885	16920	17884	12363	5852	2624	1539	1003	602
MEAN	27.8	91.5	56.0	416	604	577	412	189	87.5	49.6	32.4	20.1
MAX	47	246	86	2710	1940	2930	1480	398	227	104	65	26
MIN	23	49	40	55	295	201	178	73	51	32	22	18
CFSM	.18	.58	.35	2.63	3.82	3.65	2.61	1.19	.55	.31	.20	.13
IN.	.20	.65	.41	3.03	3.98	4.21	2.91	1.38	.62	.36	.24	.14

e Estimated.

02011400 JACKSON RIVER NEAR BACOVA, VA--Continued

STATISTICS	OF	MONTHLY	MEAN	DATA	FOR	WATER	YEARS	1975 -	1998.	BY	WATER	YEAR	(WY))

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN MAX (WY) MIN (WY)	87.1 367 1980 19.7 1989	130 762 1986 27.5 1995	168 419 1997 36.1 1995	252 703 1996 31.6 1981	264 604 1998 101 1978	377 767 1993 68.0 1981	284 814 1987 81.1 1988	232 508 1989 61.1 1977	137 388 1982 37.1 1977	61.8 130 1989 29.7 1988	58.4 282 1984 20.6 1988	65.5 342 1979 20.1 1998
SUMMARY	STATIST			1997 CALE	NDAR YEAR		DR 1998	WATER YEAR	2377		ARS 1975	
	MEAN ANNUAL I			48801 134			77016 211			176 244		1996
HIGHEST LOWEST	ANNUAL MI DAILY ME	EAN AN		1620 23	Mar 4		2930	Mar 21 bSep 25		86.9 8820 16	Aug 1	1981 .9 1996 .8 1988
INSTANT	SEVEN-DA CANEOUS PI CANEOUS PI	EAK STAGE		24	Oct 17		19 4180 10. 18			17 30000 c22.25 15	Nov Nov	.3 1988 4 1985 4 1985 .7 1988
ANNUAL ANNUAL 10 PERC	RUNOFF (C RUNOFF (C ENT EXCE ENT EXCE	CFSM) INCHES) EDS		.8 11.4 271 84			1. 18. 484 73	34		1.11 15.14 374 91		.7 1900
	CENT EXCE			28			24			29		

a Also Oct. 22, 23, 1997. b Also Sept. 28, 1998. c From floodmark. d Also Sept. 16-19, 24, 25, 27-30, 1998. f Also Aug. 18, 19, and Sept. 16, 17, 23, 1988.

02011400 JACKSON RIVER NEAR BACOVA, VA--Continued

WATER-QUALITY RECORDS

PERIOD OF DAILY RECORD. --

WATER TEMPERATURE: March 1978 to September 1981, October 1982 to current year.

INSTRUMENTATION.--Water-temperature recorder March 1978 to September 1981, and since October 1982.

REMARKS.--Interruption in record due to instrument malfunction. Some record in prior years fragmentary due to instrument malfunction. Records represent water temperature at sensor within 0.5°C. Temperature at the sensor was compared with the average for the river by temperature cross section on June 28, 1995. No variation of temperature was found within the cross section.

EXTREMES FOR PERIOD OF DAILY RECORD.-WATER TEMPERATURE: Maximum recorded, 31.0°C, July 16, 1988; minimum recorded, 0.0°C on many days during winter periods.

EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE: Maximum recorded, 27.8°C, Aug. 26; minimum, 0.0°C on several days during winter period.

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER	2	N	OVEMBER		Di	ECEMBER			JANUARY	7
1	16.5	14.3	15.5	11.3	9.2	10.1	8.5	6.0	7.8	.0	.0	.0
2	15.8	12.1	13.8	11.7	9.9	10.6	6.0	4.2	5.2	.0	. 0	.0
3	15.8	11.7	13.6	9.9	8.5	9.0	4.9	3.5	4.2	.7	.0	.1
4	16.9	12.4	14.8	8.5	6.4	7.6	6.4	4.9	5.7	2.5	.0	1.1
5	18.9	15.0	16.7	7.4	4.9	6.1	5.7	3.2	4.7	4.2	1.8	2.9
6				6.7	4.2	5.8	3.2	1.1	2.3	6.0	4.2	5.0
7				7.4	6.4	7.0	1.1	. 4	. 9	8.5	6.0	7.1
8	19.7	15.8	17.6	7.4	6.7	7.0	2.5	. 7	1.7	9.9	8.5	9.5
9	19.7	16.5	17.9	8.1	7.1	7.6	2.8	1.8	2.3	9.5	7.4	8.6
10	19.7	16.9	18.1	8.5	6.7	7.7	3.5	2.8	3.1	7.4	5.7	6.2
11	18.9	15.4	16.9	7.4	6.7	7.2	4.6	3.5	4.0	6.4	4.9	5.6
12	18.5	14.6	16.6	7.1	6.4	6.7	4.2	3.5	4.0	5.7	5.3	5.6
13	19.3	15.8	17.2	6.4	4.9	5.5	3.5	2.1	2.8	6.7	5.3	5.8
14	17.3	15.4	16.4	6.4	4.9	5.7	2.5	1.1	1.9	5.3	3.9	4.7
15	16.5	13.9	15.0	6.0	4.9	5.5	1.8	.0	.8	4.2	3.9	4.1
16	14.3	11.3	13.0	4.9	3.5	4.0	2.1	.0	.9	6.4	4.2	5.4
17	12.8	11.0	12.0	4.6	2.1	3.3	2.1	.0	1.0	6.0	5.3	5.9
18	12.8	11.0	12.0	3.5	1.1	2.4	2.1	.0	1.2	5.3	3.9	4.7
19	13.9	12.1	12.7	3.5	.7	2.3	2.8	. 4	1.7	4.9	3.9	4.3
20	12.8	10.2	11.7	4.2	1.4	2.9	2.8	.7	1.8	4.9	3.2	4.1
21	11.3	9.2	9.9	3.9	3.2	3.5	3.5	1.8	2.7	3.5	1.8	2.9
22	10.2	7.8	9.0	6.7	3.9	5.6	3.2	2.8	3.1	4.2	2.8	3.5
23	9.2	5.3	7.4	7.4	6.0	6.6	4.6	3.2	3.8	4.9	3.5	4.4
24	8.1	6.4	7.1	6.4	3.5	4.8	4.6	3.9	4.2	5.7	4.6	5.2
25	9.5	7.4	8.6	3.9	1.4	2.8	5.3	4.2	4.8	4.9	3.9	4.3
26	9.5	9.2	9.4	3.2	1.8	2.4	6.4	4.9	5.4	4.6	3.2	3.8
27	9.9	8.5	9.4	5.3	2.5	3.8	4.9	2.5	3.2	3.9	1.8	3.4
28	8.8	6.4	7.7	5.3	2.8	4.2	3.5	1.8	2.6	2.5	. 7	1.6
29	9.2	6.0	7.5	7.1	4.9	6.2	1.8	. 0	. 5	5.3	2.5	3.7
30	9.2	5.7	7.7	8.5	7.1	7.9	. 4	. 0	.1	5.3	4.2	4.6
31	9.5	6.0	8.1				. 4	.0	.0	5.3	3.5	4.2
MONTH				11.7	.7	5.7	8.5	.0	2.9	9.9	.0	4.3

02011400 JACKSON RIVER NEAR BACOVA, VA--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5	4.6 4.2 4.6 4.2 4.2	2.1 2.1 3.5 1.8 2.8	3.3 3.1 4.1 2.8 3.5	8.5 7.8 6.4 6.0 7.4	7.4 6.4 4.9 4.6 4.2	7.9 7.3 5.7 5.1 5.6	16.5 15.4 12.8 11.3 11.0	11.3 10.2	14.7 13.2 11.6 10.1 9.1	14.3 13.9 15.0 15.4 15.0	12.8 12.4 12.1 12.4 12.4	13.5 13.1 13.6 13.7 13.5
6 7 8 9 10	3.9 5.7 6.7 6.0 6.4	2.8 3.5 4.2 3.5 3.5	3.4 4.3 5.2 4.6 4.7	8.1 8.5 8.5 9.5 8.5	4.2 6.4 8.1 8.5 4.6	6.1 7.5 8.3 9.0 6.0	11.7 11.3 13.5 13.5	7.8 8.5 9.2 11.7 9.9	9.7 9.9 11.1 12.3 10.4	15.0 13.5 14.3 15.0 16.1	12.4 12.8 12.4 13.1 12.8	13.2
11 12 13 14 15	4.9 5.7 6.4 6.0 5.7	3.9 4.9 4.9 4.6 3.5				3.4 2.9 3.2 5.0	11.3 12.1 13.1 12.8 15.0	8.1 8.8 11.0 10.6	9.6 10.0 10.8 11.8 12.7	15.0 14.3 17.3 20.5 21.7	13.1 12.4 14.3	14.2 13.6 14.7 17.1 18.5
16 17 18 19 20	6.0 6.4	4.2 4.6 4.9 6.0 6.4	4.5 5.4 5.7 6.3 6.7	5.7 7.1 9.2 8.8	4.2 4.9 6.4 7.4	5.0 5.8 7.6 7.9	14.6 16.9 13.9 11.3 12.1	12.4 12.4 11.3 9.9 8.8	13.4 14.1 12.5 10.3 10.4	21.7 22.9 22.5 22.1 22.9	17.7	19.1 20.2 19.6 19.4 19.0
21 22 23 24 25	6.7 7.4 6.0 7.8	6.0 4.6 4.2 4.9	6.2 6.2 5.1 6.3	7.4 6.7 6.4 6.7 7.1	6.4 5.3 4.6 4.6 4.9	7.0 5.9 5.5 5.7 6.1	13.5 13.9		11.0 10.7 9.9 11.2 12.6	22.5 21.7 20.1 19.7 22.1	13.7 16.9 16.9 16.5 17.3	20.4 19.4 18.4 18.1 19.7
26 27 28 29 30 31	8.1 7.8 8.8 	5.3 6.7 6.7 	6.6 7.2 7.7 	13.5 15.4	8.8 11.3 11.7 11.3	8.2 10.9 13.1 13.4 13.6 14.6	15.0 15.0 15.8 15.0 15.0	11.7 12.4 10.2 11.0 12.4	13.3 13.4 12.9 13.1 13.7	21.7 20.5 21.7 23.3 24.6 25.1	18.9 17.7 16.9 18.1 19.7 20.5	20.3 18.4 18.9 20.7 21.9 22.8
MONTH							16.9	7.4	11.6		12.1	17.1
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN JUNE			MIN JULY			MIN AUGUST			SEPTEMBE	
1 2	MAX 25.1 22.9 24.2 22.1 20.1							AUGUST 21.3 19.7			SEPTEMBE	
1 2 3 4 5	25.1 22.9 24.2 22.1	JUNE 21.3 19.3 19.3 19.3 17.7 16.5 15.0 13.5 15.4	23.0 21.3 21.6 20.7 18.6		JULY 19.3 19.7 19.7 20.5 20.1	21.5 21.3 22.0 21.5 22.3		21.3 19.7 19.3 19.3 20.1	23.2 22.3 22.1 22.4 23.1		20.5 20.5 19.7 19.3 20.1	22.6 22.5 21.2 21.6 22.0 21.6 22.1 20.8
1 2 3 4 5 6 7 8	25.1 22.9 24.2 22.1 20.1 18.5 16.9 18.1 16.9	JUNE 21.3 19.3 19.3 19.3 17.7 16.5 15.0 13.5 15.4	23.0 21.3 21.6 20.7 18.6	23.8 22.9 24.2 22.5 25.1	JULY 19.3 19.7 19.7 20.5 20.1	21.5 21.3 22.0 21.5 22.3 22.9 23.8 24.3 24.2 24.6	25.5 25.1 25.1 25.5 26.0	21.3 19.7 19.3 19.3 20.1	23.2 22.3 22.1 22.4 23.1 23.5 23.5 22.6 23.7 23.7	25.1 24.6 22.5 23.8 24.6	20.5 20.5 19.7 19.3 20.1	22.6 22.5 21.2 21.6 22.0 21.6 22.1 20.8 17.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14	25.1 22.9 24.2 22.1 20.1 18.5 16.9 20.9 20.1 22.5 22.5 20.9	JUNE 21.3 19.3 19.3 17.7 16.5 15.0 13.5 15.4 15.0 18.5 18.9 19.7 19.3	23.0 21.3 21.6 20.7 18.6 17.5 15.8 15.7 16.1 17.7	23.8 22.9 24.2 22.5 25.1 25.1 26.0 26.0 26.9 26.0 25.5 25.5	JULY 19.3 19.7 19.7 20.5 20.1 21.3 21.7 22.9 22.5 22.5 21.7 20.5 21.7 22.5	21.5 21.3 22.0 21.5 22.3 22.9 23.8 24.2 24.6 24.0 23.0 23.8 24.1	25.5 25.1 25.5 26.0 26.4 26.4 25.1 25.1 26.0 23.8	21.3 19.7 19.3 19.3 20.1 20.9 20.9 22.1 21.7 22.5 21.7 22.1 21.7	23.2 22.3 22.1 22.4 23.1 23.5 23.5 22.6 23.7 23.7 23.8 23.8 23.3 22.7	25.1 24.6 22.5 23.8 24.6 24.2 24.2 22.1 18.9 20.1 20.9 22.1 22.5 23.3	20.5 20.5 19.7 19.3 20.1 19.3 20.5 18.9 16.9 15.4 17.3 16.9 18.1	22.6 22.5 21.2 21.6 22.0 21.6 22.1 20.8 17.6 17.4 18.0 19.4 19.7 20.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	25.1 22.9 24.2 22.1 20.1 18.5 16.9 20.9 20.1 22.5 22.5 20.9 21.3 23.3 21.7 22.5 21.3	JUNE 21.3 19.3 19.3 19.3 17.7 16.5 15.0 13.5 15.4 15.0 18.5 18.9 19.7 19.3 16.9 18.9 18.9 18.9 18.9 18.9	23.0 21.3 21.6 20.7 18.6 17.5 15.8 15.7 16.1 17.7 19.4 20.3 21.0 20.2 19.6	23.8 22.9 24.2 22.5 25.1 25.1 26.0 26.0 26.9 26.0 25.5 25.1 25.5 25.1 26.0 26.0 26.0	JULY 19.3 19.7 19.7 20.5 20.1 21.3 21.7 22.9 22.5 21.7 20.5 21.7 22.5 22.5	21.5 21.3 22.0 21.5 22.3 22.9 23.8 24.2 24.6 24.0 23.0 23.8 24.1 24.1	25.5 25.1 25.1 25.5 26.0 26.4 26.4 25.1 25.1 25.1 23.8 22.9 22.1 23.3 23.8	AUGUST 21.3 19.7 19.3 20.1 20.9 20.9 22.1 21.7 22.5 21.7 22.1 21.7 21.3 20.9 20.5 21.3 21.3	23.2 22.3 22.1 22.4 23.1 23.5 23.5 22.6 23.7 23.7 23.3 23.8 23.3 22.7 22.1 21.5 21.8 22.5 23.0	25.1 24.6 22.5 23.8 24.6 24.2 24.2 22.1 18.9 20.1 20.9 22.5 23.3 24.2 23.8	SEPTEMBE 20.5 20.5 19.7 19.3 20.1 19.3 20.5 18.9 16.9 15.4 17.3 16.9 18.1 18.9 20.1 20.5 20.5 20.5	22.6 22.5 21.2 21.6 22.0 21.6 22.1 20.8 17.6 17.4 18.0 19.4 19.7 20.5 21.4 22.0 22.1 22.1 22.1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	25.1 22.9 24.2 22.1 20.1 18.5 16.9 20.9 20.1 22.5 22.5 20.9 21.3 23.3 21.7 22.5 21.3 22.9	JUNE 21.3 19.3 19.3 19.3 17.7 16.5 15.0 13.5 15.4 15.0 18.5 18.9 19.7 19.3 16.9 18.9 18.9 18.9 18.9 18.5 19.3 18.1	23.0 21.3 21.6 20.7 18.6 17.5 15.8 15.7 16.1 17.7 19.4 20.3 21.0 20.2 19.6 20.4 20.5 20.4 20.5 20.4 20.5	23.8 22.9 24.2 22.5 25.1 25.1 26.0 26.0 26.9 26.0 25.5 25.1 25.5 26.0 24.6 27.3 26.0	JULY 19.3 19.7 19.7 20.5 20.1 21.3 21.7 22.5 22.5 21.7 20.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5	21.5 21.3 22.0 21.5 22.3 22.9 23.8 24.2 24.6 24.0 23.0 23.8 24.1 24.1 24.1 24.3 24.4 23.3 24.4 23.3 24.4 23.3 24.4 23.3	25.5 25.1 25.1 25.5 26.0 26.4 26.4 25.1 25.1 25.1 23.8 22.9 22.1 23.8 22.9 22.1 23.8 22.9	AUGUST 21.3 19.7 19.3 20.1 20.9 20.9 22.1 21.7 22.5 21.7 22.1 21.7 21.3 20.9 20.5 21.3 21.9 20.5 21.3 21.9 20.5 21.3 21.7	23.2 22.3 22.1 22.4 23.1 23.5 23.5 23.7 23.7 23.3 23.8 23.3 22.7 22.1 21.5 21.8 22.5 22.0 22.0	25.1 24.6 22.5 23.8 24.6 24.2 24.2 22.1 18.9 20.1 20.9 22.5 23.3 24.2 23.8 24.2 23.8	SEPTEMBE 20.5 20.5 19.7 19.3 20.1 19.3 20.5 18.9 16.9 15.4 15.4 17.3 16.9 18.1 18.9 20.1 20.5 20.5 21.3 20.5	22.6 22.5 21.2 21.6 22.0 21.6 22.1 20.8 17.6 17.4 18.0 19.4 19.7 20.5 21.4 22.0 22.1 22.1 22.3 22.3

02011460 BACK CREEK NEAR SUNRISE, VA

DRAINAGE AREA.--60.1 mi².

PERIOD OF RECORD. -- June 1974 to current year.

REVISED RECORDS.--WDR VA-85-1: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 2,200.02 ft above sea level (levels by Virginia Department of Transportation). July 2 to Sept. 6, 1990, nonrecording gage at present site and datum.

REMARKS.--No estimated daily discharges. Records good. Virginia Power gage-height transmitter at station, receiver at Back Creek Dam. Maximum discharge, 17,500 ft³/s, from rating curve extended above 3,800 ft³/s. Minimum gage height, 0.07 ft, July 21, 1977. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES FOR CURRENT YEAR.—Peak discharges equal to or greater than base discharge of 850 ${\rm ft}^3/{\rm s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge ft ³ /s)	Gage height (ft)
Jan. 8	0730	*5,360	*6.55	Mar. 19	0345	906	3.48
Feb. 17	1930	2,160	4.74	Mar. 21	0615	2,070	4.67
Mar. 9	1415	1,340	4.00	Apr. 19	2345	1,190	3.83

Minimum discharge, 2.0 ${\rm ft}^3/{\rm s},$ Sept. 6-7, gage height, 0.47 ft.

		DISCHAF	RGE, IN CU	JBIC FEET	PER SECON	ND, WATER LY MEAN V		OBER 1997	TO SEPTE	MBER 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	9.3	52	31	36	94	266	82	61	18	60	4.7	3.0
2	7.9	105	27	38	87	189	78	75	16	41	4.3	2.8
3	6.8	77	24	47	83	143	76	123	15	31	4.0	2.6
4	6.0	68	26	91	98	109	145	176	14	26	3.7	2.6
5	5.3	48	25	193	100	88	195	193	14	23	3.5	2.4
6	5.1	35	23	275	99	71	164	177	15	19	3.3	2.2
7	4.8	130	22	347	92	62	131	156	13	17	3.1	2.2
8	4.6	235	21	2590	87	250	114	152	12	28	3.3	8.5
9	4.3	208	20	777	99	931	195	137	12	24	3.9	7.9
10	4.2	130	29	328	127	604	303	125	15	18	6.3	5.3
11	4.0	87	83	200	166	296	220	111	15	15	19	4.3
12	4.0	62	89	141	317	191	167	96	16	13	9.3	3.7
13	4.0	47	73	112	320	141	133	79	21	12	6.8	3.4
14	3.9	72	61	92	225	116	113	67	23	13	6.2	3.0
15	4.3	111	49	96	154	93	95	58	71	13	11	2.8
16	4.2	90	43	178	119	77	82	52	83	11	11	2.5
17	4.2	67	38	185	942	67	94	48	64	11	19	2.4
18	4.4	52	34	140	1130	143	92	41	45	10	21	2.3
19	4.4	45	30	107	529	706	337	37	124	9.2	14	2.3
20	4.2	40	28	83	351	600	762	34	167	8.6	10	4.4
21	4.2	37	26	65	290	1500	341	32	91	7.9	8.1	4.4
22	4.3	64	26	57	212	635	219	29	58	7.3	6.7	3.8
23	4.2	90	26	192	184	343	165	31	42	6.9	5.8	3.2
24	5.0	77	27	347	154	231	130	32	32	6.9	5.1	2.8
25	14	60	42	222	134	172	103	29	26	6.3	4.8	2.6
26	16	52	59	150	160	141	85	24	21	5.9	4.4	2.5
27	25	46	64	119	175	121	79	28	28	5.7	4.3	2.4
28	18	38	57	111	225	106	65	26	42	5.8	3.9	2.5
29	14	34	51	99		93	56	21	117	5.4	3.6	2.6
30	11	32	52	124		81	53	19	88	5.0	3.4	2.6
31	9.4		43	109		73		18		4.8	3.1	
TOTAL	225.0	2291	1249	7651	6753	8639	4874	2287	1318	470.7	220.6	100.0
MEAN	7.26	76.4	40.3	247	241	279	162	73.8	43.9	15.2	7.12	3.33
MAX	25	235	89	2590	1130	1500	762	193	167	60	21	8.5
MIN	3.9	32	20	36	83	62	53	18	12	4.8	3.1	2.2
CFSM	.12	1.27	.67	4.11	4.01	4.64	2.70	1.23	.73	. 25	.12	.06
IN.	.14	1.42	.77	4.74	4.18	5.35	3.02	1.42	.82	. 29	.14	.06

02011460 BACK CREEK NEAR SUNRISE, VA--Continued

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	44.3	84.7	110	149	150	207	138	129	63.1	27.1	25.4	25.5
MAX	256	512	249	426	326	394	330	391	174	69.5	88.9	180
(WY)	1977	1986	1997	1996	1994	1993	1987	1996	1995	1994	1996	1996
MIN	4.08	9.58	20.1	8.49	45.4	54.5	45.9	31.8	13.2	6.81	4.41	2.48

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1974 - 1998, BY WATER YEAR (WY)

(W ± /	1711	1000	1001	1000	エンフェ	1000	1007	1000	1000	1004	1000	1000
MIN	4.08	9.58	20.1	8.49	45.4	54.5	45.9	31.8	13.2	6.81	4.41	2.48
(WY)	1992	1995	1981	1981	1978	1988	1986	1991	1994	1988	1987	1983
CITALIA DI	OM3 MT OM3	- 00	FOR 1	005 637 537		T/	D 1000 113				DG 1074	1000
SUMMARY	STATIST	ICS	FOR 1	.997 CALEN	DAR YEAR	F.C	OR 1998 WA	TER YEAR	₹	WATER YEA	RS 1974	- 1998
ANNUAL '	TOTAL			27301.0			36078.3					
ANNUAL I	MEAN			74.8			98.8			96.1		
	ANNUAL N	MEAN								155		1996
LOWEST	ANNUAL ME	EAN								51.6		1988
HIGHEST	DAILY ME	EAN		1070	Mar 3		2590	Jan 8	3	6280	Nov	4 1985
LOWEST 1	DAILY MEA	AN		3.1	Sep 27		2.2	aSep (5	1.7	Sep 1	L4 1980
ANNUAL	SEVEN-DAY	Y MINIMUM		3.5	Sep 21		2.5	Sep :	L	2.1	Sep	6 1983
INSTANT	ANEOUS PE	EAK FLOW					5360	Jan 8	3	17500	Nov	4 1985
INSTANT	ANEOUS PE	EAK STAGE					6.55	Jan 8	3	10.01	Nov	4 1985
INSTANT	ANEOUS LO	OW FLOW					2.0	aSep 6	5	1.5	bSep 1	L3 1980
ANNUAL	RUNOFF (C	CFSM)		1.24			1.64			1.60		
ANNUAL 1	RUNOFF ()	INCHES)		16.90			22.33			21.72		
10 PERC	ENT EXCER	EDS		168			203			213		
50 PERC	ENT EXCE	EDS		49			42			45		
90 PERC	ENT EXCE	EDS		4.5			4.0			6.3		

a Also Sept. 7, 1998. b Also Sept. 14, 1980.

02011470 BACK CREEK AT SUNRISE, VA

LOCATION.--Lat 38°11'25", long 79°48'43", Bath County, Hydrologic Unit 02080201, on left bank 75 ft upstream from bridge on State Highway 600 at Sunrise, 180 ft upstream from Beaver Run, 0.5 mi downstream from Back Creek Dam, and 7.6 mi northeast of Mountain Grove.

DRAINAGE AREA. -- 76.1 mi².

PERIOD OF RECORD. -- October 1984 to current year.

GAGE.--Water-stage recorder. Concrete control since Oct. 24, 1984. Datum of gage is 1,968.52 ft above sea level (Virginia Power bench mark). Nov. 5, 1992, to Jan. 5, 1993, nonrecording gage at present site and datum.

REMARKS.--No estimated daily discharges. Records good. Flow regulated since October 1984 by Back Creek Lake 0.5 mi upstream, amount unknown. Virginia Power gage-height transmitter at station, receiver at Back Creek Dam. U.S. Army Corps of Engineers satellite precipitation and gage-height telemeter at station. Maximum discharge, 5,690 ft³/s, from rating curve extended above 960 ft³/s on basis of release from Back Creek Lake at peak flow. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 3,990 ${\rm ft}^3/{\rm s}$, Jan. 8, gage height, 9.96 ft, from rating curve extended as explained above; minimum, 13 ${\rm ft}^3/{\rm s}$, Sept. 26, gage height, 3.95 ft.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	14	20	34	52	93	420	77	22	26	122	15	15
2	14	20	36	54	92	266	103	21	25	102	15	15
3	14	18	25	57	147	275	155	117	25	45	15	15
4	14	18	22	109	214	199	239	263	19	45	15	15
5	14	17	23	248	223	131	267	281	15	30	15	15
6	14	16	25	279	211	122	259	265	15	22	15	15
7	14	18	24	416	167	111	170	278	15	16	15	15
8	14	75	23	3010	130	237	133	191	14	17	15	15
9	14	192	24	1090	129	1080	270	175	15	16	15	15
10	14	179	26	463	155	811	460	125	15	15	16	15
11	14	117	93	256	285	517	356	124	15	15	15	15
12	14	83	133	220	383	298	166	83	15	15	15	15
13	14	68	121	176	462	274	145	74	15	15	15	14
14	14	67	90	158	417	230	155	72	15	15	15	15
15	14	65	47	162	285	185	138	70	129	15	16	15
16	16	60	26	167	183	142	122	53	138	15	16	15
17	17	61	24	220	1020	85	123	51	132	15	17	15
18	15	61	24	262	1630	80	116	48	94	15	16	15
19	15	61	24	275	744	1010	343	48	116	15	15	15
20	15	61	23	155	455	623	844	49	207	15	15	15
21	15	62	21	120	432	1950	648	50	170	15	15	15
22	15	63	23	102	319	892	249	52	83	15	15	15
23	15	58	24	214	273	412	291	52	45	15	15	15
24	16	61	24	372	215	366	282	49	18	15	15	15
25	17	66	71	417	210	173	136	47	18	15	15	15
26	16	66	98	259	173	157	113	34	19	15	15	15
27	16	64	97	239	170	157	72	34	19	15	15	15
28	16	52	65	248	268	147	21	34	20	15	15	15
29	16	38	64	211		87	21	24	116	15	15	15
30	16	35	64	189		71	21	26	170	14	15	15
31	16		55	195		73		26		15	15	
31	10		33	100		73		20		13	13	
TOTAL	462	1842	1473	10395	9485	11581	6495	2838	1738	744	471	449
MEAN	14.9	61.4	47.5	335	339	374	217	91.5	57.9	24.0	15.2	15.0
MAX	17	192	133	3010	1630	1950	844	281	207	122	17	15
MIN	14	16	21	52	92	71	21	21	14	14	15	14

02011470 BACK CREEK AT SUNRISE, VA--Continued

STATIS	TICS OF	MONTHLY MEAN	DATA F	FOR WATER	YEARS 1985	- 1998,	BY WATER	YEAR (WY)	[REGUL	ATED, UNAD	JUSTED]	
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	35.8	85.6	128	203	177	267	175	180	83.3	33.9	32.8	35.9
MAX	150	371	285	504	416	616	496	399	259	83.0	96.1	230
(WY)	1990	1986	1997	1996	1994	1993	1987	1989	1995	1994	1996	1996
MIN	9.31	12.0	14.5	14.8	58.2	61.4	51.1	37.5	14.6	12.7	13.4	11.5
(WY)	1985	1985	1995	1985	1993	1988	1986	1991	1994	1985	1997	1985
SUMMAR	Y STATIS	TICS	FOR	1997 CALI	ENDAR YEAR	F	OR 1998 W	ATER YEAR		WATER YE	ARS 1985	- 1998
ANNUAL	TOTAL			33653			47973					
ANNUAL	MEAN			92.2	2		131			120		
HIGHES	T ANNUAL	MEAN								175		1996
LOWEST	ANNUAL	MEAN								55.8		1985
HIGHES	T DAILY	MEAN		1280	Mar 4		3010	Jan 8		4890	Jan 1	9 1996
LOWEST	DAILY M	EAN		13	aJul 30		14	bOct 1		5.2	Nov	3 1984
ANNUAL	SEVEN-D	AY MINIMUM		13	Aug 6		14	Oct 1		5.6	Oct 2	9 1984
		PEAK FLOW					3990	Jan 8		5690	Jan 1	9 1996
INSTAN	TANEOUS	PEAK STAGE					9.9	6 Jan 8		11.99	Jan 1	9 1996
INSTAN	TANEOUS	LOW FLOW					13	Sep 26		(c)		
ANNUAL	RUNOFF	(CFSM)		1.3	21		1.7	-		1.57		
		(INCHES)		16.4			23.4			21.35		
	CENT EXC			205	-		280			260		
	CENT EXC			54			48			45		
90 PER	CENT EXC	EEDS		13			15			14		

a Also July 31, and most of August and September 1997. b Also Oct. 2-15, 1997, and June 8, July 30, Sept. 13, 1998. c Not determined.

02011490 LITTLE BACK CREEK NEAR SUNRISE, VA

LOCATION.--Lat 38°12'52", long 79°50'16", Bath County, Hydrologic Unit 02080201, in George Washington National Forest, on right bank 600 ft downstream from Long Spring Run, 1.2 mi downstream from Little Back Creek Dam, and 8.5 mi northeast of Mountain Grove.

DRAINAGE AREA. -- 4.91 mi².

PERIOD OF RECORD. -- October 1984 to current year.

GAGE.--Water-stage recorder. Concrete control with rectangular weir plate. Datum of gage is 2,638.48 ft above sea level (Virginia Power bench mark). Nov. 5, 1992, to Jan. 5, 1993, nonrecording gage at present site and datum.

REMARKS.--No estimated daily discharges. Records good. Flow regulated since January 1985 by Little Back Creek Lake 1.2 mi upstream, amount unknown. Maximum discharge, 580 ft³/s, from rating curve extended above 30 ft³/s on basis of slope-area measurement of peak flow. Minimum gage height, 0.63 ft, Nov. 16, 1994. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 137 ${\rm ft}^3/{\rm s}$, Jan. 8, gage height, 3.14 ft, from rating curve extended as explained above; minimum, 0.92 ${\rm ft}^3/{\rm s}$, June 4, gage height, 0.72 ft.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES DEC DAY OCT NOV JAN MAR APR MAY JUN JUL SEP 1 3.4 5.1 4.1 3.8 6.8 16 5.7 4.9 2.9 6.7 3.1 3.1 3.4 6.0 4.0 3.7 6.7 12 6.0 5.1 2.8 6.6 3.1 3.6 3.4 5.3 4.0 4.2 6.7 9.7 6.0 5.4 4.7 4.8 3.1 3.1 4 3.4 5.0 4.0 6.7 8.1 7.9 7.6 7.8 1.7 5.0 3.1 3.0 5 3.5 4.3 4.1 13 7.7 6.9 9.2 13 2.7 5.0 3.1 2.8 6 7.6 3.5 3.9 4.0 15 6.1 8.6 11 2.3 4.8 3.0 2.8 4.8 7.1 7.2 8.3 2.2 3.5 3.9 16 5.3 4.9 3.0 3.1 8 11 6.3 3.4 6.5 3.9 77 6.8 7.8 2.3 6.0 3.1 3.5 2.7 9 3.3 6.5 4.0 25 7.5 34 9.1 8.4 6.1 3.1 3.3 10 3.3 5.7 4.9 14 8.8 25 14 8.2 2.9 5.4 4.5 2.9 11 3 2 5 1 8 3 1.0 10 14 10 7 4 3 1 4 9 3 9 2 9 7.9 12 3.2 4.7 7.4 8.8 14 10 6.6 2.6 4.5 3.2 3.0 8 2 13 3 4 4 4 6 1 7 8 14 6 8 5 9 2 8 4 3 4 3 2 9 7 7 14 3.5 5 0 5 2 11 6 9 6 0 5.3 2.9 4 1 2 6 2 9 15 3.3 5.9 4.8 7.9 9.0 6.1 5.4 5.1 13 5.6 3.5 2.9 16 3.3 5.7 4.4 11 8 2 5.7 5 0 4 7 11 3 2 4 9 3.8 17 3.3 5.2 4.1 11 40 5.3 5.4 4.3 6.2 3.4 6.7 2.4 18 3.2 4.6 4.3 9 3 44 7.7 5.3 4 1 5.6 3 4 6.3 2.5 19 3.2 4.4 3.1 8.1 20 29 14 4.5 6.4 3.4 5.3 2 7 20 3.3 4.2 7.3 21 30 3.8 7.7 3.9 2.8 3.1 14 3.6 21 3.4 4.2 3.3 6.1 13 46 14 3.7 7.1 3.5 3.4 3.0 5.0 5.6 22 9.6 3.5 22 3.5 3.5 11 5.8 3.5 3.0 2.7 23 3.5 5.6 3.3 9.6 10 13 7.5 3.4 5.1 3.4 3.0 2.7 24 3.6 5.5 3.3 15 8.9 9.7 6.4 3.2 4.6 3.4 3.1 2.7 4.0 5.0 4.4 12 8.1 7.8 5.6 3.1 4.5 3.2 3.2 3.8 3.7 4.6 9.8 9.3 6.9 3.0 4.2 3.1 4.0 4.3 5.5 8.7 10 6.2 5.3 3.3 4.3 3.1 3.1 2.5 3.7 4.1 5.0 8.3 14 5.7 4.8 3.1 5.9 4.8 3.1 2.7 29 3.5 4.1 4.9 7.3 5.4 4.6 3.0 11 2.6 3.1 2.8 30 3.5 4.0 4.6 7.7 5.5 3.1 8.2 2.6 3.1 4.6 4.5 4.2 7.2 3.2 31 3.4 5.3 3.0 3.0 TOTAL 106.8 148.7 138.9 243.0 167.0 131.9 364.6 342.3 381.3 149.2 111.3 89.9 4.96 12.2 4.97 4.25 MEAN 3.45 4.48 12.3 8.10 5.39 3.59 3.00 11.8 8.3 77 13 6.7 MAX 4.0 6.5 44 46 30 13 6.7 4.6 5.3 MTN 3.2 3.9 3.1 3.7 6.7 4.5 3.0 1.7 2.6 2.6 2.4

02011490 LITTLE BACK CREEK NEAR SUNRISE, VA--Continued

STATIST	rics of M	ONTHLY MEAN	DATA	FOR WATER	YEARS 1985	- 1998,	BY WATER	YEAR (W	Y) [REGU	LATED, UNAD	JUSTED]	
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	3.59	5.25	6.00	7.76	7.22	8.74	6.83	7.15	4.57	3.48	3.43	3.42
MAX	7.46	12.6	9.65	15.7	12.9	16.4	13.1	14.8	8.41	4.95	5.13	7.29
(WY)	1990	1986	1997	1996	1994	1993	1987	1985	1995	1994	1989	1996
MIN	2.17	2.72	3.26	3.56	3.78	3.91	3.37	3.37	2.79	2.46	2.33	2.28
(WY)	1987	1992	1995	1985	1993	1985	1986	1991	1991	1987	1986	1985
SUMMARY	Y STATIST	ICS	FOR	1997 CALI	ENDAR YEAR	F	OR 1998 WA	TER YEA	R	WATER YE	ARS 1985	- 1998
ANNUAL	TOTAL			1985.2	2		2374.9					
ANNUAL	MEAN			5.4	44		6.51			5.61		
HIGHEST	r annual i	MEAN								7.00		1996
LOWEST	ANNUAL M	EAN								4.37		1988
HIGHEST	r DAILY M	EAN		38	Mar 3		77	Jan	8	158	Nov	4 1985
LOWEST	DAILY ME	AN		3.3	l aSep 6		b1.7	Jun	4	.90	Oct 1	L3 1984
ANNUAL	SEVEN-DA	Y MINIMUM		3.3	3 Oct 15		2.4	Jun	4	1.2	Jan 2	24 1985
INSTANT	TANEOUS P	EAK FLOW					137	Jan	8	580	Nov	4 1985
INSTANT	TANEOUS P	EAK STAGE					3.14	Jan	8	4.06	Nov	4 1985
INSTANT	FANEOUS L	OW FLOW					b.92	Jun	4	.83	Nov 1	L6 1994
ANNUAL	RUNOFF (CFSM)		1.3	11		1.33			1.14		
ANNUAL	RUNOFF (INCHES)		15.0	04		17.99			15.54		
10 PERG	CENT EXCE	EDS		8.3	3		11			9.6		
50 PERG	CENT EXCE	EDS		4.6	5		4.8			4.0		
90 PERG	CENT EXCE	EDS		3.4	4		3.0			2.6		

a Also Dec. 19, 20, 1997. b Result of regulation.

02011500 BACK CREEK NEAR MOUNTAIN GROVE, VA

DRAINAGE AREA.--134 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1951 to current year.

REVISED RECORDS. -- WSP 2104: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,701.45 ft above sea level.

REMARKS.--Records good except for period of doubtful gage-height record Mar. 30-31, which is fair. Flow regulated since October 1984 by Back Creek Lake 11.3 mi upstream, amount unknown, and since January 1985 by Little Back Creek Lake 14.4 mi upstream, amount unknown. Diversion 10.5 mi upstream from station by Virginia Power for recreation lakes, net averages 0.5 ft³/s. U.S. Army Corps of Engineers satellite water temperature and gage-height telemeter at station. Maximum discharge, 18,400 ft³/s, from rating curve extended above 14,000 ft³/s on basis of slope-area measurement of peak flow.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, $6,740~{\rm ft}^3/{\rm s}$, Jan. 8, gage height, 8.59 ft, minimum, 15 ft $^3/{\rm s}$, Oct. 6, 8, 13-14, gage height 2.01 ft.

		DISCH	ARGE, CUB	IC FEET		, WATER LY MEAN	YEAR OCTOBE	R 1997	TO SEPTEMBE	R 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	17	59	58	83	279	587	148	78	49	180	25	19
2	17	79	58	82	239	404	164	87	46	156	25	19
3	17	64	53	94	269	388	220	145	45	78	24	19
4	17	64	50	145	461	322	353	379	43	72	24	19
5	17	52	48	361	511	219	434	587	37	66	24	18
6	16	43	51	454	577	191	408	486	36	47	23	18
7	16	51	51	533	502	187	314	441	34	42	23	18
8	16	95	48	4450	420	292	238	403	33	47	26	21
9	16	212	49	1530	419	1360	477	436	34	44	25	18
10	16	212	61	730	403	1160	760	319	34	41	40	18
11	16	154	131	454	544	736	588	265	33	38	49	18
12	16	105	188	359	693	477	351	201	35	35	36	18
13	16	94	172	299	810	406	271	153	36	34	32	18
14	16	94	141	259	735	342	265	136	35	33	31	17
15	17	100	93	279	489	282	240	125	348	32	35	17
16	17	97	77	381	371	237	206	102	300	33	45	18
17	20	91	67	407	1400	148	222	92	230	33	84	18
18	20	88	64	413	2380	206	216	83	169	31	61	17
19	19	85	62	397	1180	1410	628	78	140	30	42	18
20	18	83	60	281	771	1040	1510	77	289	29	33	18
21	19	84	58	210	676	2620	1010	77	236	29	29	17
22	19	90	59	174	532	1440	481	76	140	28	26	18
23	18	91	58	434	475	723	458	78	93	30	25	18
24	22	91	54	669	399	590	422	77	51	28	23	18
25	29	93	80	637	389	364	255	72	44	28	22	18
26	26	91	127	458	351	294	192	68	41	27	21	18
27	27	88	131	390	353	282	164	58	43	27	20	18
28	25	82	111	469	410	278	83	72	58	27	20	18
29	25	63	101	454		196	74	52	134	26	20	18
30	24	61	100	432		e132	71	50	227	26	20	18
31	23		91	398		e135		48		26	19	
TOTAL	597	2756	2552	16716	17038	17448	11223	5401	3073	1403	952	543
MEAN	19.3	91.9	82.3	539	609	563	374	174	102	45.3	30.7	18.1
MAX	29	212	188	4450	2380	2620	1510	587	348	180	84	21
MIN	16	43	48	82	239	132	71	48	33	26	19	17

02011500 BACK CREEK NEAR MOUNTAIN GROVE, VA--Continued

STATIST	ICS OF MO	NTHLY MEAN	DATA :	FOR WATER	YEARS 1952	- 1984,	BY WATER	YEAR (WY) [UNREG	ULATED]		
MEAN MAX (WY) MIN (WY)	OCT 83.1 512 1977 7.21 1954	NOV 107 526 1973 10.4 1954	DEC 221 694 1974 15.2 1961	JAN 246 578 1979 14.3 1981	FEB 320 689 1971 87.6 1978	MAR 455 980 1963 103 1981	APR 303 561 1980 90.9 1963	MAY 230 449 1967 74.2 1977	JUN 128 396 1982 13.0 1964	JUL 56.3 369 1972 7.91 1964	AUG 53.5 408 1969 7.18 1964	SEP 32.4 308 1979 4.05 1968
SUMMARY	STATISTI	CS		WATER Y	EARS 1952 -	1984						
LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL ANNUAL 10 PERC 50 PERC	' ANNUAL ME ' DAILY ME DAILY MEA SEVEN-DAY	AN AN N MINIMUM AK FLOW AK STAGE W FLOW FSM) NCHES) DS DS		186 320 111 7110 1.5 2.3 12700 10.7' 1.5 1.3: 18.8: 425 79	Aug 14 Mar 7 7 Mar 7 Aug 18	1967 1967 1967 1967						
STATIST	ICS OF MO	NTHLY MEAN	DATA	FOR WATER	YEARS 1985	- 1998,	BY WATER	YEAR (WY) [REGUL	ATED, UNADJ	USTED]	
MEAN MAX (WY) MIN (WY)	19.3	NOV 145 696 1986 23.2 1995	DEC 201 392 1997 36.3 1995	324 818 1996 77.7	FEB 294 609 1998 107 1993	MAR 406 833 1993 92.8 1988	83.5	MAY 263 528 1996 62.9 1991	JUN 125 351 1995 32.7 1991	JUL 50.7 105 1994 20.4 1993	AUG 46.4 127 1989 17.9 1987	SEP 51.9 300 1996 16.5 1985
SUMMAR	Y STATIST	ICS	FO	R 1997 CAL	ENDAR YEAR		FOR 1998	WATER YEA	R	WATER YE	ARS 1985	- 1998
ANNUAL HIGHES LOWEST HIGHES	TOTAL MEAN T ANNUAL ANNUAL M T DAILY ME	EAN EAN		50868 139 2030 16	Mar 4 aSep 19		79702 218 4450 16	Jan b0ct		186 262 109 9940 14		1996 1988 19 1996 11 1987
INSTAN INSTAN INSTAN	TANEOUS P TANEOUS P TANEOUS L	EAK STAGE OW FLOW		16			15	Oct Jan 59 Jan dOct	8 8	15 18400 12.41 f11	Jan Jan Jan	12 1985 19 1996 19 1996 8 1986
ANNUAL	RUNOFF (RUNOFF (CENT EXCE	INCHES)		1. 14. 294	04 12		1. 22. 487			1.39 18.83 425		
50 PER	CENT EXCE CENT EXCE	EDS		88 18			79 18			81 20		

Also Sept. 20 and Oct. 6-14, 1997. also Oct. 7-14, 1997. Also Aug. 12, 13, and Sept. 3, 4, 1987. Also Oct. 8, 13, 14, 1997. Result of freezeup. a b c d f

02011500 BACK CREEK NEAR MOUNTAIN GROVE, VA--Continued WATER-QUALITY RECORDS

PERIOD OF DAILY RECORD. --

WATER TEMPERATURE: June 1978 to current year.

INSTRUMENTATION. -- Water-temperature recorder since June 1978.

REMARKS.--Temperatures for Oct. 1-25 effected by lack of streamflow past probe. Some record in prior years fragmentary due to instrument malfunction. Records represent water temperature at sensor within 0.5° C. Temperature at the sensor was compared with the average for the creek by temperature cross section on June 28, 1995. No variation of temperature was found within the cross section.

EXTREMES FOR PERIOD OF DAILY RECORD.-WATER TEMPERATURE: Maximum recorded, 33.5°C, Aug. 14, 1988; minimum recorded, 0.0°C on many days during winter periods.

EXTREMES FOR CURRENT YEAR.-WATER TEMPERATURE: Maximum recorded, 28.2°C, July 30, Aug. 9, 26; minimum, 0.0°C, Jan. 1.

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER	!	N	OVEMBER		DI	ECEMBER			JANUARY	
1	16.9	11.7	14.5	12.4	9.5	10.9	10.2	6.4	8.6	1.8	.0	.8
2	20.1	9.5	13.0	12.4	9.9	11.2	6.4	4.2	5.4	4.2	.7	2.3
3	20.9	9.9	13.3	10.2	8.8	9.6	6.7	4.2	5.4	5.3	2.1	3.5
4	23.3	10.6	15.2	9.9	7.1	8.6	8.1	6.7	7.5	6.0	2.8	4.3
5	25.1	13.5	17.1	8.5	5.7	7.0	7.1	3.9	5.9	6.0	4.2	5.1
6	25.1	14.3	17.3	8.1	5.3	7.0	3.9	2.1	3.0	6.7	5.7	6.1
7	25.1	14.3	17.2	9.2	8.1	8.6	2.8	1.8	2.3	7.8	6.4	6.9
8	24.2	13.1	17.0	9.5	7.8	8.5	4.2	2.5	3.4	8.1	6.4	7.6
9	23.8	15.0	17.9	12.1	9.5	10.7	4.9	3.5	4.2	7.8	6.4	7.4
10	22.5	13.1	17.1	12.1	10.2	11.0	5.7	4.6	5.1	7.8	5.7	6.5
11	22.9	13.1	15.8	11.0	10.2	10.7	6.4	4.9	5.7	7.1	5.3	6.1
12	22.1	12.4	15.6	10.2	8.8	9.4	7.1	6.0	6.5	6.0	5.7	5.8
13	22.9	13.1	16.8	8.8	8.1	8.4	6.7	4.9	5.7	7.1	4.9	6.2
14	16.5	12.4	14.4	9.9	8.1	8.9	6.4	4.6	5.3	6.0	3.9	4.9
15	20.5	11.3	14.7	8.8	7.1	8.1	4.6	2.1	3.6	5.3	4.9	5.1
16	16.5	9.5	12.5	7.1	6.0	6.5	4.9	2.5	3.6	7.1	5.3	5.9
17	12.8	9.9	11.3	7.4	5.3	6.3	4.2	1.8	3.2	6.0	5.7	5.8
18	13.5	10.6	12.1	7.1	4.2	5.8	4.2	1.8	3.2	5.7	4.9	5.3
19	16.1	12.1	13.3	7.4	4.6	6.0	4.6	2.1	3.5	6.4	4.9	5.4
20	14.3	9.9	11.8	8.5	4.9	6.8	4.6	2.1	3.5	5.7	3.9	4.7
21	11.0	8.8	9.7	8.1	6.7	7.3	4.9	2.8	4.1	4.9	2.8	3.9
22	13.9	7.1	9.5	9.9	8.1	9.0	4.9	4.2	4.4	4.9	4.2	4.5
23	12.4	4.2	8.1	9.5	7.8	8.8	5.7	4.2	4.9	5.7	4.2	5.0
24	8.5	5.7	6.8	7.8	4.9	6.2	5.7	4.9	5.1	5.7	4.9	5.4
25	12.1	7.4	9.7	6.7	3.5	5.2	6.4	4.9	5.8	6.4	4.6	5.1
26	10.6	9.9	10.2	7.4	4.9	6.1	7.1	5.3	6.3	5.7	3.9	4.7
27	10.6	8.1	10.0	8.1	6.0	7.2	5.3	3.9	4.5	4.6	2.5	4.0
28	12.1	6.0	8.1	8.8	5.7	7.3	5.3	3.5	4.4	4.9	2.5	3.6
29	12.1	5.3	7.9	9.9	7.8	9.0	3.5	.7	2.2	6.7	3.9	4.9
30	12.8	5.3	8.3	10.6	9.5	10.0	3.9	1.8	2.9	5.3	4.2	4.7
31	12.8	6.0	9.0				2.8	1.1	2.2	6.4	3.9	4.6
MONTH	25.1	4.2	12.7	12.4	3.5	8.2	10.2	.7	4.6	8.1	.0	5.0

243

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

02011500 BACK CREEK NEAR MOUNTAIN GROVE, VA--Continued

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5	5.3 4.9 4.9 4.2 4.9	2.1 2.1 4.2 2.1 3.9	3.7 3.6 4.5 3.2 4.3	7.4 7.1 6.4 6.0 7.8	5.3 4.9 4.2 4.2 3.9	6.1 5.8 5.0 4.9 5.3	13.5 14.3 11.0 9.2 12.1	10.6 7.8 7.1 7.4 6.7	11.9 10.8 9.1 8.4 8.7	13.5 13.5 14.6 15.0 13.9	12.1 11.7 11.3 11.3	12.7 12.5 13.0 12.5 12.0
6 7 8 9 10	4.6 5.7 6.7 6.4 6.4	3.2 3.9 4.2 2.8 3.2	4.0 4.7 5.1 4.4 4.6	7.8 7.8 7.1 7.4 6.0	3.2 5.3 6.4 6.0 4.2	5.5 6.5 6.7 6.7 5.4	12.4 11.7 13.9 12.8 9.9	6.4 6.7 7.4 8.8 8.5	8.7 8.8 10.1 10.4 9.0	14.6 12.4 13.9 13.9	11.0 11.3 11.7 11.3 11.3	12.4 11.9 12.4 12.5 12.9
11 12 13 14 15	5.3 5.7 6.7 6.4 6.7	3.9 4.6 4.2 4.2 3.2	4.5 5.0 5.2 4.8 4.5	4.9 6.4 6.7 7.4 7.8	3.5 2.5 2.1 3.5 2.8	4.2 4.0 4.1 5.0 5.0	12.4 13.5 13.5 12.4 14.6	7.4 6.7 6.7 8.8 8.5	9.2 9.4 9.9 10.4 11.2	13.9 13.1 18.1 20.5 20.9	11.7 12.1 11.7 12.8 13.1	12.8 12.6 14.5 16.2 17.0
16 17 18 19 20	4.6 5.7 5.7 5.7 6.7	3.5 4.6 5.3 5.3	4.2 5.2 5.4 5.4 5.7	4.9 5.3 6.7 7.8 6.7	3.9 3.5 4.2 5.7 5.7	4.3 4.4 5.4 6.3 6.2	13.5 15.8 12.1 9.9 12.1	9.5 10.2 9.2 9.2 8.8	11.4 12.4 10.1 9.6 10.1	20.1 22.5 21.7 22.1 22.9	14.3 15.8 14.3 14.3 16.1	17.3 18.7 17.9 18.2 19.2
21 22 23 24 25	5.7 7.8 5.7 6.0 8.1	4.9 4.9 4.6 4.6 4.2	5.3 5.9 5.0 5.1 5.7	6.4 6.0 7.1 7.4 7.8	5.7 4.9 4.2 4.2 3.9	6.1 5.6 5.3 5.4 5.6	12.4 11.0 11.7 14.3 13.9	8.8 9.2 8.5 9.2 9.2	10.3 10.0 9.9 11.0 11.4	22.1 20.9 18.9 19.7 22.5	16.9 14.3 15.8 15.4 16.9	19.0 17.7 17.2 17.4 19.4
26 27 28 29 30 31	8.5 7.1 8.1 	3.9 4.9 5.3 	5.7 5.8 6.3 	11.3 12.8 13.5 13.1 15.0 15.0	4.2 5.7 7.1 7.1 8.1 8.8	7.4 8.9 9.9 10.0 11.4 12.1	15.0 15.0 16.5 15.0 15.0	9.5 10.2 8.1 9.9 12.1	12.1 12.4 12.2 12.7 13.4	21.3 19.3 22.9 24.2 25.5 25.5	17.3 16.5 15.8 16.5 18.1 18.9	19.3 17.3 18.7 20.1 21.3 22.0
MONTH	8.5	2.1	4.9	15.0	2.1	6.3	16.5	6.4	10.5	25.5	11.0	16.1
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN		MIN AUGUST	MEAN		MIN SEPTEMBE	
DAY 1 2 3 4 5	MAX 25.5 22.5 25.1 21.7 18.9		MEAN 22.1 20.1 20.9 19.7 17.5	MAX 23.8 23.3 24.2 21.3 25.1		MEAN 20.4 20.4 20.7 20.0 21.7			MEAN 22.6 21.7 21.5 21.7 22.5			
1 2 3 4	25.5 22.5 25.1 21.7	JUNE 19.7 16.9 17.7 18.1	22.1 20.1 20.9 19.7	23.8 23.3 24.2 21.3	JULY 18.1 18.1 17.7 18.5	20.4 20.4 20.7 20.0	27.3 26.9 26.9 27.3	19.7 17.7 17.3 17.7	22.6 21.7 21.5 21.7	25.1 26.0 22.9 25.1	18.9 18.9 18.1 18.1	21.7 21.7 20.4 21.3
1 2 3 4 5 6 7 8 9	25.5 22.5 25.1 21.7 18.9 18.5 16.9 20.1 16.9 22.5	JUNE 19.7 16.9 17.7 18.1 16.9 15.8 13.1 11.7 15.0	22.1 20.1 20.9 19.7 17.5 16.8 15.0 15.3 15.8	23.8 23.3 24.2 21.3 25.1 25.5 26.0 27.3 26.0 27.3	JULY 18.1 17.7 18.5 19.3 19.7 20.5 21.7 20.9 21.3	20.4 20.4 20.7 20.0 21.7 22.2 22.9 23.8 23.2	27.3 26.9 26.9 27.3 27.8 27.8 27.8 23.3 28.2 24.6	19.7 17.7 17.3 17.7 18.5 19.3 20.9 20.9	22.6 21.7 21.5 21.7 22.5 23.0 23.0 21.8 23.8 23.1	25.1 26.0 22.9 25.1 26.4 24.2 24.6 22.1 19.3 21.3	18.9 18.9 18.1 18.5 18.5 17.3 18.5	21.7 21.7 20.4 21.3 21.7 20.7 21.3 20.2 16.8 16.9
1 2 3 4 5 6 7 8 9 10 11 12 13 14	25.5 22.5 22.5 121.7 18.9 18.5 16.9 20.1 16.9 22.5 20.5 24.2 22.9 20.5	JUNE 19.7 16.9 17.7 18.1 16.9 15.8 13.1 11.7 15.0 14.6 17.7 18.5 18.9 18.1	22.1 20.1 20.9 19.7 17.5 16.8 15.0 15.3 15.8 17.8	23.8 23.3 24.2 21.3 25.1 25.5 26.0 27.3 26.0 27.3 26.4 25.5 26.0 27.5	JULY 18.1 17.7 18.5 19.3 19.7 20.5 21.7 20.9 21.3 19.7 18.5 20.1 21.3	20.4 20.4 20.7 20.0 21.7 22.2 22.9 23.8 23.2 23.7 22.7 21.7 22.8 23.3	27.3 26.9 26.9 27.3 27.8 27.8 27.8 23.3 28.2 24.6 25.1 25.5 24.6 22.9	19.7 17.7 17.3 17.7 18.5 19.3 19.3 20.9 21.3 20.1 20.5	22.6 21.7 21.5 21.7 22.5 23.0 23.0 21.8 23.8 23.1 22.1 22.7 22.2	25.1 26.0 22.9 25.1 26.4 24.2 24.6 22.1 19.3 21.3 22.1 23.8 23.3	18.9 18.1 18.5 18.5 17.3 18.5 17.7 15.4 13.9 14.3 16.1 16.1	21.7 21.7 20.4 21.3 21.7 20.7 21.3 20.2 16.8 16.9 17.6 19.2 19.4 20.1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	25.5 22.5 22.5 21.7 18.9 18.5 16.9 20.1 16.9 22.5 20.5 24.2 22.9 20.5 19.7	JUNE 19.7 16.9 17.7 18.1 16.9 15.8 13.1 11.7 15.0 14.6 17.7 18.5 18.9 18.1 16.1 16.5 16.5	22.1 20.1 20.9 19.7 17.5 16.8 15.0 15.3 15.8 17.8 19.1 20.5 20.8 19.3 18.2	23.8 23.3 24.2 21.3 25.1 25.5 26.0 27.3 26.0 27.3 26.4 25.5 26.0 25.5 26.0 25.5 26.0	JULY 18.1 18.5 19.3 19.7 20.5 21.7 20.9 21.3 19.7 18.5 20.1 21.3 21.3 20.9 21.7	20.4 20.4 20.7 20.0 21.7 22.2 22.9 23.8 23.2 23.7 22.7 21.7 22.8 23.3 23.5 23.1 22.0 23.8	27.3 26.9 26.9 27.3 27.8 27.8 27.8 23.3 28.2 24.6 25.1 25.5 24.6 22.9 22.9 21.7 22.1 23.8 25.1	19.7 17.7 17.3 17.7 18.5 19.3 19.3 20.9 20.9 21.3 20.1 20.5 20.1 20.5 20.1 18.9 19.3 19.3	22.6 21.7 21.5 21.7 22.5 23.0 23.0 21.8 23.8 23.1 22.7 22.7 21.5 20.9 20.4 21.1 21.8	25.1 26.0 22.9 25.1 26.4 24.2 24.6 22.1 19.3 21.3 22.1 23.8 23.8 24.6 23.8 23.3 25.1 23.8	18.9 18.5 18.5 18.5 17.3 18.5 17.7 15.4 13.9 14.3 16.1 16.1 16.9 17.7	21.7 21.7 20.4 21.3 21.7 20.7 21.3 20.2 16.8 16.9 17.6 19.4 20.1 21.0 21.4 21.3 21.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	25.5 22.5 22.5 25.1 21.7 18.9 18.5 16.9 22.5 20.5 24.2 20.5 19.7 20.9 20.1 21.7 20.9 20.1 21.7 20.9 20.1 21.7 20.9 20.1 21.7	JUNE 19.7 16.9 17.7 18.1 16.9 15.8 13.1 11.7 15.0 14.6 17.7 18.5 18.9 18.1 16.1 16.5 17.7 17.3 17.3 18.5 18.9 19.3	22.1 20.1 20.9 19.7 17.5 16.8 15.0 15.3 15.8 17.8 19.1 20.5 20.8 19.3 18.2 18.1 18.1 18.1 19.0 19.7	23.8 23.3 24.2 21.3 25.1 25.5 26.0 27.3 26.4 25.5 26.0 25.5 26.0 25.5 26.0 27.3 26.0 27.3	JULY 18.1 18.5 19.3 19.7 20.5 21.7 20.9 21.3 19.7 18.5 20.1 21.3 21.3 20.9 21.7 20.9 21.3	20.4 20.4 20.7 20.0 21.7 22.2 22.9 23.8 23.2 23.7 22.7 22.8 23.3 23.5 23.5 23.1 22.0 23.8 23.6	27.3 26.9 26.9 27.3 27.8 27.8 27.8 23.3 28.2 24.6 25.1 25.5 24.6 22.9 22.9 21.7 22.1 23.8 25.1 24.6	AUGUST 19.7 17.7 17.3 17.7 18.5 19.3 19.3 20.9 20.9 21.3 20.1 20.5 20.1 20.5 20.1 18.9 19.3 17.7 18.5 18.9 20.5	22.6 21.7 21.5 21.7 22.5 23.0 23.0 21.8 23.8 23.1 22.1 22.7 21.5 20.9 20.4 21.1 21.8 20.8 21.6 22.3 22.3	25.1 26.0 22.9 25.1 26.4 24.2 24.6 22.1 19.3 21.3 22.1 23.8 24.6 23.8 24.6 23.8 25.5 22.1 23.8	SEPTEMBE 18.9 18.1 18.5 18.5 17.3 18.5 17.7 15.4 13.9 14.3 16.1 16.1 16.9 17.7 18.9 19.3 20.5 19.7 20.1 16.9 13.1	21.7 21.7 20.4 21.3 21.7 20.7 21.3 20.3 21.6.8 16.9 17.6 19.4 20.1 21.0 21.4 21.3 21.6 22.0 21.1 21.2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 20 20 20 20 20 20 20 20 20 20 20 20 20	25.5 22.5 22.5 121.7 18.9 18.5 16.9 20.1 16.9 22.5 20.5 24.2 22.9 20.5 19.7 20.1 21.7 20.9 20.1 21.7 20.9 20.1 21.7 20.9 20.1 21.7 20.9 20.1 21.7 20.9 20.1 20.9 20.1 20.9 20.1 20.9 20.9 20.9 20.9 20.9 20.9 20.9 20.9	JUNE 19.7 16.9 17.7 18.1 16.9 15.8 13.1 11.7 15.0 14.6 17.7 18.5 18.9 18.1 16.1 16.5 17.7 17.3 17.3 17.3 18.5 18.9 19.3 20.1	22.1 20.1 20.9 19.7 17.5 16.8 15.0 15.8 17.8 19.1 20.5 20.8 19.3 18.2 18.1 18.1 18.9 19.7 20.6 21.4 22.3 23.1 23.1 22.2 21.4 20.5	23.8 23.3 24.2 21.3 25.1 25.5 26.0 27.3 26.4 25.5 26.0 25.5 26.0 25.1 24.6 27.8 26.9 27.3 27.8 26.9	JULY 18.1 117.7 18.5 19.3 19.7 20.5 21.7 20.9 21.3 19.7 18.5 20.1 21.3 21.3 21.3 20.9 21.7 21.3 22.1 20.5 21.3 22.1 20.5 20.9 20.9 20.9 20.9 20.9 20.9 20.9 20.9	20.4 20.4 20.7 20.0 21.7 22.2 22.9 23.8 23.2 23.7 22.7 21.7 22.8 23.3 23.5 23.1 22.0 23.8 23.6 23.6 23.7 22.0 23.8 23.6	27.3 26.9 27.3 27.8 27.8 27.8 27.8 23.3 28.2 24.6 25.1 25.5 24.6 22.9 22.9 21.7 22.1 23.8 25.1 24.6 25.1 25.1 24.6 25.1 23.0 27.3 26.0 27.3 26.0 27.3	AUGUST 19.7 17.7 17.3 17.7 18.5 19.3 19.3 20.9 20.9 21.3 20.1 20.5 20.1 18.9 19.3 17.7 18.5 19.3 17.7 18.5 19.3 17.7	22.6 21.7 21.5 21.7 22.5 23.0 23.0 21.8 23.8 23.1 22.1 22.7 21.5 20.9 20.4 21.1 21.8 20.8 21.6 22.3 23.2 22.9 23.7 24.7 23.9 23.7 22.7 23.9	25.1 26.0 22.9 25.1 26.4 24.2 24.6 22.1 19.3 21.3 22.1 23.8 24.6 23.8 23.3 25.5 22.1 22.5 22.9 20.9 19.3 22.1 23.8 24.6	SEPTEMBE 18.9 18.9 18.1 18.5 18.5 17.3 18.5 17.7 15.4 13.9 14.3 16.1 16.1 16.9 17.7 18.9 19.3 19.3 20.5 19.7 19.7 20.1 16.9 11.6 17.3 18.5 18.9 17.3 17.3	21.7 21.7 20.4 21.3 21.7 20.7 21.3 20.2 16.8 16.9 17.6 19.2 19.4 20.1 21.0 21.4 21.3 21.6 22.0 21.1 21.2 19.3 16.6 22.0

02011800 JACKSON RIVER BELOW GATHRIGHT DAM, NEAR HOT SPRINGS, VA--Continued

LOCATION.--Lat 37°56'54", long 79°56'58", Alleghany County, Hydrologic Unit 02080201, on right bank 0.4 mi upstream from Cedar Creek, 0.5 mi downstream from Gathright Dam and Lake Moomaw, and 7.3 mi southwest of Hot Springs.

DRAINAGE AREA. -- 345 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1973 to current year.

REVISED RECORDS. -- WDR VA-81-1: 1980.

GAGE.--Water-stage recorder. Datum of gage is 1,400.00 ft above sea level (U.S. Army Corps of Engineers bench mark). Prior to Dec. 20, 1973, nonrecording gage at same site and datum.

REMARKS.--No estimated daily discharges. Records good. Flow regulated since December 1979 by Lake Moomaw (station 02011795) 0.5 mi upstream; since October 1984 by Back Creek Lake 28.5 mi upstream, amount unknown; and since January 1985 by Little Back Creek Lake 31.6 mi upstream, amount unknown. U.S. Army Corps of Engineers satellite water-quality and gage-height telemeter at station. Maximum discharge, 29,000 ft³/s, result of cofferdam failure during construction of Gathright Dam, from rating curve extended above 9,200 ft³/s on basis of slope-area measurement of peak flow. Minimum discharge, 3.0 ft³/s, July 12, 1979, result of gate closure at Gathright Dam, gage height, 7.78 ft.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 21, 1972, reached a stage of 17.20 ft, from floodmark.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 5,530 $\rm ft^3/s$, Mar. 23 gage height, 13.61 $\rm ft$; minimum observed, 14.2 $\rm ft^3/s$, Apr. 8; minimum daily, 156 $\rm ft^3/s$, Nov. 13 to Jan. 4, Jan. 6, 7, 10-14.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

		DI.	JCHARGE, C	ODIC FE	DI FEI		LY MEAN V		.IODEI	. 1557 10	DEFIE	JER 1990			
DAY	OCT	NC	V DEC	2 6	JAN	FEB	MAR	А	PR	MAY	JUN	JU	L	AUG	SEP
1 2 3 4 5	211 192 192 192 192	16 16 16	14 156 2 156 0 156	5 : 5 :	156 156 156 156 157	1070 1070 811 362 698	867 867 867 867 700	3 3 5	26 26 26 15 01	381 288 290 565 969	250 249 249 270 285	28 28 28 28 28	2 1 2	299 298 296 296 296	272 259 259 259 259
6 7 8 9 10	192 192 192 192 192	15 15 15	9 156 9 156 9 156	5 :	156 156 159 160 156	1070 1560 1870 1380 1070	576 576 576 793 1910	6	44 69 88	1060 1060 1070 1070 1070	253 253 250 254 257	28 28 28 28 28	4 4 4	298 300 300 300 301	258 258 258 259 263
11 12 13 14 15	192 192 192 192 192	15 15 15	8 156 6 156 6 156	5 :	156 156 156 156 157	1070 1070 1070 1080 1080	2490 1920 1060 1060 855	10 10 10 8 10	60 60 33	826 603 497 423 338	256 257 257 256 257	28 28 28 29 29	4 4 1	302 299 300 299 300	263 262 261 260 260
16 17 18 19 20	192 192 192 192 192	15 15 15	6 156 6 156 6 156	5 1	157 466 836 924 743	770 165 1820 4310 4740	615 491 420 683 561	5	49 70 74	292 292 269 253 253	258 260 260 260 260	29 29 29 29 29	6 6 6	300 299 299 299 299	260 260 260 259 260
21 22 23 24 25	192 192 192 192 192	15 15 15	6 156 6 156 6 156	5 :	505 323 610 923 923	4260 2540 1070 1070 1070	164 2370 5050 5440 4170	35 20 10 10	20 60 60	253 253 253 254 254	260 260 260 260 260	29 29 30 29 30	7 0 9	299 297 296 296 296	260 260 259 259 259
26 27 28 29 30 31	192 192 192 192 192 192	15 15 15 15	6 156 6 156 6 156	5 10 5 10 5 10	020 070 070 070 070 070	1070 960 867 	1940 1070 1070 1070 603 326	5 5 5 5	14 12 12 12 12	253 255 254 253 253 253	260 260 261 261 272	29 29 29 29 29 29	9 9 9 9	296 296 296 296 296 296	258 256 256 256 256
TOTAL MEAN MAX MIN (†) MEAN‡ CFSM‡ IN.‡	5971 193 211 192 -3731 72.3 .21	15 17 15 +267 24	8 156 4 156 6 156 2 +136 7 200 2 .58	5 10 5 11 1 +208 0 11 3 3	129 488 070 156 822 160 .36	41043 1466 4740 165 -1160 1424 4.13 4.30	42027 1356 5440 164 -151 1351 3.92 4.52	35 3 -1	58 50 26 01 55 77	14657 473 1070 253 +504 489 1.42 1.63	7765 259 285 249 +101 262 .76 .85	902 29 30 28 -509 12 .3	1 0 1 2 7	9240 298 302 296 -6201 98.0 .28	7788 260 272 256 -5949 61.3 .18
	1997		148497 190977	MEAN MEAN	407 523	MAX MAX	3330 5440	MIN MIN	156 156	MEAN‡	354 532	CFSM‡ CFSM‡	1.03	IN.‡	13.93 20.94

[†] Total change in contents, equivalent in cubic feet per second, per month, in Lake Moomaw; provided by U.S. Army Corps of Engineers.

[‡] Adjusted for monthly change in contents.

02011800 JACKSON RIVER BELOW GATHRIGHT DAM, NEAR HOT SPRINGS, VA--Continued

02011000 UACKSC	N KIARK DED	OW GAIII	LIGIT	DAM, IN	EAK HOI	DEIXIN	IGD, VA	COIICI	iiueu
STATISTICS OF MONTHLY MEAN						-	-		
OCT NOV MEAN 350 255 MAX 1043 388 (WY) 1977 1978 MIN 67.6 84.3 (WY) 1979 1979	DEC JAN 643 858 1584 1306 1974 1979 287 145 1976 1977	FEB 605 1096 1979 241 1978	MAR 1050 1656 1978 408 1976	APR 561 1134 1977 313 1976	MAY 579 925 1975 191 1977	JUN 374 650 1974 115 1977	JUL 153 180 1979 91.5 1977	AUG 130 172 1978 92.5 1977	SEP 222 754 1979 76.3 1978
CIIMMADA CTATICTICC	MATED VE	ADC 1074	1070						
ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK FLOW INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS	482 585 357 12600 63 65 a29000 a18.77 b3.0 1.40 18.97 962 245	Apr 5 Oct 1 Oct 7 Dec 26 Dec 26 Jul 12	1979 1976 1977 1978 1978 1973 1973 1973						
STATISTICS OF MONTHLY MEAN	DATA FOR WATER	YEARS 1980	- 1998,	BY WATER	YEAR (WY)	[REGULA	ATED, UNADJ	USTED]	
OCT NOV MEAN 236 308 MAX 829 1235 (WY) 1980 1986 MIN 70.8 64.1 (WY) 1981 1982	DEC JAN 278 491 1061 1555 1997 1996 60.8 74.5 1982 1981	FEB 675 1466 1998 114 1981	MAR 934 1881 1993 74.4 1981	APR 750 2052 1987 172 1981	MAY 612 1477 1989 230 1991	JUN 434 1017 1982 202 1980	JUL 271 398 1995 123 1980	AUG 277 644 1984 71.4 1981	SEP 258 661 1996 57.5 1981
SUMMARY STATISTICS	FOR 1997 CALE	NDAR YEAR	F	OR 1998 W	ATER YEAR		WATER YEA	RS 1980	- 1998
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS		1		FF20	Mar 23 1 Mar 23 Apr 8		459 592 196 8670 47 53 10400 15.29 5.2 1.33 18.08 940 266 151	Sep Aug 2 Nov Nov	1996 1981 7 1985 2 1981 9 1981 7 1985 7 1985 6 1980

a Result of cofferdam failure during construction of Gathright Dam. b Result of gate closure at Gathright Dam. c Also Nov. 14 to Dec. 31, 1997. d Also Nov. 14, 1997 to Jan. 4, 1998, and Jan. 6, 7, 10-14, 1998. f Observed, result of regulation.

02011800 JACKSON RIVER BELOW GATHRIGHT DAM, NEAR HOT SPRINGS, VA--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1979 to current year.

PERIOD OF DAILY RECORD. -

SPECIFIC CONDUCTANCE: October 1978 to current year. pH: October 1978 to current year. WATER TEMPERATURE: October 1978 to current year.

DISSOLVED OXYGEN: October 1978 to current year.

INSTRUMENTATION .-- Water-quality monitor since October 1978.

REMARKS.--Interruption in record due to instrument malfunction. Some record in prior years fragmentary due to instrument malfunction. The intake tower at Gathright Dam permits selective withdrawal of water from one or more reservoir depths. Records represent specific conductance within 5 microsiemens, pH within 0.5 units, water temperature within 0.5°C, and dissolved oxygen within 0.5 mg/L at the intake to the monitor. All four parameters were compared at the intake with the average for the river by a cross section on June 27, 1995. A maximum variation

of 3 microsiemens was found for specific conductance, a maximum of 0.1 units for pH, a maximum variation of 0.2°C for water temperature, and 0.4 mg/L for dissolved oxygen was found within the cross section.

EXTREMES FOR PERIOD OF RECORD. -

SPECIFIC CONDUCTANCE (water years 1979, 1981-98): Maximum recorded, 249 microsiemens, Nov. 5, 1985; minimum recorded, 78 microsiemens, May 14, 1979.

pH (water years 1979, 1981-98): Maximum recorded, 9.3 units, Jan. 19, 20, 1996; minimum recorded, 6.3 units, May 18, 1996.

WATER TEMPERATURE (water years 1979, 1981-98): Maximum recorded, 28.0°C, Aug. 1, 2, 1979; minimum recorded, 0.0°C, Feb. 16-19, 1979.

DISSOLVED OXYGEN (water years 1979, 1981, 1984-98): Maximum recorded, 19.5 mg/L, Jan. 16, 1979; minimum recorded, 5.7 mg/L, Aug. 1, 3, 1987.

EXTREMES FOR CURRENT YEAR . --

XTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum recorded, 157 microsiemens, Nov. 6-9, 13, 14; minimum recorded, 106 microsiemens, several days in April and May.
pH: Maximum recorded, 8.9 units, Dec. 5; minimum recorded, 6.9 units, Oct. 16, 18, and 19.
WATER TEMPERATURE: Maximum recorded, 15.7°C, June 1; minimum recorded, 4.7°C, Feb. 7.
DISSOLVED OXYGEN: Maximum recorded, 14.7 mg/L, Feb. 20, 21; minimum recorded, 7.8 mg/L, June 13, 14, 15, and 18.

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG.C), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DAY	MAX	MIN	MEAN									
		OCTOBER	-	NO	OVEMBER		DE	ECEMBER			JANUARY	
1	142	140	141	149	142	146	151	150	151	145	145	145
2	142	142	142	154	147	150	151	150	151	145	145	145
3	143	142	142	155	152	153	151	150	151	145	145	145
4	142	141	142	155	154	154	151	150	150	145	145	145
5	142	141	141	155	155	155	151	140	146			
6	141	140	141	157	155	156	141	140	140			
7	141	140	140	157	155	156	140	139	140			
8	140	139	140	157	154	155	140	139	139			
9	140	138	139	157	153	154	140	139	139	155	154	154
10	139	138	138	154	153	153	139	138	139	154	153	154
11	139	138	138	155	154	154	139	138	139	154	153	154
12	139	137	138	156	154	155	138	138	138	154	152	153
13	138	137	137	157	156	156	139	138	138	154	145	152
14	141	136	137	157	156	156	139	138	139	145	139	140
15	139	135	137	156	155	156	139	138	139	141	137	139
16	136	135	135	156	154	155	139	138	139	143	137	141
17	135	133	135	155	153	154	139	139	139	140	132	135
18	135	133	134	154	150	152	140	139	139	134	129	131
19	135	133	135	151	149	150	140	139	139	136	133	135
20	135	134	135	150	148	149	139	139	139	133	129	130
21	135	133	134	150	149	149	139	138	139	132	130	131
22	135	133	134	150	149	150	146	139	145	136	131	133
23	135	132	134	151	149	150	146	145	146	134	131	133
24	135	133	134	151	150	150	146	145	145	133	131	132
25	135	135	135	151	150	151	145	145	145	131	129	130
26	136	134	135	151	150	151	145	145	145	131	129	130
27	136	134	135	151	150	151	145	145	145			
28	136	134	135	152	150	151	145	145	145			
29	138	134	136	152	151	151	145	145	145			
30	140	136	138	151	150	151	145	145	145			
31	145	140	142				145	145	145			
MONTH	145	132	137	157	142	152	151	138	143			

249

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG.C), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
	:	FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5				119 119 118 118	118 116 116 116	119 118 117 117	113 113 113 111 108	111 110 110 108 107	112 111 111 109 108	110 110 110 110 108	107 109 109 107 106	108 109 109 109 107
6 7 8 9 10	134 131 129 127	130 129 125 125	131 130 127 126	117 118 116 117 117	116 116 116 114 114	116 117 116 115 115	109 145 142 110 110	108 109 108 108 107	109 114 112 109 108	107 108 109 109	106 106 107 107	107 107 108 108 108
11 12 13 14 15	126 127 124 125 124	124 123 123 124 124	125 124 123 124 124	114 114 114 114 115	113 113 114 114 114	113 113 114 114 114	108 108 108 148 109	108 108 108 106 106	108 108 108 111 107	108 109 110 111	107 107 108 109	108 108 109 110
16 17 18 19 20	131 134 134 126 125	124 128 126 124 122	126 131 130 125 124	115 116 117 117 121	115 115 116 114 114	115 116 116 116 118	107 109 109 109 110	106 107 108 108 108	106 108 108 109	112 112 113 112 113	111 110 110 110 111	111 111 112 111 112
21 22 23 24 25	123 125 124 124	121 122 123 121	122 123 124 122	122 120 112 111 111	120 112 109 110 110	121 115 110 111 110	109 106 108 108	108 105 106 106	108 106 107 107	113 113 113 113	111 111 111 112	112 112 112 113
26 27 28 29 30 31	119 119 119 	119 119 119 	119 119 119 	112 112 112 111 113 113	110 111 111 110 110	111 111 111 111 111 112	108 108 107 108 108	106 107 106 106 107	107 107 107 107 107	113 114 116 115 116	112 113 113 115 115	113 113 114 115 115
MONTH												
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN		MIN AUGUST	MEAN		MIN SEPTEMBE	
DAY 1 2 3 4 5	MAX 116 116 116 116 116		MEAN 115 116 116 115 115	MAX 118 118 118 118 118		MEAN 117 117 118 118 118			MEAN 117 117 117 117 117			
1 2 3 4	116 116 116 116	JUNE 115 115 115 115	115 116 116 115	118 118 118 118	JULY 117 117 117 118	117 117 118 118	118 117 117 118	116 116 117 117	117 117 117 117	124 124 124 124 124	122 123 123 123 123	123 123 123 124
1 2 3 4 5 6 7 8 9	116 116 116 116 116 116 116 118	JUNE 115 115 115 115 115 115 115 117	115 116 116 115 115 116 116 116 117	118 118 118 118 118 118 119 119	JULY 117 117 117 118 118 118 118 118 118	117 117 118 118 118 118 118 118 119	118 117 117 118 118 118 118 118	AUGUST 116 117 117 117 117 117 117 118	117 117 117 117 117 117 117 118 118 118	124 124 124 124 125 125 125 125 125	122 123 123 123 123 123 123 124 124 124	123 123 123 124 124 124 124 124 124 124
1 2 3 4 5 6 7 8 9 10 11 12 13 14	116 116 116 116 116 116 118 117 117 117 118 118	JUNE 115 115 115 115 115 117 117 117 117	115 116 116 115 115 115 116 116 117 117 117 117	118 118 118 118 118 119 119 119 119 119	JULY 117 117 117 118 118 118 118 118 118 11	117 117 118 118 118 118 118 118 119 118 119 119	118 117 117 118 118 118 118 119 120	AUGUST 116 116 117 117 117 117 117 118 118 118 120 120 120 120	117 117 117 117 117 117 118 118 118 119 120 120 120	124 124 124 125 125 125 125 125 125 125 125 125 125	122 123 123 123 123 123 124 124 124 124 124 124 124	123 123 123 124 124 124 124 124 124 124 125 125
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	116 116 116 116 116 116 118 117 117 118 118 118 120 119 119	JUNE 115 115 115 115 115 117 117 117 117 11	115 116 116 115 115 115 116 116 117 117 117 117 118 118 118 118 118	118 118 118 118 118 119 119 119 119 119	JULY 117 117 117 118 118 118 118 118 118 11	117 117 118 118 118 118 118 118 119 119 119 119	118 117 117 118 118 118 118 118 119 120 121 121 121 121 121 121 121 121 121	AUGUST 116 116 117 117 117 117 117 118 118 118 120 120 120 120 120 121 121 121	117 117 117 117 117 117 118 118 118 119 120 120 120 120 120 121 121 121	124 124 124 125 125 125 125 125 125 125 125 125 126 126 126 126	122 123 123 123 123 123 124 124 124 124 124 125 125 125 125	123 123 123 124 124 124 124 124 124 125 125 125 125 125
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	116 116 116 116 116 116 118 117 117 118 118 118 120 119 119 119 119 119 119	JUNE 115 115 115 115 115 117 117 117 117 11	115 116 116 115 115 115 116 116 117 117 117 117 118 118 118 118 119 119 119 119	118 118 118 118 118 119 119 119 119 119	JULY 117 117 117 118 118 118 118 118 118 11	117 117 118 118 118 118 118 118 119 119 119 119	118 117 117 118 118 118 118 119 120 121 121 121 121 121 121 121 121 121	AUGUST 116 116 117 117 117 117 117 117 118 118 118 120 120 120 120 120 121 121 121 121 121	117 117 117 117 117 117 118 118 118 119 120 120 120 120 121 121 121 121 121 121	124 124 124 125 125 125 125 125 125 125 126 126 126 126 126 127 127 127 127 128	122 123 123 123 123 123 124 124 124 124 125 125 125 125 125 125 125 125 125 125	123 123 123 124 124 124 124 124 124 125 125 125 125 125 126 126 126 127 127

JAMES RIVER BASIN

PH STANDARD UNITS, WATER YEAR OCTOBER 1996 TO SEPTEMBER 1997

DAY	MAX	MIN OCTOBER	MEAN	MAX	MIN	MEAN	MAX	MIN ECEMBER	MEAN	MAX	MIN JANUARY	MEAN
1 2 3 4 5	7.3 7.3 7.7 7.3 7.4	7.2 7.2 7.2 7.2 7.2 7.2	7.2 7.3 7.3 7.3 7.3	7.4 7.4 7.6 7.6 7.7	7.3 7.3 7.4 7.6 7.6	7.3 7.4 7.5 7.6 7.6	8.1 8.2 8.3 8.3 8.9	8.1 8.1 8.1 8.2 8.3	8.1 8.1 8.2 8.3 8.4	8.2 8.2 8.2 8.2	8.2 8.2 8.2 8.2	8.2 8.2 8.2 8.2
6 7 8 9 10	7.4 7.4 7.4 7.5 7.5	7.3 7.4 7.4 7.4 7.5	7.4 7.4 7.4 7.5 7.5	7.7 7.7 7.8 7.9 7.9	7.6 7.7 7.7 7.7 7.9	7.7 7.7 7.7 7.8 7.9	8.3 8.3 8.3 8.3	8.3 8.3 8.3 8.3	8.3 8.3 8.3 8.3	 7.9 7.8	 7.8 7.8	 7.8 7.8
11 12 13 14 15	7.5 7.6 7.6 7.7 7.1	7.4 7.5 7.6 7.1 7.0	7.5 7.5 7.6 7.5 7.0	7.9 8.1 7.8 7.8 7.8	7.9 7.8 7.7 7.7 7.8	7.9 7.9 7.7 7.7 7.8	8.3 8.3 8.3 8.3	8.3 8.2 8.3 8.3	8.3 8.3 8.3 8.3	7.9 7.9 7.9 7.9 7.9	7.8 7.8 7.8 7.8 7.8	7.9 7.9 7.9 7.8 7.8
16 17 18 19 20	7.0 7.0 7.0 7.1 7.1	6.9 7.0 6.9 6.9	7.0 7.0 7.0 7.0 7.1	7.8 7.8 7.8 8.0 8.0	7.7 7.8 7.7 7.8 7.9	7.8 7.8 7.8 7.9 8.0	8.3 8.3 8.3 8.3	8.3 8.3 8.3 8.3	8.3 8.3 8.3 8.3	7.9 7.8 7.8 7.8 7.8	7.8 7.8 7.8 7.8 7.8	7.8 7.8 7.8 7.8 7.8
21 22 23 24 25	7.1 7.1 7.2 7.2 7.2	7.1 7.1 7.1 7.2 7.2	7.1 7.1 7.2 7.2 7.2	8.0 8.0 8.0 8.1 8.1	7.9 8.0 8.0 8.0	8.0 8.0 8.0 8.1 8.1	8.2 8.2 8.2 8.2 8.2	8.2 8.2 8.1 8.2 8.2	8.2 8.2 8.2 8.2 8.2	7.8 7.8 7.8 7.8 7.8	7.8 7.8 7.8 7.8 7.8	7.8 7.8 7.8 7.8 7.8
26 27 28 29 30 31	7.3 7.3 7.4 7.4 7.5 7.7	7.2 7.3 7.3 7.3 7.4 7.4	7.3 7.3 7.4 7.5 7.5	8.1 8.2 8.2 8.2	8.1 8.0 8.1 8.1	8.1 8.1 8.2 8.1	8.2 8.2 8.2 8.2 8.2 8.2	8.2 8.2 8.2 8.2 8.2 8.2	8.2 8.2 8.2 8.2 8.2 8.2	7.8 	7.8 	7.8
MONTH	7.7	6.9	7.3	8.2	7.3	7.8	8.9	8.1	8.3			
DAY	MAX	MIN FEBRUARY	MEAN	MAX	MIN MARCH	MEAN	MAX	MIN APRIL	MEAN	MAX	MIN MAY	MEAN
DAY 1 2 3 4 5				7.8 7.8 7.8 7.8		MEAN 7.7 7.7 7.7 7.7	7.8 7.8 7.8 7.7		MEAN 7.7 7.7 7.7 7.7 7.7	7.8 7.8 7.8 7.7 7.7		7.6 7.7 7.6 7.6 7.6
1 2 3 4	 	FEBRUARY 	 	7.8 7.8 7.8 7.8	MARCH 7.7 7.7 7.7 7.7	7.7 7.7 7.7 7.7	7.8 7.8 7.8 7.7	7.7 7.7 7.7 7.7 7.7	7.7 7.7 7.7 7.7	7.8 7.8 7.8 7.7	MAY 7.6 7.6 7.6 7.6	7.6 7.7 7.6 7.6
1 2 3 4 5 6 7 8	 7.7 7.7	FEBRUARY 7.7 7.7 7.7	 7.7 7.7 7.7	7.8 7.8 7.8 7.8 7.8 7.8 7.7 7.8	7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7	7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7	7.8 7.8 7.8 7.7 7.8 7.8 7.8	7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.6 7.6 7.6	7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7	7.8 7.8 7.8 7.7 7.7 7.6 7.7	MAY 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6	7.6 7.7 7.6 7.6 7.6 7.6 7.6 7.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14	7.7 7.7 7.7 7.7	FEBRUARY 7.7 7.7 7.7 7.7 7.7 7.7	 7.7 7.7 7.7 7.7 7.7	7.8 7.8 7.8 7.8 7.8 7.8 7.7 7.8 7.8 7.8	MARCH 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.	7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7	7.8 7.8 7.7 7.8 7.8 7.8 7.8 7.8 7.7 7.7	7.7 7.7 7.7 7.7 7.7 7.7 7.6 7.6 7.7 7.7	7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7	7.8 7.8 7.7 7.7 7.7 7.6 7.7 7.6 7.7 7.7 7.8	MAY 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.	7.6 7.7 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7	FEBRUARY 7.7 7.7 7.7 7.7 7.7 7.7 7.	 7.7 7.7 7.7 7.7 7.7 7.7 7.7	7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8	MARCH 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.	7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7	7.8 7.8 7.7 7.8 7.8 7.8 7.8 7.7 7.7 7.7	APRIL 7.7 7.7 7.7 7.7 7.7 7.6 7.6 7.6 7.7 7.7	7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7	7.8 7.8 7.7 7.7 7.7 7.6 7.7 7.6 7.7 7.8 7.7 7.8 7.8 7.8 7.8	MAY 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.	7.6 7.7 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.7 7.7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7	FEBRUARY 7.7 7.7 7.7 7.7 7.7 7.7 7.	 7.7 7.7 7.7 7.7 7.7 7.7 7.7	7.8 7.8 7.8 7.8 7.8 7.8 7.7 7.8 7.8 7.8	MARCH 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.	7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7	7.8 7.8 7.7 7.8 7.7 7.8 8.0 7.8 7.7 7.7 7.7 7.7 7.7 7.8 7.8 7.7 7.7	APRIL 7.7 7.7 7.7 7.7 7.7 7.6 7.6 7.6 7.7 7.7	7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7	7.8 7.8 7.7 7.7 7.7 7.6 7.7 7.6 7.7 7.8 7.7 7.8 7.8 7.8 7.8 7.8 7.9 7.9	MAY 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.	7.6 7.7 7.6 7.6 7.6 7.6 7.6 7.6 7.7 7.7

251

PH STANDARD UNITS, WATER YEAR OCTOBER 1996 TO SEPTEMBER 1997

02011800 JACKSON RIVER BELOW GATHRIGHT DAM, NEAR HOT SPRINGS, VA--Continued

DAY	MAX	MIN	MEAN									
		JUNE			JULY		P	AUGUST		S	SEPTEMBE	R
1	7.8	7.6	7.7	7.7	7.6	7.6	7.4	7.3	7.4	7.4	7.3	7.4
2	7.8 7.8	7.6 7.6	7.7 7.7	7.7 7.7	7.6 7.6	7.6 7.6	7.4 7.4	7.3 7.4	7.4 7.4	7.4 7.4	7.3 7.3	7.4 7.4
4	7.8	7.6	7.7	7.7	7.6	7.6	7.4	7.4	7.4	7.4	7.3	7.4
5	7.8	7.6	7.7	7.7	7.5	7.6	7.4	7.3	7.4	7.4	7.3	7.4
3	, . ,	7.0	, , ,	7.0	7.5	7.0	7.4	7.3	7.4	7.4	7.5	7.4
6	7.8	7.6	7.7	7.6	7.5	7.6	7.4	7.3	7.4	7.4	7.3	7.4
7	7.8	7.6	7.7	7.6	7.5	7.6	7.4	7.3	7.4	7.4	7.3	7.4
8	7.8	7.6	7.7	7.6	7.5	7.6	7.4	7.3	7.3	7.4	7.3	7.4
9	7.8	7.6	7.7	7.6	7.5	7.5	7.4	7.3	7.3	7.4	7.3	7.4
10	7.8	7.6	7.7	7.6	7.5	7.5	7.3	7.3	7.3	7.4	7.3	7.3
11	7.8	7.6	7.7	7.6	7.5	7.5	7.3	7.3	7.3	7.4	7.3	7.3
12	7.8	7.6	7.7	7.6	7.5	7.5	7.3	7.3	7.3	7.3	7.3	7.3
13	7.8	7.6	7.7	7.6	7.5	7.5	7.3	7.3	7.3	7.3	7.3	7.3
14	7.8	7.7	7.7	7.6	7.5	7.5	7.3	7.2	7.3	7.3	7.3	7.3
15	7.8	7.6	7.7	7.6	7.4	7.5	7.3	7.2	7.3	7.3	7.3	7.3
16	7.8	7.6	7.7	7.6	7.5	7.5	7.3	7.2	7.2	7.3	7.3	7.3
17	7.8	7.6	7.7	7.6	7.4	7.5	7.3	7.2	7.3	7.3	7.3	7.3
18	7.8	7.6	7.7	7.5	7.4	7.5	7.3	7.2	7.3	7.3	7.3	7.3
19	7.7	7.6	7.6	7.5	7.4	7.5	7.3	7.2	7.3	7.3	7.3	7.3
20	7.7	7.6	7.7	7.5	7.4	7.5	7.3	7.3	7.3	7.3	7.3	7.3
21	7.7	7.6	7.6	7.5	7.4	7.5	7.3	7.2	7.3	7.3	7.2	7.3
22	7.7	7.6	7.6	7.5	7.4	7.5	7.3	7.2	7.3	7.3	7.2	7.3
23	7.7	7.6	7.6	7.5	7.3	7.4	7.3	7.2	7.3	7.3	7.3	7.3
24	7.7	7.6	7.7	7.4	7.3	7.3	7.3	7.2	7.3	7.3	7.3	7.3
25	7.7	7.6	7.7	7.4	7.3	7.4	7.3	7.2	7.2	7.3	7.2	7.3
26	7.7	7.6	7.6	7.4	7.3	7.4	7.3	7.2	7.2	7.3	7.2	7.2
27	7.7	7.6	7.7	7.4	7.3	7.4	7.3	7.2	7.2	7.3	7.2	7.2
28	7.7	7.6	7.6	7.4	7.3	7.4	7.3	7.2	7.2	7.3	7.2	7.2
29	7.7	7.6	7.7	7.4	7.3	7.4	7.3	7.2	7.2	7.3	7.2	7.3
30	7.7	7.6	7.6	7.4	7.3	7.4	7.3	7.2	7.2	7.3	7.2	7.2
31				7.4	7.3	7.4	7.4	7.2	7.3			
MONTH	7.8	7.6	7.7	7.7	7.3	7.5	7.4	7.2	7.3	7.4	7.2	7.3

JAMES RIVER BASIN

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 1996 TO SEPTEMBER 1997

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		N	OVEMBER		D	ECEMBER			JANUARY	
1 2 3 4 5	14.7 14.7 14.7 14.7 14.8	14.4 14.3 14.3 14.3 14.4	14.6 14.5 14.5 14.5 14.6	14.1 13.9 13.8 13.5 13.4	13.8 13.6 13.5 13.2 13.1	13.9 13.8 13.6 13.4 13.2	9.1 9.0 9.0 9.0 8.8	8.9 8.8 8.8 8.8	8.9 8.9 8.9 8.6	 	 	
6 7 8 9 10	14.9 14.9 14.8 14.8	14.5 14.5 14.5 14.5 14.6	14.7 14.7 14.7 14.6 14.7	13.4 13.3 13.2 13.0 12.6	13.0 13.1 12.9 12.6 12.2	13.2 13.2 13.1 12.9 12.4	8.6 8.4 8.4 8.3 8.3	8.3 8.3 8.2 8.1 8.1	8.4 8.4 8.3 8.2 8.2	 6.0 5.9	 5.8 5.5	 5.9 5.7
11 12 13 14 15	14.9 14.9 14.9 15.0 14.8	14.6	14.7 14.7 14.7 14.7 14.6	12.2 12.0 11.7 11.6 11.4	12.0 11.7 11.5 11.4 11.1	12.1 11.8 11.6 11.5 11.3	8.2 8.1 7.9 7.9 7.7	8.0 7.9 7.7 7.6 7.5	8.1 8.0 7.8 7.7 7.6	5.7 6.0 6.1 6.3	5.4 5.5 5.8 6.1 6.1	5.5 5.7 5.9 6.1 6.2
16 17 18 19 20	14.7 14.7 14.7 14.7	14.3 14.4 14.4 14.4 14.3	14.5 14.5 14.5 14.5 14.5	11.4 11.2 11.1 10.7 10.5	11.0 11.0 10.7 10.5 10.3	11.2 11.1 10.9 10.6 10.4	7.5 7.4 7.3 7.2 7.3	7.3 7.2 7.1 7.0 7.0	7.4 7.3 7.2 7.1 7.2	6.3 6.3 6.0 5.7 5.8	6.1 5.8 5.7 5.6 5.6	6.2 6.0 5.9 5.7 5.7
21 22 23 24 25	14.6 14.4 14.3 14.3	14.3 14.1 14.0 14.1 14.2	14.4 14.3 14.2 14.2	10.3 10.2 10.0 9.6 9.2	10.1 9.9 9.6 9.2 9.1	10.2 10.1 9.8 9.3 9.1	7.1 	6.9	 7.0 	5.7 5.9 5.9 5.6 5.5	5.6 5.6 5.5 5.5	5.7 5.7 5.7 5.5 5.4
26 27 28 29 30 31	14.3 14.2 14.0 14.0 14.0	14.2 13.9 13.8 13.8 13.7 13.7	14.2 14.1 13.9 13.9 13.9	9.2 9.1 9.2 9.3 9.2	8.9 8.8 9.0 9.1	9.1 9.0 9.0 9.1 9.1	 	 		5.4 	5.3 	5.4
MONTH	15.0	13.7	14.4	14.1	8.8	11.3						
DAY	MAX	MIN										
		MITIM	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY		MAX	MIN	MEAN	MAX	MIN APRIL	MEAN	MAX	MIN	MEAN
1 2 3 4 5				6.3 6.7 6.6 6.5		5.9 6.2 6.3 6.3	8.9 10.0 8.6 9.6 9.9		7.7 8.2 8.0 8.6 9.4	12.1 12.1 12.2 12.1 11.9		11.7 11.8 11.7 11.8
2 3 4	 	FEBRUARY 	 	6.3 6.7 6.6 6.5	MARCH 5.8 5.8 6.0 6.0	5.9 6.2 6.3 6.3	8.9 10.0 8.6 9.6	APRIL 6.9 6.9 7.2 8.1	7.7 8.2 8.0 8.6	12.1 12.1 12.2 12.1	MAY 11.2 11.6 11.3 11.3	11.7 11.8 11.7 11.8
2 3 4 5 6 7 8 9	 4.9 4.9 5.0	FEBRUARY 4.7 4.8 4.8	 4.8 4.8 4.9	6.3 6.7 6.6 6.5 6.5 6.2 6.2	5.8 5.8 6.0 6.0 6.2 6.0 6.1 6.1	5.9 6.2 6.3 6.3 6.3 6.1 6.1 6.1	8.9 10.0 8.6 9.6 9.9 9.3 11.5 11.2 10.3	APRIL 6.9 6.9 7.2 8.1 9.1 8.4 7.9 8.2 8.1	7.7 8.2 8.0 8.6 9.4 8.8 8.7 9.0	12.1 12.1 12.2 12.1 11.9 12.1 12.5 12.5	MAY 11.2 11.6 11.3 11.5 11.7 11.7 11.8 12.1	11.7 11.8 11.7 11.8 11.8 11.9 12.0 12.1 12.2
2 3 4 5 6 7 8 9 10 11 12 13 14	 4.9 4.9 5.0 5.1	FEBRUARY 4.7 4.8 4.8 4.9 4.9	 4.8 4.8 4.9 5.0 5.0 5.0	6.3 6.7 6.6 6.5 6.5 6.2 6.2 6.8 6.8 6.8	5.8 5.8 6.0 6.0 6.0 6.1 6.1 5.7 5.8	5.9 6.2 6.3 6.3 6.3 6.1 6.4 6.3 6.9 5.9	8.9 10.0 8.6 9.6 9.9 9.3 11.5 11.2 10.3 9.3 9.5 9.4	APRIL 6.9 6.9 7.2 8.1 9.1 8.4 7.9 8.2 8.1 7.9 9.0 8.9 8.8 8.8	7.7 8.2 8.0 8.6 9.4 8.8 8.7 9.1 8.7	12.1 12.2 12.1 11.9 12.1 12.5 12.5 12.5 12.5	MAY 11.2 11.6 11.3 11.5 11.7 11.7 11.8 12.1 12.1	11.7 11.8 11.7 11.8 11.8 11.9 12.0 12.1 12.2 12.3
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	 4.9 4.9 5.0 5.1 5.0 5.1 5.0 5.1 5.0	FEBRUARY 4.7 4.8 4.8 4.9 4.9 4.9 4.9 4.9 4.9 4.9	 4.8 4.9 5.0 5.0 5.0 5.0 5.1 5.4 5.1	6.3 6.7 6.6 6.5 6.5 6.2 6.8 6.8 6.1 6.0 5.9 6.0 6.1 6.1 6.1 6.1	MARCH 5.8 5.8 6.0 6.0 6.1 6.1 5.7 5.9 5.8 5.8 5.9 6.0 5.9	5.9 6.2 6.3 6.3 6.1 6.1 6.4 6.3 6.0 5.9 6.0 6.0 6.0 6.1	8.9 10.0 8.6 9.6 9.9 9.3 11.5 11.2 10.3 9.3 9.5 9.4 11.8 10.0	APRIL 6.9 6.9 7.2 8.1 9.1 8.4 7.9 8.2 8.1 7.9 9.0 8.9 8.8 8.4 8.9 9.1 9.1 10.1	7.7 8.2 8.0 8.6 9.4 8.8 8.7 9.1 8.7 9.1 9.3 9.1 9.3 9.4 9.5 10.0 10.0	12.1 12.2 12.1 11.9 12.1 12.5 12.5 12.5 12.5 12.5 12.5 13.1 13.1 13.1 13.5 13.5	MAY 11.2 11.6 11.3 11.3 11.5 11.7 11.7 11.8 12.1 12.1 12.1 12.3 12.3 12.4 12.5	11.7 11.8 11.7 11.8 11.8 11.9 12.0 12.1 12.2 12.3 12.5 12.8 12.7 13.0 13.0 13.3 13.2 13.4
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	 4.9 4.9 5.0 5.1 5.0 5.1 5.0 5.1 5.0 5.1 5.6 5.6 5.1 5.2 5.3	FEBRUARY 4.7 4.8 4.9 4.9 4.9 4.9 4.9 5.3 4.8 4.9 5.1 5.0 5.1	 4.8 4.9 5.0 5.0 5.0 5.0 5.1 5.1 5.1 5.1 5.2	6.3 6.7 6.6 6.5 6.5 6.2 6.8 6.8 6.1 6.0 5.9 6.1 6.1 6.1 6.1 6.2 6.6	MARCH 5.8 5.8 6.0 6.0 6.1 5.7 5.9 5.8 5.9 6.0 6.3 5.8 6.1 6.1	5.9 6.2 6.3 6.3 6.1 6.1 6.4 6.3 6.0 5.9 6.0 6.0 6.1 6.3 6.3 6.3 6.3 6.1 6.2 6.3	8.9 10.0 8.6 9.6 9.9 9.3 11.5 11.2 10.3 9.3 9.5 9.4 11.8 10.0 9.9 11.3 10.4 10.4	APRIL 6.9 6.9 7.2 8.1 9.1 8.4 7.9 8.2 8.1 7.9 9.0 8.9 8.8 8.4 8.9 9.1 7.5 7.6 10.4 10.4	7.7 8.2 8.0 8.6 9.4 8.8 8.7 9.1 8.7 9.3 9.1 9.3 9.4 9.5 10.0 10.2 8.8 7.8 	12.1 12.2 12.1 11.9 12.1 12.5 12.5 12.5 12.5 13.1 13.1 13.1 13.5 13.5 14.1 14.7	MAY 11.2 11.6 11.3 11.3 11.5 11.7 11.7 11.8 12.1 12.1 12.3 12.4 12.5 12.7 12.8 12.8 12.8 12.8 12.9	11.7 11.8 11.7 11.8 11.8 11.9 12.0 12.1 12.2 12.3 12.5 12.8 12.7 13.0 13.0 13.3 13.2 13.4 13.6

253

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 1996 TO SEPTEMBER 1997

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMBE	R
1	15.7	13.5	14.6	15.2	14.2	14.7	15.2	14.7	14.9	15.5	14.5	15.0
2	14.7	13.9	14.2	14.9	14.3	14.6	15.1	14.6	14.8	14.9	14.5	14.7
3	15.4	13.6	14.5	15.1	14.3	14.6	15.2	14.6	14.9	14.8	14.5	14.6
4	14.6	14.0	14.2	15.1	14.5	14.6	15.2	14.6	14.9	14.9	14.4	14.6
5	14.4	14.0	14.2	15.1	14.6	14.8	15.1	14.3	14.6	14.9	14.4	14.6
6	14.6	14.0	14.3	15.1	14.5	14.8	14.8	14.4	14.5	14.8	14.4	14.5
7	14.4	13.8	14.1	15.2	14.5	14.7	15.0	14.5	14.6	14.8	14.4	14.6
8	14.5	13.5	14.0	15.0	14.6	14.8	14.8	14.5	14.6	14.7	14.4	14.5
9	14.2	13.6	13.9	15.2	14.6	14.8	15.1	14.6	14.8	14.5	14.2	14.3
10	14.4	13.6	14.0	15.0	14.4	14.6	14.9	14.7	14.8	14.5	14.1	14.2
11	14.3	13.9	14.1	14.9	14.3	14.6	15.1	14.7	14.9	14.5	14.1	14.2
12	14.6	13.9	14.2	14.8	14.3	14.5	15.2	14.8	14.9	14.4	14.1	14.2
13	15.0	13.9	14.5	14.9	14.3	14.5	15.2	14.9	15.0	14.5	14.1	14.2
14	15.0	14.2	14.6	14.9	14.3	14.5	15.1	14.6	14.8	14.5	14.1	14.2
15	15.0	14.2	14.5	14.9	14.5	14.7	14.8	14.6	14.7	14.6	14.2	14.3
16	15.1	13.8	14.4	15.1	14.6	14.7	14.7	14.6	14.7	14.6	14.3	14.4
17	15.1	14.1	14.6	15.0	14.6	14.7	14.9	14.6	14.7	14.6	14.3	14.4
18	15.3	14.3	14.7	14.9	14.4	14.6	15.1	14.7	14.8	14.8	14.4	14.6
19	14.7	13.6	14.2	15.0	14.5	14.7	15.2	14.8	14.9	14.8	14.5	14.6
20	14.5	13.4	13.9	14.9	14.6	14.7	15.2	14.7	14.9	14.9	14.5	14.6
21	14.3	13.6	13.9	15.2	14.6	14.8	15.1	14.6	14.8	14.9	14.6	14.7
22	14.3	13.6	13.9	15.1	14.6	14.8	15.0	14.6	14.7	14.9	14.6	14.7
23	14.6	13.8	14.1	14.8	14.4	14.6	15.1	14.7	14.9	14.9	14.5	14.7
24	14.5	13.8	14.1	14.9	14.5	14.7	15.2	14.8	15.0	14.7	14.4	14.5
25	14.7	13.8	14.2	15.0	14.6	14.7	15.3	14.7	14.9	14.8	14.5	14.6
26	15.0	14.2	14.5	15.0	14.6	14.7	15.2	14.7	14.9	14.8	14.6	14.7
27	15.1	14.1	14.6	14.9	14.5	14.6	15.2	14.8	15.0	15.0	14.6	14.8
28	15.0	14.2	14.6	15.0	14.5	14.7	15.4	14.9	15.1	15.0	14.6	14.8
29	15.0	14.3	14.6	15.0	14.6	14.8	15.5	15.0	15.3	14.9	14.6	14.8
30	15.3	14.3	14.7	15.2	14.7	14.9	15.4	15.0	15.2	14.9	14.6	14.7
31				15.1	14.8	14.9	15.4	15.0	15.2			
MONTH	15.7	13.4	14.3	15.2	14.2	14.7	15.5	14.3	14.9	15.5	14.1	14.5

JAMES RIVER BASIN

OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 1996 TO SEPTEMBER 1997

DAY	MAX	MIN OCTOBER	MEAN	XAM	MIN IOVEMBER	MEAN	MAX	MIN ECEMBER	MEAN	MAX	MIN JANUARY	MEAN
1 2 3 4 5	8.6 8.8 8.9 8.8	8.4 8.5 8.5 8.4 8.4	8.5 8.6 8.7 8.6 8.5	9.0 8.9 9.1 9.3 9.3	8.9 8.8 8.9 9.1 9.1	9.0 8.9 9.0 9.2 9.2	10.2 10.4 10.4 10.2 10.6	9.8 10.1 10.0 9.9 10.0	10.0 10.2 10.2 10.0 10.2	 	 	
6 7 8 9 10	8.7 8.7 8.8 8.9 8.8	8.4 8.4 8.5 8.5 8.6	8.5 8.6 8.6 8.7	9.3 9.3 9.1 9.2 9.5	9.1 9.0 8.9 8.9 9.1	9.2 9.1 9.0 9.1 9.3	10.6 10.9 10.9 10.9	10.3 10.4 10.6 10.6	10.4 10.6 10.7 10.7	 11.5 11.5	 11.1 11.2	 11.2 11.3
11 12 13 14 15	8.9 8.9 8.9 9.0 8.9	8.6 8.6 8.7 8.7 8.8	8.7 8.8 8.8 8.8	9.5 9.7 9.7 9.6 9.7	9.2 9.3 9.4 9.3 9.4	9.3 9.5 9.5 9.4 9.5	11.1 11.2 11.1 11.2 11.4	10.6 10.8 10.8 10.9 11.1	10.8 10.9 11.0 11.0	11.6 11.5 11.2 11.1 10.9	11.2 11.1 10.9 10.8 10.6	11.4 11.2 11.1 10.9 10.8
16 17 18 19 20	8.9 9.0 8.9 8.8 8.8	8.7 8.7 8.7 8.6 8.6	8.8 8.8 8.7 8.7	9.9 9.9 9.8 9.9 10.0	9.5 9.6 9.6 9.6 9.7	9.6 9.7 9.7 9.7 9.8	11.5 11.5 11.6 11.8 11.8	11.2 11.2 11.3 11.4 11.4	11.3 11.3 11.4 11.6 11.5	10.9 11.4 11.7 11.7	10.6 10.6 11.3 11.5 11.4	10.7 11.0 11.6 11.7 11.6
21 22 23 24 25	8.9 8.9 8.9 8.8 8.9	8.7 8.7 8.7 8.7 8.6	8.8 8.8 8.7 8.7	10.1 10.3 10.5 10.5	9.8 9.8 9.9 10.1 10.2	9.9 9.9 10.1 10.3 10.3	 	 	 	11.7 11.5 11.6 11.7 11.9	11.4 10.8 10.7 11.5 11.6	11.5 11.3 11.2 11.5 11.7
26 27 28 29 30 31	8.8 8.9 9.0 9.1	8.6 8.7 8.8 8.9 9.0	8.7 8.7 8.8 8.9 9.0	10.5 10.5 10.6 10.5 10.2	10.1 10.2 10.2 10.0 9.8	10.3 10.3 10.3 10.2 10.0	 		 	12.2	11.6 	11.8
MONTH	9.1	8.4	8.7	10.6	8.8	9.6						
DAY	MAX	MIN FEBRUARY	MEAN	MAX	MIN MARCH	MEAN	MAX	MIN APRIL	MEAN	MAX	MIN MAY	MEAN
DAY 1 2 3 4 5				MAX 12.1 11.9 12.1 11.9		MEAN 11.8 11.6 11.5	MAX 11.6 11.8 11.6 11.4		MEAN 11.3 11.3 11.3 11.1 11.2	MAX 10.1 10.1 9.9 10.1 10.3		9.8 9.5 9.6 9.7
1 2 3 4		FEBRUARY	 	12.1 11.9 12.1 11.9	MARCH 11.5 11.1 11.1 11.3	11.8 11.6 11.5 11.6	11.6 11.8 11.6 11.4	11.0 10.6 11.1 10.9	11.3 11.3 11.3 11.1	10.1 10.1 9.9 10.1	MAY 9.3 9.1 9.2 9.4	9.8 9.5 9.6 9.7
1 2 3 4 5 6 7 8 9 10 11 12 13 14	12.9 12.9 13.0 12.5 12.5 12.7	FEBRUARY 12.4 12.8 12.4	 12.7 12.9 12.6 12.5	12.1 11.9 12.1 11.9 11.4 11.7 11.7 12.0	MARCH 11.5 11.1 11.3 11.1 11.0 11.0 11.0 11.1	11.8 11.6 11.5 11.6 11.2 11.4 11.3 11.3	11.6 11.8 11.6 11.4 11.4 11.7 11.9 11.7 11.2 12.1	APRIL 11.0 10.6 11.1 10.9 10.9 11.3 10.7 10.6 10.7 11.1	11.3 11.3 11.1 11.2 11.5 11.5 11.2 10.9 11.4	10.1 10.1 9.9 10.1 10.3 10.0 10.0	MAY 9.3 9.1 9.2 9.4 9.8 9.9 9.6 9.5	9.8 9.5 9.6 9.7 10.0 10.0 9.8 9.7 9.8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	 12.9 13.0 12.6 12.5 12.7	FEBRUARY 12.4 12.8 12.4 12.2 12.4 12.5 12.6 11.5 11.4 11.5	12.7 12.7 12.6 12.5 12.4 12.5 12.6 12.7	12.1 11.9 12.1 11.9 11.4 11.7 12.0 12.8	MARCH 11.5 11.1 11.1 11.3 11.1 11.0 11.0 11.0 11.1 12.4 11.7 11.6 11.4 11.4 11.2 11.1	11.8 11.6 11.5 11.6 11.2 11.4 11.3 11.3 12.1	11.6 11.8 11.6 11.4 11.4 11.7 11.9 11.7 11.2 12.1 11.3 11.4 11.3 11.1 11.6	APRIL 11.0 10.6 11.1 10.9 10.7 11.3 10.7 11.1 10.8 10.9 10.1 10.7	11.3 11.3 11.1 11.2 11.5 11.5 11.2 10.9 11.4	10.1 10.1 9.9 10.1 10.3 10.0 10.5 10.1 10.0	MAY 9.3 9.1 9.2 9.4 9.8 9.9 9.6 9.5 9.6 9.5 9.4 9.4 9.3	9.8 9.5 9.6 9.7 10.0 10.0 9.8 9.7 9.8 9.8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	 12.9 13.0 12.6 12.5 12.7 12.8 12.7 11.8 14.3 14.3 14.7	FEBRUARY 12.4 12.8 12.4 12.4 12.2 12.4 12.5 12.6 11.5 14.1 14.4 13.8 12.6 12.4	12.7 12.7 12.6 12.5 12.4 12.5 12.6 12.7 12.6 12.7	12.1 11.9 12.1 11.9 11.4 11.7 12.0 12.8 13.1 13.1 12.5 12.4	MARCH 11.5 11.1 11.1 11.3 11.1 11.0 11.0 11.0 11.1 12.4 11.7 11.7 11.6 11.4 11.4 11.2 11.1 11.0 10.4	11.8 11.6 11.5 11.6 11.2 11.3 11.3 12.1 12.7 12.3 11.9 11.8 11.8 11.7 11.5 11.5	11.6 11.8 11.6 11.4 11.7 11.9 11.7 11.2 12.1 11.3 11.4 11.3 11.1 11.6 11.0 10.8 10.6 10.3 12.9	APRIL 11.0 10.6 11.1 10.9 10.9 11.3 10.7 10.6 10.7 11.1 10.8 10.9 10.9 10.1 10.7 10.1 10.7 10.7 9.9 10.1 10.1 10.1	11.3 11.3 11.1 11.2 11.5 11.5 11.5 11.2 10.9 11.4 11.1 11.0 10.8 10.9 10.8 10.5 10.4 10.2 11.4	10.1 10.1 9.9 10.1 10.3 10.0 10.5 10.1 10.0 9.8 9.7 10.1 9.7 9.7 9.6 10.5 10.6	MAY 9.3 9.1 9.2 9.4 9.8 9.9 9.6 9.5 9.6 9.5 9.4 9.3 9.3 9.1 9.7 9.3 9.3 9.3	9.8 9.5 9.6 9.7 10.0 10.0 9.8 9.7 9.8 9.8 9.5 9.6 9.5 9.6 9.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	 12.9 13.0 12.6 12.5 12.7 12.7 12.8 12.7 11.8 14.6 14.7	FEBRUARY 12.4 12.8 12.4 12.4 12.2 12.4 12.5 12.6 11.5 11.4 11.5 14.1 14.4 13.8 12.6 12.4 12.3	12.7 12.7 12.6 12.5 12.4 12.4 12.5 12.6 12.7 12.8 14.4 14.5 14.4 14.5	12.1 11.9 12.1 11.9 11.4 11.7 12.0 12.8 13.1 12.5 12.4 12.4 12.5 12.1 11.9 12.1 12.1 12.1 12.1 12.1 12.1	MARCH 11.5 11.1 11.1 11.3 11.1 11.0 11.0 11.1 12.4 11.7 11.7 11.6 11.4 11.2 11.1 11.0 10.4 11.2 11.1 11.0 10.4 11.2 11.1 11.0 10.4	11.8 11.6 11.5 11.6 11.2 11.4 11.3 12.1 12.7 12.3 11.9 11.8 11.8 11.7 11.5 11.3 11.4 11.0	11.6 11.8 11.6 11.4 11.7 11.9 11.7 11.2 12.1 11.3 11.4 11.3 11.1 11.6 10.8 10.6 10.3 12.9	APRIL 11.0 10.6 11.1 10.9 10.9 11.3 10.7 10.6 10.7 11.1 10.8 10.9 10.9 10.1 10.7 10.1 10.7 10.7 9.9 10.1 10.1 10.1	11.3 11.3 11.1 11.2 11.5 11.5 11.5 11.2 10.9 11.4 11.1 11.0 10.8 10.9 10.8 10.5 10.4 10.2 11.4	10.1 10.1 10.3 10.0 10.0 10.5 10.1 10.0 9.8 9.7 10.1 9.7 9.7 9.6 10.5 10.6 10.1	MAY 9.3 9.1 9.2 9.4 9.8 9.9 9.6 9.5 9.6 9.5 9.4 9.3 9.3 9.1 9.7 9.3 9.3 9.3	9.8 9.5 9.7 10.0 10.0 9.8 9.7 9.8 9.8 9.5 9.6 9.5 9.4 9.4 9.9 9.9 9.9

JAMES RIVER BASIN

OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 1996 TO SEPTEMBER 1997

02011800 JACKSON RIVER BELOW GATHRIGHT DAM, NEAR HOT SPRINGS, VA--Continued

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY		P	AUGUST		5	SEPTEMBE	R
1	9.1	8.4	8.7	9.5	9.2	9.3	9.2	8.8	9.0	9.5	9.1	9.3
2	9.0	8.5	8.7	9.5	9.2	9.3	9.3	8.9	9.1	9.4	9.1	9.2
3	9.1	8.3	8.6	9.4	8.9	9.2	9.1	8.9	9.0	9.9	9.2	9.4
4	8.8	8.3	8.6	9.2	8.8	9.0	9.3	8.9	9.0	9.8	9.2	9.4
5	8.7	8.4	8.5	9.4	8.9	9.1	9.3	8.9	9.1	10.3	9.3	9.6
6	8.8	8.3	8.5	9.5	8.9	9.1	9.2	9.0	9.1	10.1	9.3	9.6
7	8.9	8.4	8.6	9.1	8.9	9.0	9.4	9.0	9.2	9.7	9.1	9.4
8	8.9	8.4	8.7	9.0	8.7	8.9	9.3	9.0	9.1	9.6	9.2	9.4
9	8.8	8.4	8.6	9.1	8.7	8.9	9.1	8.9	9.0	9.6	9.3	9.4
10	8.8	8.4	8.6	9.0	8.8	8.9	9.1	8.9	9.0	9.7	9.3	9.5
11	8.7	8.2	8.5	9.1	8.8	8.9	9.5	9.0	9.2	9.9	9.4	9.5
12	8.4	8.1	8.2	9.6	8.7	8.9	9.5	9.1	9.3	9.7	9.4	9.5
13	8.3	7.8	8.1	9.0	8.7	8.8	9.5	9.1	9.2	10.1	9.7	9.8
14	8.1	7.8	8.0	9.0	8.7	8.8	9.5	9.2	9.3	10.1	9.6	9.8
15	8.2	7.8	8.0	8.9	8.6	8.8	9.6	9.2	9.4	9.9	9.6	9.7
16	8.2	7.9	8.1	8.9	8.6	8.7	9.6	9.3	9.4	9.9	9.5	9.7
17	8.2	7.9	8.0	9.0	8.5	8.7	9.6	9.5	9.5	9.8	9.4	9.6
18	8.3	7.8	8.1	9.1	8.6	8.8	9.8	9.5	9.6	9.6	9.1	9.4
19	8.7	7.9	8.3	9.0	8.6	8.7	9.8	9.5	9.6	9.5	9.1	9.3
20	8.7	8.1	8.5	8.9	8.6	8.7	9.9	9.6	9.7	9.4	9.0	9.2
21	8.7	8.1	8.5	9.0	8.6	8.8	9.9	9.6	9.8	9.4	9.0	9.1
22	8.9	8.4	8.6	9.0	8.6	8.8	9.8	9.6	9.7	9.7	9.0	9.1
23	8.9	8.4	8.6	8.9	8.7	8.8	9.9	9.5	9.7	9.8	9.1	9.3
24	8.9	8.5	8.6	9.0	8.7	8.8	9.9	9.5	9.7	9.9	9.2	9.4
25	8.8	8.3	8.5	9.0	8.7	8.9	9.9	9.5	9.7	9.5	9.2	9.3
26	8.6	8.3	8.4	9.0	8.7	8.9	9.6	9.4	9.5	9.7	9.2	9.3
27	8.8	8.3	8.6	9.1	8.6	8.9	9.7	9.4	9.6	9.5	9.1	9.2
28	8.9	8.4	8.7	9.0	8.6	8.8	9.7	9.4	9.5	10.1	9.1	9.3
29	9.6	8.6	9.0	9.0	8.6	8.9	9.5	9.2	9.4	9.5	9.3	9.4
30	9.5	9.1	9.3	9.0	8.7	8.9	9.6	9.2	9.4	9.6	9.2	9.4
31				9.1	8.7	8.9	9.5	9.1	9.4			
MONTH	9.6	7.8	8.5	9.6	8.5	8.9	9.9	8.8	9.4	10.3	9.0	9.4

02012800 JACKSON RIVER AT FILTRATION PLANT, AT COVINGTON, VA

LOCATION.--Lat 37°48'39", long 79°59'19", Covington City, Hydrologic Unit 02080201, on left bank 50 ft upstream from Dry Run and 1.7 mi upstream from Dunlap Creek and bridge on U.S. Highway 60.

DRAINAGE AREA. -- 439 mi².

PERIOD OF DAILY RECORD.-WATER TEMPERATURE: June 1978 to current year.

INSTRUMENTATION.--Water-temperature recorder since June 1978.

REMARKS.--Some record in prior years fragmentary due to instrument malfunction. Records represent water temperature at sensor within 0.5°C. U.S. Army Corps of Engineers satellite water-temperature telemeter at station. Temperature at the sensor was compared with the average for the river by temperature cross section on Oct. 1, 1991. A maximum variation of 0.5°C was found within the cross section.

EXTREMES FOR PERIOD OF DAILY RECORD.-WATER TEMPERATURE: Maximum recorded, 30.5°C, July 21, 1980; minimum recorded, 0.0°C on many days during winter periods.

EXTREMES FOR CURRENT YEAR. --

WATER TEMPERATURE: Maximum recorded, 22.1°C, June 26; minimum, 1.9°C, Jan. 1.

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DAY	MAX	MIN	MEAN									
		OCTOBER	2	N	OVEMBER		DI	ECEMBER			JANUARY	
1	16.2	14.8	15.7	14.1	12.6	13.3	10.3	8.1	9.5	2.9	1.9	2.4
2	15.9	13.6	14.6	13.9	12.8	13.3	8.1	6.6	7.2	4.1	2.4	3.2
3	16.2	13.5	14.7	12.8	11.2	11.8	7.6	6.3	6.9	5.1	3.7	4.3
4	17.4	14.4	15.7	11.2	9.6	10.6	9.2	7.6	8.5	5.5	4.2	4.8
5	18.5	15.8	16.9	10.4	9.0	9.5	8.7	6.6	7.9	6.1	4.8	5.4
6	19.0	16.6	17.5	10.1	8.6	9.4	6.6	4.6	5.4	8.0	6.1	7.0
7	18.3	16.2	17.1	11.1	9.9	10.6	4.9	4.3	4.6	9.4	8.0	8.6
8	18.4	16.2	17.1	10.8	10.3	10.6	6.1	4.8	5.5	10.5	9.4	10.1
9	18.5	16.7	17.3	11.2	10.4	10.7	6.5	6.0	6.3	10.3	8.3	9.4
10	18.2	16.6	17.3	11.0	9.8	10.5	7.2	6.4	6.8	8.3	6.6	7.3
11	17.6	15.5	16.4	10.5	9.8	10.2	7.4	6.8	7.1	7.0	5.9	6.5
12	17.6	15.4	16.4	9.9	9.2	9.5	7.0	6.3	6.7	6.6	6.5	6.6
13	18.0	15.9	16.8	9.2	8.1	8.7	6.3	5.3	5.8	7.7	6.6	6.9
14	17.0	15.6	16.5	9.0	8.0	8.5	5.4	4.4	5.0	6.6	5.1	5.7
15	16.5	14.6	15.4	8.8	7.8	8.6	4.7	3.6	4.2	5.6	5.2	5.4
16	15.0	13.2	14.1	7.8	6.8	7.2	5.0	3.7	4.4	7.2	5.6	6.4
17	13.7	12.8	13.2	7.6	6.1	6.8	5.3	4.0	4.7	7.1	6.3	6.8
18	14.2	13.2	13.6	7.2	5.6	6.5	5.5	4.2	4.9	6.4	5.6	6.0
19	15.6	13.9	14.6	7.3	5.4	6.4	5.8	4.5	5.1	6.4	5.4	5.9
20	14.7	12.9	13.8	7.8	6.0	6.9	5.9	4.5	5.3	6.0	5.1	5.7
21	13.3	12.1	12.6	7.7	7.2	7.5	6.3	5.5	5.9	5.8	4.3	5.1
22	12.6	11.0	11.8	9.7	7.7	8.7	6.1	5.8	6.0	5.8	5.3	5.6
23	11.7	9.6	10.8	10.3	9.1	9.7	6.7	5.7	6.2	6.2	5.5	5.8
24	11.0	10.5	10.8	9.1	6.2	7.6	6.7	6.5	6.6	6.2	5.6	6.0
25	14.0	10.8	12.3	6.2	4.7	5.6	7.1	6.4	6.8	6.2	5.1	5.6
26	14.0	12.8	13.5	6.6	5.5	6.0	7.8	6.6	7.1	6.1	4.7	5.4
27	12.8	11.3	12.5	8.0	6.3	7.1	6.6	4.8	5.5	5.4	4.1	5.0
28	11.8	10.1	10.9	7.7	6.6	7.2	5.4	4.5	4.9	5.5	4.0	4.7
29	12.0	9.8	10.9	9.5	7.4	8.6	4.7	2.8	3.9	6.4	4.8	5.5
30	12.4	10.2	11.3	10.4	9.5	10.1	4.1	3.0	3.4	6.0	5.4	5.6
31	12.8	10.9	11.9				4.1	2.8	3.6	6.4	5.1	5.6
MONTH	19.0	9.6	14.3	14.1	4.7	8.9	10.3	2.8	5.9	10.5	1.9	5.9

JAMES RIVER BASIN

02012800 JACKSON RIVER AT FILTRATION PLANT, AT COVINGTON, VA

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5	6.0 5.8 5.7 5.6 6.5	4.2 4.3 5.2 4.8 4.9	5.1 5.1 5.4 5.0 5.8	8.6 7.8 7.1 7.2 8.2	6.6 6.2 6.1 6.0 5.8	7.5 7.0 6.5 6.5 7.0	13.3 13.1 12.0 10.8 12.1	11.3 9.7 9.9 8.9 8.5	12.3 11.6 10.6 9.8 10.0	13.5 13.9 14.5 14.1 13.7	12.0 12.9 12.6 12.6 11.9	12.8 13.4 13.6 13.5 12.9
6 7 8 9 10	5.9 6.1 6.4 6.5 6.8	4.8 5.0 5.1 4.6 4.8	5.2 5.5 5.6 5.4 5.7	8.4 8.1 7.7 8.7 7.6	5.4 6.8 7.2 7.6 5.6	7.1 7.5 7.5 8.2 6.7	12.0 12.4 14.2 13.7 11.2	8.6 8.1 8.3 10.7 9.5	10.1 10.0 10.7 11.8 10.1	15.3 13.5 14.2 14.7 15.3	11.9 12.2 12.4 12.6 12.5	13.4 12.7 13.1 13.6 13.7
11 12 13 14 15	6.0 6.8 6.6 6.5	4.9 5.7 5.5 5.0 4.5	5.4 5.9 6.0 5.7 5.5	6.3 7.0 7.2 7.8 8.0	5.4 5.1 4.3 5.3 5.1	5.8 5.8 5.7 6.4 6.5	12.5 12.6 12.5 12.7 13.1	8.5 8.6 8.5 9.5 9.6	10.2 10.4 10.4 10.8 11.2	14.1 13.8 16.7 17.6 18.4	12.9 13.1 13.0 13.6 14.5	13.5 13.4 14.6 15.7 16.6
16 17 18 19 20	5.6 7.5 7.8 5.9 6.1	4.9 5.5 5.8 5.7 5.6	5.3 6.6 7.0 5.8 5.8	6.9 6.7 7.3 9.8 8.5	5.5 5.6 6.1 6.7 6.8	6.0 6.2 6.7 8.0 7.5	12.0 13.3 12.8 10.8 12.5	9.9 10.2 10.5 10.5 8.6	11.0 11.7 11.3 10.7	18.2 19.7 19.3 19.6 20.1	15.9 16.4 15.9 16.2 17.4	17.3 18.1 17.8 18.0 18.7
21 22 23 24 25	5.9 6.7 6.3 6.6 7.8	5.6 5.5 5.7 5.6 5.7	5.7 6.0 5.9 6.0 6.6	8.7 8.1 7.2 7.3 7.2	8.0 6.3 6.1 6.1	8.3 7.1 6.5 6.6 6.6	10.0 10.0 12.0 13.9 13.7	8.1 8.5 10.0 10.4 10.8	8.9 9.1 11.0 11.9 12.4	20.1 19.5 18.8 18.9 19.5	17.6 16.4 16.3 16.3 17.1	18.8 18.1 17.4 17.6 18.5
26 27 28 29 30 31	7.9 7.4 8.6 	5.3 6.0 6.5 	6.5 6.7 7.4 	9.1 10.9 11.2 10.3 12.4 13.8	6.1 7.2 7.8 7.6 7.8 10.5	7.4 8.9 9.4 9.0 9.9	14.1 13.9 14.5 14.2 13.7	10.9 11.6 10.6 11.3 12.0	12.5 12.5 12.6 12.9 13.0	19.1 18.3 19.0 19.6 19.9 20.4	17.7 15.4 15.1 16.3 16.9 17.8	18.4 16.6 16.8 18.0 18.6 19.2
MONTH	8.6	4.2	5.8	13.8	4.3	7.4	14.5	8.1	11.1	20.4	11.9	15.9
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMBE	lR.
DAY 1 2 3 4 5	MAX 21.0 19.5 20.5 19.5 17.8		MEAN 19.7 18.7 19.0 18.4 16.6	MAX 21.3 19.8 20.7 20.0 21.5		MEAN 19.5 19.1 19.2 18.7 19.3			MEAN 19.1 19.1 19.3 19.6			
1 2 3 4	21.0 19.5 20.5 19.5	JUNE 18.6 17.3 17.4 17.7	19.7 18.7 19.0 18.4	21.3 19.8 20.7 20.0	JULY 18.1 18.4 17.7 18.1	19.5 19.1 19.2 18.7	20.6 20.5 20.5 20.7	17.8 17.7 17.5 17.7	19.1 19.1 19.1 19.3	19.5 20.7 19.3 19.7	18.0 18.4 17.8 17.3	18.9 19.4 18.4 18.4
1 2 3 4 5 6 7 8 9	21.0 19.5 20.5 19.5 17.8 16.9 16.0 17.2 16.9	JUNE 18.6 17.3 17.4 17.7 16.1 15.6 14.5 13.8 15.3	19.7 18.7 19.0 18.4 16.6 16.1 15.3 15.6 16.2	21.3 19.8 20.7 20.0 21.5 21.0 21.0 20.8 21.2	JULY 18.1 18.4 17.7 18.1 17.7 19.6 19.3 19.1	19.5 19.1 19.2 18.7 19.3 20.4 20.3 19.8 20.1	20.6 20.5 20.5 20.7 20.8 20.8 20.8 20.0	AUGUST 17.8 17.7 17.5 17.7 18.1 18.4 18.3 17.8 17.3	19.1 19.1 19.3 19.6 19.7 19.6 18.7 18.5	19.5 20.7 19.3 19.7 20.6 19.9 19.9 19.4 16.9	18.0 18.4 17.8 17.3 18.1 17.5 18.0 16.9 15.4	18.9 19.4 18.4 18.4 19.2 18.8 19.0 18.6 16.2
1 2 3 4 5 6 7 8 9 10 11 12 13 14	21.0 19.5 20.5 19.5 17.8 16.9 16.0 17.2 16.9 19.2	JUNE 18.6 17.3 17.4 17.7 16.1 15.6 14.5 13.8 15.3 14.9 17.8 17.0 17.8	19.7 18.7 19.0 18.4 16.6 16.1 15.3 15.6 16.2 16.8 18.2 18.8 18.3	21.3 19.8 20.7 20.0 21.5 21.0 21.0 20.8 21.2 21.2 20.9 20.4 20.6 20.5	JULY 18.1 18.4 17.7 18.1 17.7 19.6 19.3 19.1 19.2 18.8 18.1 18.9 19.1	19.5 19.1 19.2 18.7 19.3 20.4 20.3 19.8 20.1 20.3	20.6 20.5 20.5 20.7 20.8 20.8 20.0 20.0 20.0 20.2 20.2 20.3 19.7 18.9	AUGUST 17.8 17.7 17.5 17.7 18.1 18.4 18.3 17.8 17.3 18.3 17.7 18.7 18.7 18.7	19.1 19.1 19.3 19.6 19.7 19.6 18.7 18.5 19.2	19.5 20.7 19.3 19.7 20.6 19.9 19.9 19.4 16.9 17.7	18.0 18.4 17.8 17.3 18.1 17.5 18.0 16.9 15.4 14.7 15.7 16.6 16.7 17.2	18.9 19.4 18.4 18.4 19.2 18.8 19.0 18.6 16.2 16.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	21.0 19.5 20.5 19.5 17.8 16.9 16.0 17.2 16.9 19.2 18.7 19.4 19.9 19.0 19.9 21.0 21.0 20.1	JUNE 18.6 17.3 17.4 17.7 16.1 15.6 14.5 13.8 15.3 14.9 17.8 17.0 17.8 17.5 17.8	19.7 18.7 19.0 18.4 16.6 16.1 15.3 16.2 16.8 18.2 18.8 18.3 18.8 19.7 19.0 19.2	21.3 19.8 20.7 20.0 21.5 21.0 21.0 21.2 21.2 20.9 20.4 20.5 19.9	JULY 18.1 18.4 17.7 18.1 17.7 19.6 19.3 19.1 19.2 18.8 18.1 18.9 19.1 18.6	19.5 19.1 19.2 18.7 19.3 20.4 20.3 19.8 20.1 20.3 19.9 19.4 19.9 19.3 19.4 20.0 19.3	20.6 20.5 20.5 20.7 20.8 20.8 20.0 20.0 20.2 20.2 20.3 19.7 18.9 18.1 17.7 19.2 19.4 20.8	AUGUST 17.8 17.7 17.5 17.7 18.1 18.4 18.3 17.8 17.3 18.7 18.7 18.7 18.7 17.3 17.2 17.0 17.9 18.3	19.1 19.1 19.3 19.6 19.7 19.6 18.7 18.5 19.2 18.9 19.6 17.1 18.4 17.6	19.5 20.7 19.3 19.7 20.6 19.9 19.9 19.4 16.9 17.7 18.1 19.2 19.3 19.8	18.0 18.4 17.8 17.3 18.1 17.5 18.0 16.9 15.4 14.7 15.7 16.6 16.7 17.2 17.5	18.9 19.4 18.4 18.4 19.2 18.8 19.0 18.6 16.2 16.0 16.9 17.7 17.8 18.2 18.6 18.5 18.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	21.0 19.5 20.5 19.5 17.8 16.9 16.0 17.2 16.9 19.2 18.7 19.9 21.0 19.9 21.0 20.0 20.1 21.0	JUNE 18.6 17.3 17.4 17.7 16.1 15.6 14.5 13.8 15.3 14.9 17.8 17.8 17.5 17.8 18.4 18.3 17.7 18.5 17.7	19.7 18.7 19.0 18.4 16.6 16.1 15.3 16.2 16.8 18.2 18.8 18.3 18.8 19.7 19.0 19.2 19.4 19.2	21.3 19.8 20.7 20.0 21.5 21.0 21.0 21.2 21.2 20.9 20.4 20.5 19.9 20.5 20.8 20.1 20.5 20.8 20.5 20.8 20.5 20.8 20.5 20.6 20.5 20.8 20.5 20.6 20.5 20.6 20.6 20.6 20.6 20.6 20.6 20.6 20.6	JULY 18.1 18.4 17.7 18.1 17.7 19.6 19.3 19.1 19.2 18.8 18.1 18.9 19.1 18.6 18.3 19.0 18.2 19.0 18.2 19.2	19.5 19.1 19.2 18.7 19.3 20.4 20.3 19.8 20.1 20.3 19.9 19.4 20.0 19.3 19.9 19.3 19.6	20.6 20.5 20.5 20.7 20.8 20.8 20.0 20.0 20.2 20.2 20.2 20.3 19.7 18.9 18.1 17.7 19.2 19.4 20.8 20.0 20.0	AUGUST 17.8 17.7 18.1 18.4 18.3 17.8 17.3 18.3 17.7 18.7 18.7 18.7 18.7 17.0 17.9 18.3 17.4	19.1 19.1 19.3 19.6 19.7 19.6 18.7 18.5 19.2 18.9 19.1 18.4 17.6 17.3 17.9 18.7 19.4 18.8	19.5 20.7 19.3 19.7 20.6 19.9 19.4 16.9 17.7 18.1 19.2 19.3 19.8 19.6 19.1 19.7 19.8	SEPTEMBE 18.0 18.4 17.8 17.3 18.1 17.5 18.0 16.9 15.4 14.7 15.7 16.6 16.7 17.2 17.5 18.0 18.0 17.9 18.3 17.9 17.6 17.4 16.9 17.4 16.9 15.1	18.9 19.4 18.4 19.2 18.8 19.0 18.6 16.2 16.0 16.9 17.7 17.8 18.2 18.6 18.5 18.6 18.5 18.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 20 20 20 20 20 20 20 20 20 20 20 20 20	21.0 19.5 20.5 19.5 17.8 16.9 16.0 17.2 16.9 19.2 18.7 19.4 19.9 21.0 19.9 21.0 20.1 21.0 20.3 21.1 21.0 20.3 21.1 21.5	JUNE 18.6 17.3 17.4 17.7 16.1 15.6 14.5 13.8 15.3 14.9 17.8 17.0 17.8 17.5 17.8 18.4 18.3 17.7 18.5 17.7 18.5 19.0 19.0 19.8 19.0	19.7 18.7 19.0 18.4 16.6 16.1 15.3 16.2 16.8 18.2 18.0 18.8 19.7 19.0 19.2 19.3 20.0 20.1 20.3 20.3 19.7 19.8	21.3 19.8 20.7 20.0 21.5 21.0 21.0 21.2 21.2 20.9 20.4 20.5 19.9 20.5 20.8 20.1 20.9 20.4 20.5 20.9 20.4 20.9 20.4 20.9 20.4 20.9 20.8 20.9 20.9 20.8 20.9 20.8 20.9 20.8 20.9 20.8 20.9 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8	JULY 18.1 18.4 17.7 18.1 17.7 19.6 19.3 19.1 19.2 18.8 18.1 18.9 19.1 18.6 18.3 19.0 18.2 19.0 18.2 19.2 19.2 19.0 18.6 19.7 18.6 18.3	19.5 19.1 19.2 18.7 19.3 20.4 20.3 19.8 20.1 20.3 19.9 19.4 19.8 19.9 19.3 19.4 20.0 19.3 19.6 19.6 19.1 19.3 18.2 19.0 19.8 20.0	20.6 20.5 20.5 20.7 20.8 20.8 20.0 20.0 20.2 20.2 20.3 19.7 18.9 18.1 17.7 19.2 19.4 20.8 20.0 20.6 20.6 21.1 21.1 21.3 20.8 21.3 20.8	AUGUST 17.8 17.7 18.1 18.4 18.3 17.3 18.3 17.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7	19.1 19.1 19.3 19.6 19.7 19.6 18.7 18.5 19.2 18.9 19.6 19.1 17.6 17.3 17.9 18.7 19.4 18.8 19.5 19.7 19.7 19.9 20.0	19.5 20.7 19.3 19.7 20.6 19.9 19.9 19.4 16.9 17.7 18.1 19.2 19.0 19.3 19.8 19.6 19.1 19.7 19.8 19.7 19.7 19.8	SEPTEMBE 18.0 18.4 17.8 17.3 18.1 17.5 18.0 16.9 15.4 14.7 15.7 16.6 16.7 17.2 17.5 18.0 17.9 18.0 17.9 17.6 17.4 16.9 17.4 16.9 17.4 16.9 17.4 16.9 17.4 16.9 17.4 16.9 17.4 16.9 17.4 16.9 17.4 16.9 17.4 16.9 17.4 16.9 17.4 16.9 17.4 16.9 17.4 16.9 17.4 16.9 17.4 16.9 17.4 16.9 17.4	18.9 19.4 18.4 18.4 19.2 18.8 19.0 18.6 16.2 16.0 16.9 17.7 17.8 18.2 18.6 18.5 18.6 18.5 18.6 18.6 17.9 17.6 17.9 17.6 18.4 18.4 19.2

02013000 DUNLAP CREEK NEAR COVINGTON, VA

LOCATION.--Lat 37°48'10", long 80°02'50", Alleghany County, Hydrologic Unit 02080201, on right bank 20 ft downstream from bridge on U.S. Highway 60, 2.2 mi downstream from Ogle Creek, and 3.0 mi west of Covington.

DRAINAGE AREA. -- 164 mi².

PERIOD OF RECORD.--October 1928 to current year. Monthly discharge only for some periods, published in WSP 1303.

REVISED RECORDS.--WSP 972: 1929-30, 1932-34, 1942. WSP 1303: 1929-35(M), 1937-38(M), 1941-48(M). WSP 2104: Drainage area. WDR VA-74-1: 1969(M), 1972, 1973(P).

GAGE.--Water-stage recorder. Datum of gage is 1,294.70 ft above sea level. Prior to Dec. 8, 1949, nonrecording gage at same site and datum.

REMARKS.--Records good except those for period of doubtful gage-height record Sept. 8-30, which is fair.

Occasional diurnal fluctuation caused by dam 7.9 mi upstream from station. U.S. Army Corps of Engineers satellite precipitation and gage-height telemeter at station. Maximum discharge, 27,400 ft³/s, from rating curve extended above 4,500 ft³/s on basis of step-backwater computations and contracted-opening measurement at gage height 15.65 ft. Minimum gage height, 0.69 ft, June 6, July 14, 1969. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in March 1913 reached a stage of 18 ft, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 2,000 ${\rm ft}^3/{\rm s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 8	1100	5,000	8.27	Apr. 17	1330	2,380	5.76
Feb. 4	2100	3,090	6.49	Apr. 20	0030	*5,480	*8.62
Feb. 17	2330	5,240	8.45	May 8	2330	2,130	5.48
Mar. 19	0700	2,230	5.59	May 27	1730	2,350	5.72
Mar. 21	0800	4.820	8.14			,	

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Minimum discharge, 15 ft³/s, Oct. 6, 7, 8-9, gage height, 1.33 ft.

					D	AILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	17	31	110	43	462	329	159	189	165	57	27	21
2	16	41	91	41	380	271	152	433	138	52	25	20
3 4	16 18	48 42	61 53	67	342 1640	228 191	139 272	415 753	118 108	50 49	23 22	19 19
5	16	36	49	141 269	1870	163	461	1270	99	49	22	20
3	10	30	49	209	1070	103	401	1270	99	43	22	20
6	16	32	43	339	1480	140	355	770	94	48	21	20
7	15	31	38	297	1110	125	279	491	84	46	21	21
8	15	38	33	2870	784	133	237	1180	77	53	25	e28
9 10	16	49	31	845	669 592	415 536	499	1400	72	70 55	30	e26
10	16	47	32	415	592	536	746	692	72	55	35	e22
11	16	39	50	265	594	365	505	844	71	49	45	e21
12	17	34	60	197	734	280	388	641	70	48	36	e21
13	16	31	51	171	779	227	311	441	74	47	31	e21
14	16	32	43	156	572	202	265	329	82	37	29	e21
15	16	32	37	177	438	174	232	259	100	37	31	e20
16	16	31	33	453	370	149	208	217	108	38	87	e19
17	17	30	31	451	1740	131	1350	186	90	37	215	e19
18	17	29	30	323	2730	198	869	159	78	37	95	e19
19	17	28	29	242	1170	1660	1960	140	78	38	68	e18
20	17	27	28	193	800	1290	2980	123	85	35	50	e18
21	18	28	27	155	665	3680	918	115	72	34	41	e19
22	18	39	30	134	472	1470	556	104	66	33	36	e20
23	19	55	38	475	443	710	410	111	59	33	32	e20
24	21	48	45	663	551	465	334	149	55	34	29	e21
25	25	40	99	568	461	339	265	257	57	34	27	e21
26	26	36	112	415	411	273	229	188	52	33	26	e20
27	28	33	93	329	372	240	210	1110	50	33	25	e20
28	27	30	75	836	355	214	185	1010	52	32	23	e20
29	24	28	65	812		193	165	438	64	30	22	e20
30	23	29	60	806		174	156	274	62	28	22	e20
31	23		52	586		160		204		27	21	
TOTAL	578	1074	1629	13734	22986	15125	15795	14892	2452	1283	1242	614
MEAN	18.6	35.8	52.5	443	821	488	527	480	81.7	41.4	40.1	20.5
MAX	28	55	112	2870	2730	3680	2980	1400	165	70	215	28
MIN	15	27	27	41	342	125	139	104	50	27	21	18
CFSM	.11	.22	.32	2.70	5.01	2.98	3.21	2.93	.50	. 25	.24	.12
IN.	.13	.24	.37	3.12	5.21	3.43	3.58	3.38	.56	. 29	.28	.14

e Estimated.

02013000 DUNLAP CREEK NEAR COVINGTON, VA--Continued

15

	OCT	NOV	DEC	JAN	FEE	3	MAR	APR	MA	Y	JUN	JUL	AUG	SEP
MEAN	66.5	107	170	250	312	2	404	285	21	5	106	48.6	56.8	38.1
MAX	431	659	694	770	821		1053	1071	53	6	584	358	514	336
(WY)	1990	1986	1974	1996	1998	3	1993	1987	198	9	1972	1972	1984	1989
MIN	13.4	15.7	21.5	24.2	21.5	,	59.1	54.7	43.	7	24.3	14.3	12.5	11.0
(WY)	1942	1932	1956	1981	1934	ŀ	1988	1986	193	0	1934	1966	1932	1970
							_							
SUMMARY	Y STATIST	ICS	FOR 1	1997 CALE	NDAR YE	AR	F	FOR 1998	WATER Y	EAR		WATER YE	ARS 1929	- 1998
ANNUAL	TOTAL			49841				91404						
ANNUAL	MEAN			137				250				171		
HIGHEST	r annual i	MEAN										320		1973
LOWEST	ANNUAL M	EAN										67.3		1941
HIGHEST	r DAILY M	EAN		2540	Mar	3		3680	Mar	21		10400	Jan :	1996
LOWEST	DAILY ME.	AN		13	aSep	4		15	b0ct	7		7.0	Sep	9 1966
ANNUAL	SEVEN-DA	Y MINIMUM		14	Sep	1		16	Oct	5		7.6	Sep	6 1966
INSTANT	CANEOUS P	EAK FLOW						5480	Apr	20		27400	Jun :	21 1972
INSTANT	FANEOUS P	EAK STAGE						8.	.62 Apr	20		15.65	Jun :	21 1972
INSTANT	FANEOUS L	OW FLOW						15	c0ct	6		2.0	Jul	4 1970
ANNUAL	RUNOFF (CFSM)		.8	3			1.	. 53			1.04		
ANNUAL	RUNOFF (INCHES)		11.3	1			20.	. 73			14.16		
10 PERC	CENT EXCE	EDS		279				678				370		
50 PERC	CENT EXCE	EDS		60				65				68		

90 PERCENT EXCEEDS

a Also Sept. 5, 6, 1997.
b Also Oct. 8, 1997.
c Also Oct. 7, 8-9, 1997.

02013100 JACKSON RIVER BELOW DUNLAP CREEK, AT COVINGTON, VA

LOCATION.--Lat 37°47'19", long 80°00'03", Covington City, Hydrologic Unit 02080201, on left bank in city recreation park and 0.5 mi downstream from Dunlap Creek.

DRAINAGE AREA. -- 614 mi².

PERIOD OF RECORD. -- October 1974 to current year.

REVISED RECORDS. -- WDR VA-76-1: 1975(M).

GAGE.--Water-stage recorder. Datum of gage is 1,206.53 ft above sea level.

REMARKS. -- No estimated daily discharges. Records good. Small diurnal fluctuation at low flow caused by Westvaco plant 0.8 mi upstream and occasionally by dam on Dunlap Creek 12.7 mi upstream. Flow regulated since December 1979 by Lake Moomaw (station 02011795) 19.9 mi upstream; since October 1984 by Back Creek Lake 47.9 mi upstream, amount unknown; and since January 1985 by Little Back Creek Lake 51.0 mi upstream, amount unknown. Diversion by Westvaco plant averages 47 ft^3/s for industrial use of which approximately 42 ft^3/s is returned upstream from station. Diversion 2.0 mi upstream from station for city of Covington water supply averages less than 4.0 ft $^3/s$. U.S. Army Corps of Engineers satellite gage-height telemeter at station. Virginia Department of Emergency Services gage-height radio transmitter at station. Maximum discharge, 31,300 ${\rm ft}^3/{\rm s}$, from rating curve extended above 19,000 ${\rm ft}^3/{\rm s}$. Minimum discharge, 41 ${\rm ft}^3/{\rm s}$, Jan. 5, 1981, gage height, 4.38 ft, result of freezeup. Several measurements of water temperature were made during the year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 21, 1972, reached a stage of 24.36 ft, discharge, 34,000 ft $^3/s$, from floodmarks, and flood of Dec. 27, 1973, reached a stage of 22.09 ft, from floodmarks, discharge, 28,300 ft³/s, from rating curve extended above 19,000 ft³/s.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 7,860 ft^3/s , Apr. 19, gage height, 11.20 ft ; minimum, 199 ft^3/s , Nov. 19, 20, Dec. 21, gage height, 4.65 ft ; minimum daily, 213 ft^3/s , Nov. 20.

						D	AILY MEA	N VALUE	S						
DAY	OCT	NOV	DEC	JAN	1	FEB	MAR	AF	PR	MAY	JUN	JUI		AUG	SEP
1 2 3 4 5	295 256 252 252 251	278 295 276 262 244	339 319 277 270 258	241 268 351	3	1780 1640 1460 2760 3190	1440 1350 1280 1210 1070	60 59 56 88 153	91 57 33	763 911 897 1500 2540	497 456 428 415 454	387 376 371 372 369	5 L L	382 381 380 378 379	368 335 337 339 340
6 7 8 9 10	248 249 249 251 251	234 237 251 279 254	253 241 231 229 236	600 4210 1650)))	3190 3070 3160 2660 2010	845 817 830 1380 2590	164 132 119 146 224	20 90 50	2160 1800 2740 2970 2120	395 379 365 359 365	360 360 395 397 383) 5 7	382 387 401 405 428	339 344 367 359 359
11 12 13 14 15	251 254 254 253 257	242 234 228 227 225	256 272 259 246 239	503 453 417	3 3 7	1990 2240 2350 2020 1780	3130 2710 1470 1420 1280	186 168 157 128 147	30 70 30	2070 1550 1190 947 779	361 362 367 375 457	368 362 351 351	2 7 7	432 410 392 391 414	352 352 350 352 351
16 17 18 19 20	255 256 257 254 253	222 217 217 216 213	232 225 223 220 216	970 1240 1280)))	1600 2590 4900 5760 5630	893 788 758 3090 2640	141 256 179 320 562	0 0 0 0	627 573 520 455 430	444 423 389 394 398	358 359 359 360 358	9	452 660 483 437 406	350 354 357 358 358
21 22 23 24 25	251 250 252 253 264	221 237 251 245 234	215 229 235 250 321	647 1200 1940	7))	5300 3720 1920 2090 1920	5180 3770 5760 5770 4910	513 328 181 167 154	30 _0 70	422 406 427 479 650	376 371 359 352 349	353 350 374 389 378) 1 9	396 389 386 380 383	358 359 360 357 356
26 27 28 29 30 31	262 261 254 246 248 244	228 226 220 218 227	341 326 296 282 272 262	1570 2180 2340 2370)))	1800 1650 1470 	2820 1520 1460 1410 1100 604	126 88 83 79 77	38 36 94 76	524 1720 1790 948 694 570	351 346 366 393 382	380 371 372 371 371 389	7 9 7 7	380 382 381 385 380 380	358 353 353 353 335
TOTAL MEAN MAX MIN (†) MEAN‡ CFSM‡ IN.‡	7883 254 295 244 -3731 134 .22	7158 239 295 213 +2672 328 .53	8070 260 341 215 +1361 304 .50	1159 4210 241 +20,822 1831 2.98) 	75650 2702 5760 1460 -1160 2660 4.33 4.51	65295 2106 5770 604 -151 2101 3.42 3.95	5245 174 562 56 -10 174 2.8 3.1	18 20 57 11 15	36172 1167 2970 406 +504 1183 1.93 2.22	11728 391 497 346 +101 394 .64	11496 373 39' 35(-5092 20'	L 7 0 2 7	12602 407 660 378 -6201 206 .34 .39	10563 352 368 335 -5949 154 .25
CAL YR WTR YR	1997	TOTAL TOTAL	227575 334998	MEAN MEAN	623 918	MAX MAX	5030 5770	MIN MIN	213 213	MEAN‡ MEAN‡	570 926	CFSM‡ CFSM‡	.93 1.51		12.60 20.48

[†] Total change in contents, equivalent in cubic feet per second, per month, in Lake Moomaw; provided by U.S. Army Corps of Engineers.

‡ Adjusted for monthly change in contents.

02013100 JACKSON RIVER BELOW DUNLAP CREEK, AT COVINGTON, VA--Continued

STATISTICS OF MONTHLY MEA	N DATA FOR WATER	YEARS 1975 -	- 1979, BY WATE	CR YEAR (WY)	[UNREGUL	ATED]	
OCT NOV MEAN 572 425 MAX 1495 853 (WY) 1977 1978 MIN 97.2 118 (WY) 1979 1979	DEC JAN 712 1258 1020 1930 1978 1979 370 208 1976 1977	FEB 1079 1757 1979 450 1978	MAR APR 1794 971 2762 1790 1978 1977 690 472 1976 1976	MAY 946 1600 1975 296 1977	JUN 529 906 1979 187 1977	JUL 231 304 1979 144 1977	AUG SEP 200 350 270 1058 1978 1979 135 123 1977 1978
		1976 ARS 1975 - 1	1976 1976	1977	1977	1977	1977 1976
ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS	755 905 536 18800 88 92 23200 19.85 80 1.23 16.70 1620 380 135	Apr 5 Nov 11 Oct 24 Apr 5 Apr 5 Nov 9	1979 1976 1977 1978 1978 1977 1977				
STATISTICS OF MONTHLY MEA	N DATA FOR WATER	YEARS 1980 -	- 1998, BY WATE	ER YEAR (WY)	[REGULAT	ED, UNADJU	STED]
MEAN 352 519 MAX 1302 2363 (WY) 1980 1986 MIN 111 114 (WY) 1981 1982	DEC JAN 549 889 1685 2644 1997 1996 130 119 1981 1981	1174 2702 1998	211 356	958	JUN 628 1403 1982 303 1980	352 526 1995 190	AUG SEP 378 348 1285 939 1984 1989 117 87.3 1981
SUMMARY STATISTICS	FOR 1997 CALE	NDAR YEAR	FOR 1998	WATER YEAR	,	WATER YEAR	S 1980 - 1998
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS	219	Nov 20 Nov 15	199	Nov 20 Nov 15 Apr 19 20 Apr 19 bNov 19		741 954 348 15100 67 71 31300 23.31 c41 1.21 16.39 1630 367	aSep 3 1981 Sep 25 1981 Nov 4 1985 Nov 4 1985
90 PERCENT EXCEEDS	246		244			214	

a Also Sept. 27-29, 1981.
b Also Nov. 20, Dec. 21, 1997.
c Result of freezeup.

02014000 POTTS CREEK NEAR COVINGTON, VA

LOCATION.--Lat 37°43'44", long 80°02'33", Alleghany County, Hydrologic Unit 02080201, on left bank at downstream side of bridge on State Highway 18, 0.8 mi downstream from Blue Spring Creek, and 5.2 mi southwest of Covington.

DRAINAGE AREA. -- 153 mi².

PERIOD OF RECORD.--October 1928 to September 1956, October 1965 to current year.

REVISED RECORDS.--WSP 1723: 1935, 1936(M), 1940(M), 1942(M), 1948-49(M), 1951-52(M), 1954(M). WSP 2104: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,273.93 ft above sea level. Prior to Sept. 30, 1956, nonrecording gage at site 1.3 mi downstream at different datum.

REMARKS.--No estimated daily discharges. Records good. U.S. Army Corps of Engineers satellite gage-height telemeter at station. Maximum discharge, $15,400~{\rm ft}^3/{\rm s}$, from rating curve extended above $12,000~{\rm ft}^3/{\rm s}$. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 2,400 ft^3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 8	1530	2,990	7.56	Mar. 21	0530	3,900	8.30
Feb. 17	2200	3,170	7.71	Apr. 20	0300	*4,010	*8.39

Minimum discharge, 19 ft^3/s , Sept. 15, 17-18.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	30	42	72	40	352	456	215	241	161	65	25	21
2	26	70	55	42	302	419	203	338	142	57	25	21
3	25	74	44	60	305	360	181	321	129	53	24	21
4	26	68	44	81	1040	305	340	444	124	52	23	21
5	25	46	39	128	1110	263	529	620	121	56	22	21
6	24	37	37	169	1080	228	414	540	118	53	22	20
7	24	37	36	190	774	204	348	445	105	47	21	20
8	24	40	34	2090	601	222	303	811	95	55	25	31
9	24	44	33	801	539	546	416	826	90	51	35	26
10	25	46	36	435	499	621	539	603	94	46	39	22
11	26	40	38	302	545	467	460	750	91	43	49	21
12	25	36	44	239	762	378	391	627	98	40	38	21
13	25	36	43	215	756	319	339	499	104	38	29	21
14	25	38	40	187	600	285	303	407	108	36	27	20
15	27	42	35	207	484	250	274	337	117	36	33	20
16	26	42	33	386	424	219	260	285	110	35	52	20
17	26	38	32	366	1580	197	905	252	91	34	137	20
18	28	36	33	316	2060	249	725	220	82	33	73	20
19	28	33	32	267	1160	1260	1360	193	81	34	56	20
20	28	33	31	234	889	1270	2490	173	193	32	41	20
21	28	35	30	196	757	3100	974	160	123	30	35	20
22	26	45	35	174	604	1370	649	146	103	29	31	21
23	27	48	42	354	587	780	514	153	89	29	28	21
24	28	48	51	453	633	564	441	198	79	37	26	21
25	32	39	80	427	526	446	362	204	78	33	25	21
26	38	36	76	344	461	374	311	178	71	30	24	21
27	44	36	73	299	433	326	281	253	63	28	23	21
28	38	35	65	379	438	289	254	339	65	28	23	21
29	35	33	59	552		262	230	268	77	27	23	21
30	32	35	52	529		239	214	223	65	26	22	21
31	32		48	434		221		187		26	21	
TOTAL	877	1268	1402	10896	20301	16489	15225	11241	3067	1219	1077	636
MEAN	28.3	42.3	45.2	351	725	532	508	363	102	39.3	34.7	21.2
MAX	44	74	80	2090	2060	3100	2490	826	193	65	137	31
MIN	24	33	30	40	302	197	181	146	63	26	21	20
CFSM	.18	.28	.30	2.30	4.74	3.48	3.32	2.37	.67	.26	.23	.14
IN.	.21	.31	.34	2.65	4.94	4.01	3.70	2.73	.75	.30	.26	.15

02014000 POTTS CREEK NEAR COVINGTON, VA--Continued

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	96.1	128	176	250	303	381	293	225	138	67.2	67.0	60.8
MAX	548	766	643	788	725	1078	1184	519	650	288	461	516
(WY)	1990	1986	1949	1937	1998	1955	1987	1971	1972	1938	1940	1989
MIN	20.7	23.8	24.7	29.8	26.9	75.7	80.5	51.4	29.4	22.1	21.9	18.4
(7.737)	1040	1040	1040	1056	1024	1000	1000	1024	1024	1000	1020	1000

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1929 - 1956, 1966 - 1998, BY WATER YEAR (WY)

SUMMARY STATISTICS	FOR 1997 CALENDAR YE	EAR	FOR 1998 V	WATER YEAR	WATER YEARS	1929 - 1956 1966 - 1998
ANNUAL TOTAL	47520		83698			
ANNUAL MEAN	130		229		181	
HIGHEST ANNUAL MEAN					320	1973
LOWEST ANNUAL MEAN					77.2	1988
HIGHEST DAILY MEAN	1240 Mar	4	3100	Mar 21	8870	Jun 21 1972
LOWEST DAILY MEAN	24 Oct	6	20	Sep 6	15	Dec 17 1930
ANNUAL SEVEN-DAY MINIMUM	25 Oct	3	20	Sep 14	15	Dec 17 1930
INSTANTANEOUS PEAK FLOW			4010	Apr 20	15400	Nov 4 1985
INSTANTANEOUS PEAK STAGE			8.3	39 Apr 20	13.46	Nov 4 1985
INSTANTANEOUS LOW FLOW			19	aSep 15	b13	Nov 29 1930
ANNUAL RUNOFF (CFSM)	.85		1.5	50	1.19	
ANNUAL RUNOFF (INCHES)	11.55		20.3	35	16.12	
10 PERCENT EXCEEDS	255		573		401	
50 PERCENT EXCEEDS	73		70		87	
90 PERCENT EXCEEDS	28		23		28	

a Also Sept. 17-18, 1998. b Minimum observed.

02016000 COWPASTURE RIVER NEAR CLIFTON FORGE, VA

LOCATION.--Lat 37°47'30", long 79°45'35", Alleghany County, Hydrologic Unit 02080201, on left bank 100 ft downstream from bridge on State Highway 633, 2.5 mi upstream from confluence with Jackson River, and 4.0 mi southeast of Clifton Forge.

DRAINAGE AREA. -- 461 mi².

PERIOD OF RECORD.--March 1925 to current year. Records for May 1907 to August 1908, published in WSP 242, are unreliable and should not be used.

REVISED RECORDS.--WSP 952: 1925-41. WSP 2104: Drainage area. See also PERIOD OF RECORD.

GAGE.--Water-stage recorder. Datum of gage is 1,006.93 ft above sea level (levels by U.S. Army Corps of Enginneers).Prior to October 1934, nonrecording gage at site 100 ft upstream at present datum.

REMARKS.--Records good, except for period of no gage-height record, Sept. 8-10, which is fair. Low flow affected by springs and by occasional regulation from unknown source. Maximum discharge, 40,900 ft³/s, from rating curve extended above 13,000 ft³/s on basis of slope-area measurements at gage heights 15.70 ft and 19.15 ft. Minimum gage height, 1.43 ft, Jan. 31, 1981, result of freezeup. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES OUTSIDE PERIOD OF RECORD.—Flood in March 1913 reached a stage of 20.8 ft, from floodmarks, discharge, about $45,000 \text{ ft}^3/\text{s}$, from rating curve extended above $13,000 \text{ ft}^3/\text{s}$ on basis of records for other stations in James River Basin.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 5,000 ${\rm ft}^3/{\rm s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 8	1915	*20,800	14.39	Mar. 19	1345	8,560	9.51
Feb. 4	1745	6,510	8.37	Mar. 21	1430	11,900	11.07
Feb. 18	0845	7,570	8.98	Apr. 20	1130	6,730	8.50
Mar. 10	0200	5,700	7.87				

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Minimum discharge, $74~{\rm ft}^3/{\rm s}$, Sept. 29-30, gage height, 1.50 ft.

					Di	AILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	134	187	379	301	1250	1220	532	517	281	352	101	82
2	104	549	324	267	1010	1130	612	773	259	278	97	81
3	97	555	256	309	925	950	565	840	239	233	93	79
4	94	383	251	387	3510	806	874	867	224	204	91	79
5	93	285	252	599	3020	690	1830	1380	217	197	88	79
6	91	235	243	934	2220	606	1300	1430	210	194	86	79
7 8	90	416	225	1160	2120	542	994	1160	202	174	85	79
	89	1230	207	13300	1700	567	827	2430	194	180	93	e94
9	88	1290	196	9750	1440	2830	1210	2120	186	205	101	e87
10	87	721	201	2830	1220	4090	2930	1520	194	191	114	e84
11	86	498	256	1670	1170	1990	1820	1160	193	160	115	85
12	86	380	346	1170	1490	1340	1270	955	199	146	112	82
13	85	309	326	965	2010	1020	1000	806	196	139	110	79
14	86	281	306	810	1690	868	855	682	200	134	98	78
15	87	297	281	825	1310	758	761	596	301	127	104	77
16	87	330	255	1570	1050	652	675	531	520	124	160	77
17	86	301	235	1500	2400	574	1150	489	543	122	199	77
18	87	270	224	1130	5960	665	916	579	358	122	152	77
19	87	240	214	898	3290	6910	1170	463	302	119	131	77
20	86	219	205	772	2420	4230	5220	404	379	114	119	78
21	86	211	192	652	2180	10400	2630	357	411	111	108	77
22	86	246	194	571	1720	5460	1650	333	317	109	103	79
23	86	313	217	1630	1550	2600	1250	326	271	109	99	79
24	89	305	229	2730	1800	1720	1060	350	238	121	96	76
25	106	269	456	1970	1500	1270	870	395	214	113	93	75
26	131	244	540	1400	1280	1010	742	336	205	106	90	75
27	148	230	467	1100	1160	875	671	657	230	102	87	76
28	138	217	436	1690	1120	774	623	709	217	101	85	76
29	136	202	398	1600		690	546	470	297	101	84	74
30	114	196	375	1680		623	510	364	500	99	83	74
31	107		338	1590		568		317		105	82	
TOTAL	3057	11409	9024	57760	53515	58428	37063	24316	8297	4692	3259	2371
MEAN	98.6	380	291	1863	1911	1885	1235	784	277	151	105	79.0
MAX	148	1290	540	13300	5960	10400	5220	2430	543	352	199	94
MIN	85	187	192	267	925	542	510	317	186	99	82	74
CFSM	.21	.82	.63	4.04	4.15	4.09	2.68	1.70	.60	.33	.23	.17
IN.	.25	.92	.73	4.66	4.32	4.71	2.99	1.96	.67	.38	.26	.19

e Estimated.

02016000 COWPASTURE RIVER NEAR CLIFTON FORGE, VA--Continued

STATIST	ICS OF MO	ONTHLY MEAN	DATA	FOR WATER	YEARS 1925	- 1998,	BY WATE	R YEAR (WY)				
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	278	380	570	751	878	1116	848	649	388	220	234	214
MAX	1474	2745	1883	2253	1911	2531	2878	2342	1484	1213	1531	1510
(WY)	1938	1986	1974	1996	1998	1993	1987	1989	1982	1972	1969	1996
MIN	45.4	62.8	82.9	95.3	89.9	203	235	147	98.1	64.9	64.9	60.3
(WY)	1931	1932	1966	1981	1934	1981	1995	1930	1964	1930	1930	1932
SUMMARY	STATIST	ICS	FOR	1997 CALE	ENDAR YEAR	F	OR 1998	WATER YEAR		WATER YE	EARS 1926	- 1998
ANNUAL	TOTAL			158311			273191					
ANNUAL	MEAN			434			748			542		
HIGHEST	ANNUAL N	MEAN								935		1973
LOWEST .	ANNUAL M	EAN								248		1981
HIGHEST	DAILY M	EAN		8020	Mar 4		13300	Jan 8		33900	Nov	5 1985
LOWEST	DAILY MEA	AN		85	Oct 13		74	aSep 29		40	Sep	1 1932
ANNUAL	SEVEN-DAY	MINIMUM Y		86	Oct 11		75	Sep 24		43	Oct	8 1930
INSTANT.	ANEOUS PI	EAK FLOW					20800	Jan 8		40900	Nov	5 1985
INSTANT.	ANEOUS PI	EAK STAGE					14.	39 Jan 8		19.15	Nov	5 1985
INSTANT.	ANEOUS LO	OW FLOW					74	aSep 29		38	Sep	2 1932
ANNUAL	RUNOFF (CFSM)		. 9	94		1.	62		1.18	3	
ANNUAL	RUNOFF (INCHES)		12.7	77		22.	04		15.98	3	
10 PERC	ENT EXCE	EDS		879			1680			1170		
50 PERC	ENT EXCE	EDS		292			302			261		
90 PERC	ENT EXCE	EDS		93			86			87		

a Also Sept. 30, 1998.

02016500 JAMES RIVER AT LICK RUN, VA

LOCATION.--Lat 37°46'25", long 79°47'05", Botetourt County, Hydrologic Unit 02080201, on right bank at community of Lick Run, 1,000 ft downstream from bridge on U.S. Highway 220, 0.9 mi downstream from confluence of Cowpasture and Jackson Rivers, 1.8 mi south of Iron Gate, and at mile 342.3.

DRAINAGE AREA. -- 1,373 mi².

PERIOD OF RECORD. -- April 1925 to current year.

REVISED RECORDS.--WSP 852: 1936-37. WSP 972: 1927, 1930(M), 1932(M), 1935-36. WSP 1303: 1927-28(M). WSP 2104: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 978.30 ft above sea level (levels by U.S. Army Corps of Engineers). Prior to Oct. 26, 1928, nonrecording gage at same site and datum.

REMARKS.--No estimated daily discharges. Records good. Flow regulated since December 1979 by Lake Moomaw (station 02011795) 43.7 mi upstream from station; since October 1984 by Back Creek Lake 71.7 mi upstream; and since January 1985 by Little Back Creek Lake 74.8 mi upstream, amount unknown. National Weather Service gage-height telemeter at station. Maximum discharge, 87,500 ft³/s, from rating curve extended above 66,000 ft³/s. Minimum discharge, 133 ft³/s, result of freezeup. Several measurements of water tempera- ture were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in November 1877 reached a stage of about 33 ft, discharge, about 120,000 ${\rm ft^3/s.}$ Flood in March 1913 reached a stage of 30.4 ft, from floodmarks, discharge, about 98,000 ${\rm ft^3/s.}$

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 33,000 ft^3/s , Jan. 8, gage height, 18.43 ft ; minimum, 348 ft^3/s , Oct. 13, gage height, 1.77 ft ; minimum daily, 362 ft^3/s , Oct. 23.

DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 2.2 ---3.0 ------TOTAL MEAN MAX MTN -3731 +2672 +1361 +20822 -1160 -151 -101 +504 +101 -5092 -5949 (†) MEAN‡ .36 CFSM: . 20 .59 . 55 3.46 4.65 3.92 3.01 2.04 .77 . 29 .18 IN.‡ .66 .63 3.99 4.84 4.52 3.36 2.35 .86 .42 .33 .20 .23 CAL YR 1996 12.80 TOTAL MEAN MAX MTN MEAN1 CFSM1 .94 TN. ± CFSM‡ 1.65 WTR YR 1997 TOTAL MEAN MAX MIN MEAN‡ 22.40

[†] Total change in contents, equivalent in cubic feet per second, per month, in Lake Moomaw; provided by U.S. Army Corps of Engineers.

Adjusted for monthly change in contents.

02016500 JAMES RIVER AT LICK RUN, VA--Continued

a Result of freezeup.

02018000 CRAIG CREEK AT PARR, VA

LOCATION.--Lat 37°39'57", long 79°54'42", Botetourt County, Hydrologic Unit 02080201, on right bank 12 ft upstream from abandoned railway bridge, 700 ft downstream from Stony Run, 0.2 mi northeast of Horton, 0.4 mi northwest of Parr, and at mile 12.0.

DRAINAGE AREA. -- 329 mi².

PERIOD OF RECORD. -- April 1925 to current year.

REVISED RECORDS.--WSP 852: 1937. WSP 892: 1935-36. WSP 1303: 1929-30(M), 1932-35(M), 1937-38(M). WSP 2104: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 992.50 ft above sea level (levels by U.S. Army Corps of Engineers). Prior to June 7, 1937, nonrecording gage at same site and datum.

REMARKS.--Records good, except for period of no gage-height record, May 8-14, which is fair. Maximum discharge, 58,500 ft³/s, from rating curve extended above 11,000 ft³/s on basis of slope-area measurement of peak flow. Minimum discharge, 20 ft³/s, probably occurred Dec. 21, 25, 1980, and Jan. 4, 1981, gage height, 3.20 ft, result of freezeup. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 4,200 ${\rm ft}^3/{\rm s}$ and maximum (*):

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 8	1915	*8,820	*11.83	Mar. 21	1230	*8,820	*11.83
Feb. 5	0415	7,000	10.91	Apr. 17	1845	4,520	9.41
Feb. 18	0400	7,640	11.25	Apr. 20	1015	5,920	10.30

Minimum discharge, 39 $\mathrm{ft^3/s}$, Sept. 17-19, 30, gage height, 3.40 ft .

					Di	AILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	64	69	73	103	1240	721	433	457	277	110	48	45
2	53	83	70	90	974	662	403	1030	246	99	47	44
3	45	103	71	100	841	600	366	902	220	92	46	43
4	43	102	70	116	2830	536	524	912	207	88	45	43
5	43	84	69	177	5100	469	1140	1210	209	90	43	42
6	42	79	68	286	3320	409	908	1100	207	87	43	42
7	42	75	67	344	2720	374	751	904	204	82	42	42
8	41	70	65	5020	1860	385	650	e1850	187	81	43	49
9	41	68	63	2720	1450	1220	759	e1700	174	77	58	43
10	41	67	65	1290	1200	1660	1340	e1300	174	76	93	42
11	41	64	67	881	1090	1100	1060	e1350	175	73	91	41
12	42	62	69	696	1220	858	859	e1200	256	68	103	42
13	42	63	72	617	1320	715	734	e1000	302	67	75	41
14	44	66	69	549	1140	631	652	e850	261	65	62	41
15	42	68	68	534	931	557	590	712	251	63	62	41
16	42	73	66	1220	802	485	564	594	254	63	70	41
17	43	76	65	1280	2740	431	2230	511	226	63	86	39
18	44	70	64	936	5060	411	2360	418	209	58	132	39
19	45	66	64	733	2320	2090	1660	363	188	56	110	40
20	45	64	63	626	1760	2850	4530	323	194	55	85	41
21	46	65	61	529	1470	7800	2390	294	192	53	73	41
22	45	72	67	451	1190	3440	1650	271	169	51	65	45
23	44	82	74	670	1170	2010	1320	262	152	50	60	49
24	45	93	89	1170	1540	1500	1140	314	138	52	56	44
25	53	91	109	1070	1220	1190	930	336	126	52	53	43
26	60	82	121	862	1010	978	780	324	126	52	51	43
27	74	78	141	720	884	848	681	323	112	51	49	42
28	76	72	143	1700	795	737	593	437	106	50	48	42
29	75	69	139	2890		645	511	401	e105	50	47	41
30	65	68	131	2090		566	444	351	e118	49	46	40
31	58		119	1670		497		310		49	46	
TOTAL	1526	2244	2542	32140	49197	37375	32952	22309	5765	2072	1978	1271
MEAN	49.2	74.8	82.0	1037	1757	1206	1098	720	192	66.8	63.8	42.4
MAX	76	103	143	5020	5100	7800	4530	1850	302	110	132	49
MIN	41	62	61	90	795	374	366	262	105	49	42	39
CFSM	.15	.23	. 25	3.15	5.34	3.66	3.34	2.19	.58	. 20	.19	.13
IN.	.17	.25	. 29	3.63	5.56	4.23	3.73	2.52	.65	.23	.22	.14

e Estimated.

02018000 CRAIG CREEK AT PARR, VA--Continued

STATISTICS	OF	MONTHLY	MEAN	DATA	FOR	WATER	YEARS	1925	- 1998.	BY	WATER	YEAR	(WY)

	OCT	NOV	DEC	JAN	FEB	3	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	191	284	393	566	670	1	800	657	458	271	137	162	142
MAX	1093	2112	1519	1642	1757		2116	2427	1202	1134	979	1290	974
(WY)	1938	1986	1949	1937	1998		1993	1987	1942	1972	1941	1940	1928
MIN	34.9	45.9	48.9	51.2	55.6		141	143	93.2	66.2	33.5	35.6	34.1
(WY)	1931	1931	1966	1956	1934	:	1988	1995	1930	1926	1966	1964	1968
SUMMARY	STATIST	ICS	FOR 1	1997 CALEN	NDAR YE	AR	F	OR 1998	WATER YEAR		WATER YE	ARS 1925	- 1998
ANNUAL	TOTAL			101354				191371					
ANNUAL	MEAN			278				524			394		
HIGHEST	' ANNUAL N	MEAN									655		1973
LOWEST	ANNUAL MI	EAN									185		1981
HIGHEST	DAILY M	EAN		4070	Mar	4		7800	Mar 21		21000	Nov	4 1985
LOWEST	DAILY MEA	AN		36	Sep	6		39	Sep 17		25	Sep	4 1966
ANNUAL	SEVEN-DAY	Y MINIMUM		37	Sep	3		40	Sep 13		27	Aug 2	2 1964
INSTANT	'ANEOUS PI	EAK FLOW						8820	aJan 8		58500	Nov	4 1985
INSTANT	'ANEOUS PI	EAK STAGE						11.	83 aJan 8		b24.76	Nov	4 1985
INSTANT	ANEOUS LO	OW FLOW						39	cSep 17		d20	fDec 2	1980
ANNUAL	RUNOFF (CFSM)		.84	4			1.	59		1.20		
ANNUAL	RUNOFF (INCHES)		11.46	5			21.	64		16.27		
10 PERC	ENT EXCE	EDS		573				1320			874		
50 PERC	ENT EXCE	EDS		131				112			183		

43

49

90 PERCENT EXCEEDS

a Also Mar. 21, 1998.
b From floodmarks.
c Also Sept. 18-19, 30, 1998.
d Result of freezeup.
f Also probably occurred Dec. 25, 1980, and Jan. 4, 1981.

02019500 JAMES RIVER AT BUCHANAN, VA

LOCATION.--Lat 37°31'50", long 79°40'45", Botetourt County, Hydrologic Unit 02080201, on left bank 300 ft upstream from bridge on U.S. Highway 11 at Buchanan, 1,000 ft upstream from Purgatory Creek, 1.5 mi downstream from Looney Creek, and at mile 306.4.

DRAINAGE AREA. -- 2,075 mi².

PERIOD OF RECORD.--February 1898 to current year. Monthly discharge only for some periods, published in WSP 1303. Records for August 1895 to Feb. 11, 1898, published in WSP 11, 15, and 27 are in error and should not be used. Gage-height records collected at this site since 1893 are contained in reports of the National Weather Service.

REVISED RECORDS.--WSP 602: 1917-24. WSP 972: 1935-36. WSP 1303: 1898-1916, 1917-20(M), 1922(M), 1924(M). WSP 1383: 1927. WSP 2104: Drainage area. WDR VA-72-1: 1913(M). See also PERIOD OF RECORD.

GAGE.--Water-stage recorder. Datum of gage is 802.90 ft above sea level. Prior to July 1, 1927, nonrecording gage at same site and datum.

REMARKS.--Records good except for period of no gage-height record, Mar. 21-22, which is fair. Flow regulated since December 1979 by Lake Moomaw (station 02011795) 79.6 mi upstream; since October 1984 by Back Creek Lake 107.6 mi upstream, amount unknown; and since January 1985 by Little Back Creek Lake 110.7 mi upstream, amount unknown. National Weather Service gage-height telemeter at station. Maximum discharge, 179,000 ft³/s, from rating curve extended above 110,000 ft³/s. Minimum gage height, 1.44 ft, Sept. 8, 1966. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in November 1877 reached a stage of 34.9 ft, from floodmark, discharge, about $142,000 \text{ ft}^3/\text{s}$, from rating curve extended above $110,000 \text{ ft}^3/\text{s}$.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
DAILY MEAN VALUES

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 51,000 ft 3 /s, Jan. 9, gage height, 19.95 ft; minimum, 458 ft 3 /s, Oct. 11-14, 22-24, gage height, 2.12 ft; minimum daily, 460 ft 3 /s, Oct. 12, 13.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	648	596	808	978	7340	5460	3130	2980	2060	1390	748	663
2	617	1040	1180	882	5980	5230	3030	3810	1820	1220	721	654
3	522	1290	957	883	5360	4630	2960	4410	1650	1120	694	620
4	495	1120	857	1040	16700	4180	3440	4690	1530	1070	687	607
5	486	882	830	1390	27000	3820	6160	6310	1490	1150	686	597
6	487	764	791	2180	16800	3350	6420	7070	1480	1050	669	602
7	482	769	745	2790	15500	3050	5510	5900	1400	995	661	599
8	478	1380	707	30300	12000	3200	4630	7410	1340	988	669	656
9	471	2040	675	33200	9850	6270	4580	11100	1280	1040	746	698
10	468	1600	669	9670	7860	12500	8540	7890	1270	1020	766	641
11	465	1160	711	5840	7120	9630	7760	6710	1280	960	912	623
12	460	934	806	4250	7920	7820	6230	6680	1270	905	872	620
13	460	803	889	3600	9270	5910	5360	5270	1400	870	827	621
14	464	757	850	3140	8400	4660	4820	4400	1360	846	792	609
15	477	757	801	3030	6880	4290	4280	3840	1420	828	778	602
16	468	770	788	5300	5830	3690	4220	3390	1750	829	925	595
17	467	772	744	6200	11700	3170	8420	3010	1780	826	1170	588
18	470	732	677	5220	30200	2950	11800	2780	1650	814	1360	583
19	479	686	660	4540	18900	14000	7700	2540	1430	803	1100	587
20	478	652	639	4050	15300	e15500	26300	2260	1390	797	957	578
21	469	645	622	3410	13700	e31100	18000	2080	1570	780	890	579
22	465	704	638	2880	11100	e18100	11700	1940	1410	765	846	583
23	461	790	728	3940	8520	e16400	7850	1870	1300	769	798	578
24	467	853	765	8780	9240	13400	6280	2030	1210	791	766	574
25	519	814	967	7920	8080	11400	5380	2360	1140	807	740	570
26	568	755	1440	6320	6940	8620	4730	2400	1070	775	737	566
27	641	711	1380	5320	6320	6090	4050	2190	1070	760	722	563
28	633	678	1350	9060	5730	5050	3620	5110	1040	749	709	560
29	591	658	1250	13000		4630	3260	3690	1360	743	692	552
30	576	649	1190	10400		4290	3030	2820	1440	731	675	546
31	541		1090	9270		3570		2360		735	673	
TOTAL	15773	26761	27204	208783	315540	245960	203190	131300	42660	27926	24988	18014
MEAN	509	892	878	6735	11270	7934	6773	4235	1422	901	806	600
MAX	648	2040	1440	33200	30200	31100	26300	11100	2060	1390	1360	698
MIN	460	596	622	882	5360	2950	2960	1870	1040	731	661	546
(†)	-3731	+2672	+1361	+20822	-1160	-151	-101	+504	+101	-5092	-6201	-5949
MEAN‡	388	981	921	7407	11230	7929	6770	4252	1425	737	606	402
CFSM‡	.19	. 47	. 44	3.57	5.41	3.82	3.26	2.05	.69	.35	.29	.19
IN.‡	.22	.53	.51	4.12	5.64	4.41	3.64	2.36	.77	.41	.34	.22

 $[\]dagger$ Total change in contents, equivalent in cubic feet per second, per month, in Lake Moomaw; provided by U.S. Army Corps of Engineers.

26000

33200

MIN

MIN

460

MEAN‡

MEAN‡

1908

3537

CFSM‡

CFSM1

1.70

TN. ±

23.15

1962

3529

MAX

MEAN

MEAN

715976

1288099

TOTAL

TOTAL

CAL YR 1996

WTR YR 1997

[‡] Adjusted for monthly change in contents.

e Estimated.

02019500 JAMES RIVER AT BUCHANAN, VA--Continued

	IICS OF M	ONTHLY MEAN	DATA E	OR WATER	YEARS 189	3 - 1979,	BY WATER	YEAR (WY)	[UNRE	GULATED]		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	1261	1488	2488	3426	4035	5103	3873	2897	1923		1192	921
MAX (WY)	6980 1907	5807 1973	8377	10140	8459 1927	11460 1955	8920 1901	7186 1942	7606 1972	5080 1905	6187 1940	4507 1979
(WY) MIN	294	329	351	1937 371 1956	412	1779	1097	685	525	263	289	281
(WY)	1931	1932	8377 1949 351 1966	1956	1934	1940	1915	1930	1970	1966	1964	1968
SUMMARY	Y STATIST	ICS	V	ATER YEAR	s 1898 - 1	1979						
ANNUAL HIGHES' LOWEST HIGHES' LOWEST ANNUAL INSTAN' INSTAN' ANNUAL 10 PERC	MEAN I ANNUAL M ANNUAL M I DAILY M DAILY ME SEVEN-DA TANEOUS P TANEOUS L RUNOFF (CENT EXCE CENT EXCE	MEAN EAN EAN Y MINIMUM EAK FLOW EAK STAGE OW FLOW CFSM) INCHES) EDS EDS EDS	11	2475 4138 1318 22200 207 212 50000 a31.00 202 1.19 16.20 5220 1300 410	Jun 22 Sep 12 Sep 7 Mar 27 Mar 27 Sep 8	1973 1956 1972 1966 1966 1913 1913 1966						
STATIST	TICS OF M	ONTHLY MEAN	DATA E	OR WATER	YEARS 198) - 1998,	BY WATER	YEAR (WY)	[REGU	LATED, UNADJ	USTED]	
	OCT	NOV	DEC	JAN	FEB	MAR						
MEAN							APR	MAY	JUN	JUL	AUG	SEP
	1263	2030	2345	3714	4299	5444	4748	3271	2215	1075	1071	1127
MAX	5679	2030 10190	2345 6450	3714 10310	4299 11270	5444 12790	4748 16170	3271 8908	2215 5251	1075 2236	1071 3834	1127 4288
(WY)	5679 1990	2030 10190 1986	2345 6450 1997	3714 10310 1996	4299 11270 1998	5444 12790 1993	4748 16170 1987	3271 8908 1989	2215 5251 1982	1075 2236 1989	1071 3834 1984	1127 4288 1996
(WY) MIN	5679 1990 419	2030 10190 1986	2345 6450 1997	3714 10310 1996 396	4299 11270 1998 1260	5444 12790 1993 922	4748 16170 1987 1081	3271 8908 1989 1515	2215 5251 1982 841	1075 2236 1989 651	1071 3834 1984 338	1127 4288 1996 361
(WY)	5679 1990 419	2030 10190 1986	2345 6450 1997	3714 10310 1996	4299 11270 1998	5444 12790 1993 922	4748 16170 1987 1081	3271 8908 1989	2215 5251 1982	1075 2236 1989	1071 3834 1984	1127 4288 1996
(WY) MIN (WY)	5679 1990 419 1981 Y STATIST	2030 10190 1986 453 1982	2345 6450 1997 453 1981 FOR	3714 10310 1996 396 1981	4299 11270 1998 1260 1981	5444 12790 1993 922 1981	4748 16170 1987 1081 1995	3271 8908 1989 1515 1991	2215 5251 1982 841 1994	1075 2236 1989 651 1981	1071 3834 1984 338 1981	1127 4288 1996 361 1981
(WY) MIN (WY)	5679 1990 419 1981 Y STATIST	2030 10190 1986 453 1982	2345 6450 1997 453 1981 FOR	3714 10310 1996 396 1981	4299 11270 1998 1260 1981	5444 12790 1993 922 1981	4748 16170 1987 1081 1995	3271 8908 1989 1515 1991	2215 5251 1982 841 1994	1075 2236 1989 651 1981	1071 3834 1984 338 1981	1127 4288 1996 361 1981
(WY) MIN (WY)	5679 1990 419 1981 Y STATIST	2030 10190 1986 453 1982	2345 6450 1997 453 1981 FOR	3714 10310 1996 396 1981 1997 CALE	4299 11270 1998 1260 1981	5444 12790 1993 922 1981	4748 16170 1987 1081 1995 OR 1998 WA	3271 8908 1989 1515 1991	2215 5251 1982 841 1994	1075 2236 1989 651 1981	1071 3834 1984 338 1981	1127 4288 1996 361 1981
(WY) MIN (WY)	5679 1990 419 1981 Y STATIST	2030 10190 1986 453 1982	2345 6450 1997 453 1981 FOR	3714 10310 1996 396 1981 1997 CALE	4299 11270 1998 1260 1981	5444 12790 1993 922 1981	4748 16170 1987 1081 1995 OR 1998 WA	3271 8908 1989 1515 1991	2215 5251 1982 841 1994	1075 2236 1989 651 1981 WATER YEA	1071 3834 1984 338 1981	1127 4288 1996 361 1981
(WY) MIN (WY) SUMMARY ANNUAL ANNUAL HIGHES	5679 1990 419 1981 Y STATIST TOTAL MEAN F ANNUAL	2030 10190 1986 453 1982 ICS	2345 6450 1997 453 1981 FOR	3714 10310 1996 396 1981 1997 CALE 715976 1962	4299 11270 1998 1260 1981 NDAR YEAR	5444 12790 1993 922 1981	4748 16170 1987 1081 1995 OR 1998 WA	3271 8908 1989 1515 1991	2215 5251 1982 841 1994	1075 2236 1989 651 1981 WATER YEA	1071 3834 1984 338 1981	1127 4288 1996 361 1981 - 1998
(WY) MIN (WY) SUMMARY ANNUAL ANNUAL HIGHES	5679 1990 419 1981 Y STATIST TOTAL MEAN F ANNUAL	2030 10190 1986 453 1982 ICS	2345 6450 1997 453 1981 FOR	3714 10310 1996 396 1981 1997 CALE 715976 1962	4299 11270 1998 1260 1981 NDAR YEAR	5444 12790 1993 922 1981	4748 16170 1987 1081 1995 OR 1998 WA	3271 8908 1989 1515 1991	2215 5251 1982 841 1994	1075 2236 1989 651 1981 WATER YEA 2707 3664	1071 3834 1984 338 1981 ARS 1980	1127 4288 1996 361 1981 - 1998
(WY) MIN (WY) SUMMARY ANNUAL ANNUAL HIGHES	5679 1990 419 1981 Y STATIST TOTAL MEAN F ANNUAL	2030 10190 1986 453 1982 ICS	2345 6450 1997 453 1981 FOR	3714 10310 1996 396 1981 1997 CALE 715976 1962	4299 11270 1998 1260 1981 NDAR YEAR	5444 12790 1993 922 1981	4748 16170 1987 1081 1995 OR 1998 WA 1288099 3529	3271 8908 1989 1515 1991 ATER YEAR	2215 5251 1982 841 1994	1075 2236 1989 651 1981 WATER YEA 2707 3664 1092	1071 3834 1984 338 1981 ARS 1980	1127 4288 1996 361 1981 - 1998
(WY) MIN (WY) SUMMARY ANNUAL ANNUAL HIGHES	5679 1990 419 1981 Y STATIST TOTAL MEAN F ANNUAL	2030 10190 1986 453 1982 ICS	2345 6450 1997 453 1981 FOR	3714 10310 1996 396 1981 1997 CALE 715976 1962	4299 11270 1998 1260 1981 NDAR YEAR	5444 12790 1993 922 1981	4748 16170 1987 1081 1995 OR 1998 W 1288099 3529	3271 8908 1989 1515 1991 ATER YEAR Jan 9 Oct 12	2215 5251 1982 841 1994	1075 2236 1989 651 1981 WATER YEA 2707 3664 1092 102000	1071 3834 1984 338 1981 ARS 1980 Nov Oct	1127 4288 1996 361 1981 - 1998 1987 1987 1981 5 1985
(WY) MIN (WY) SUMMARY ANNUAL ANNUAL HIGHES' LOWEST LOWEST ANNUAL	5679 1990 419 1981 Y STATIST TOTAL MEAN F ANNUAL	2030 10190 1986 453 1982 ICS MEAN EAN EAN AN	2345 6450 1997 453 1981 FOR	3714 10310 1996 396 1981 1997 CALE 715976 1962	4299 11270 1998 1260 1981 NDAR YEAR	5444 12790 1993 922 1981	4748 16170 1987 1081 1995 POR 1998 WA 1288099 3529 33200 460	3271 8908 1989 1515 1991 ATER YEAR Jan 9 Oct 12	2215 5251 1982 841 1994	1075 2236 1989 651 1981 WATER YEA 2707 3664 1092 102000 257	1071 3834 1984 338 1981 ARS 1980 Nov Oct Sep	1127 4288 1996 361 1981 - 1998 1987 1981 5 1985 1 1981
(WY) MIN (WY) SUMMARY ANNUAL ANNUAL HIGHES' LOWEST HIGHES' ANNUAL INSTAN'	5679 1990 419 1981 Y STATIST TOTAL MEAN I ANNUAL M I DAILY M DAILY ME SEVEN-DA TANEOUS P TANEOUS P	2030 10190 1986 453 1982 ICS MEAN EAN EAN Y MINIMUM EAK FLOW EAK STAGE	2345 6450 1997 453 1981 FOR	3714 10310 1996 396 1981 1997 CALE 715976 1962 26000 460 466	4299 11270 1998 1260 1981 NDAR YEAR Mar 4 Oct 12 Oct 11	5444 12790 1993 922 1981	4748 16170 1987 1081 1995 FOR 1998 Wi 1288099 3529 33200 460 466 51000	3271 8908 1989 1515 1991 ATER YEAR Jan 9 Oct 12 Oct 11 Jan 9 5 Jan 9	2215 5251 1982 841 1994	1075 2236 1989 651 1981 WATER YEA 2707 3664 1092 102000 257 268 179000 a38.84	1071 3834 1984 338 1981 RS 1980 NOV Oct Sep Nov	1127 4288 1996 361 1981 - 1998 1987 1981 5 1985 1 1981 29 1981
(WY) MIN (WY) SUMMARY ANNUAL ANNUAL HIGHES' LOWEST HIGHES' ANNUAL INSTAN'	5679 1990 419 1981 Y STATIST TOTAL MEAN I ANNUAL M I DAILY M DAILY ME SEVEN-DA TANEOUS P TANEOUS P	2030 10190 1986 453 1982 ICS MEAN EAN EAN Y MINIMUM EAK FLOW EAK STAGE	2345 6450 1997 453 1981 FOR	3714 10310 1996 396 1981 1997 CALE 715976 1962 26000 460 466	4299 11270 1998 1260 1981 NDAR YEAR Mar 4 Oct 12 Oct 11	5444 12790 1993 922 1981	4748 16170 1987 1081 1995 FOR 1998 Wi 1288099 3529 33200 460 466 51000	3271 8908 1989 1515 1991 ATER YEAR Jan 9 Oct 12 Oct 11 Jan 9 5 Jan 9	2215 5251 1982 841 1994	1075 2236 1989 651 1981 WATER YEA 2707 3664 1092 102000 257 268 179000 a38.84	1071 3834 1984 338 1981 .RS 1980 Nov Oct Sep Nov Nov	1127 4288 1996 361 1981 - 1998 1987 1981 5 1985 1 1985 1 1985 1 1985 5 1985
(WY) MIN (WY) SUMMARY ANNUAL ANNUAL HIGHES' LOWEST HIGHES' ANNUAL INSTAN'	5679 1990 419 1981 Y STATIST TOTAL MEAN I ANNUAL M I DAILY M DAILY ME SEVEN-DA TANEOUS P TANEOUS P	2030 10190 1986 453 1982 ICS MEAN EAN EAN Y MINIMUM EAK FLOW EAK STAGE	2345 6450 1997 453 1981 FOR	3714 10310 1996 396 1981 1997 CALE 715976 1962 26000 460 466	4299 11270 1998 1260 1981 NDAR YEAR Mar 4 Oct 12 Oct 11	5444 12790 1993 922 1981	4748 16170 1987 1081 1995 FOR 1998 Wi 1288099 3529 33200 460 466 51000 19.99 458 1.70	3271 8908 1989 1515 1991 ATER YEAR Jan 9 Oct 12 Oct 11 Jan 9 5 Jan 9 bOct 11	2215 5251 1982 841 1994	1075 2236 1989 651 1981 WATER YEA 2707 3664 1092 102000 257 268 179000 a38.84 c230	1071 3834 1984 338 1981 .RS 1980 Nov Oct Sep Nov Nov	1127 4288 1996 361 1981 - 1998 1987 1981 5 1985 1 1981 29 1981 5 1985 5 1985
(WY) MIN (WY) SUMMARY ANNUAL ANNUAL HIGHES' LOWEST HIGHES' ANNUAL INSTAN'	5679 1990 419 1981 Y STATIST TOTAL MEAN I ANNUAL M I DAILY M DAILY ME SEVEN-DA TANEOUS P TANEOUS P	2030 10190 1986 453 1982 ICS MEAN EAN EAN Y MINIMUM EAK FLOW EAK STAGE	2345 6450 1997 453 1981 FOR	3714 10310 1996 396 1981 1997 CALE 715976 1962 26000 460 466	4299 11270 1998 1260 1981 NDAR YEAR Mar 4 Oct 12 Oct 11	5444 12790 1993 922 1981	4748 16170 1987 1081 1995 OR 1998 W 1288099 3529 33200 460 466 51000 19.99	3271 8908 1989 1515 1991 ATER YEAR Jan 9 Oct 12 Oct 11 Jan 9 5 Jan 9 bOct 11	2215 5251 1982 841 1994	1075 2236 1989 651 1981 WATER YEA 2707 3664 1092 102000 257 268 179000 a38.84 c230	1071 3834 1984 338 1981 .RS 1980 Nov Oct Sep Nov Nov	1127 4288 1996 361 1981 - 1998 1987 1981 5 1985 1 1981 29 1981 5 1985 5 1985
(WY) MIN (WY) SUMMARY ANNUAL ANNUAL HIGHES' LOWEST HIGHES' ANNUAL INSTAN'	5679 1990 419 1981 Y STATIST TOTAL MEAN I ANNUAL M I DAILY M DAILY ME SEVEN-DA TANEOUS P TANEOUS P	2030 10190 1986 453 1982 ICS MEAN EAN EAN Y MINIMUM EAK FLOW EAK STAGE	2345 6450 1997 453 1981 FOR	3714 10310 1996 396 1981 1997 CALE 715976 1962 26000 460 466	4299 11270 1998 1260 1981 NDAR YEAR Mar 4 Oct 12 Oct 11	5444 12790 1993 922 1981	4748 16170 1987 1081 1995 FOR 1998 Wi 1288099 3529 33200 460 466 51000 19.99 458 1.70	3271 8908 1989 1515 1991 ATER YEAR Jan 9 Oct 12 Oct 11 Jan 9 5 Jan 9 bOct 11	2215 5251 1982 841 1994	1075 2236 1989 651 1981 WATER YEA 2707 3664 1092 102000 257 268 179000 a38.84 c230	1071 3834 1984 338 1981 .RS 1980 Nov Oct Sep Nov Nov	1127 4288 1996 361 1981 - 1998 1987 1981 5 1985 1 1981 29 1981 5 1985 5 1985
(WY) MIN (WY) SUMMARY ANNUAL ANNUAL HIGHES' LOWEST HIGHES' ANNUAL INSTAN'	5679 1990 419 1981 Y STATIST TOTAL MEAN I ANNUAL M I DAILY M DAILY ME SEVEN-DA TANEOUS P TANEOUS P	2030 10190 1986 453 1982 ICS MEAN EAN EAN Y MINIMUM EAK FLOW EAK STAGE	2345 6450 1997 453 1981 FOR	3714 10310 1996 396 1981 1997 CALE 715976 1962 26000 460 466	4299 11270 1998 1260 1981 NDAR YEAR Mar 4 Oct 12 Oct 11	5444 12790 1993 922 1981	4748 16170 1987 1081 1995 FOR 1998 Wi 1288099 3529 33200 460 466 51000 19.94 458 1.77 23.09	3271 8908 1989 1515 1991 ATER YEAR Jan 9 Oct 12 Oct 11 Jan 9 5 Jan 9 bOct 11	2215 5251 1982 841 1994	1075 2236 1989 651 1981 WATER YEA 2707 3664 1092 102000 257 268 179000 a38.84 c230 1.30 17.73	1071 3834 1984 338 1981 .RS 1980 Nov Oct Sep Nov Nov	1127 4288 1996 361 1981 - 1998 1987 1981 5 1985 1 1981 29 1981 5 1985 5 1985

a From floodmarks.
b Also Oct. 12-14, 22-24, 1997.
c Result of freezeup.
d Also Jan. 12, 1981.

02021500 MAURY RIVER AT ROCKBRIDGE BATHS, VA

LOCATION.--Lat 37°54'26", long 79°25'20", Rockbridge County, Hydrologic Unit 02080202, on right bank at Rockbridge Baths, 1,200 ft upstream from bridge on State Highway 39, and 1.0 mi upstream from Hays Creek.

DRAINAGE AREA. -- 329 mi².

PERIOD OF RECORD.--October 1928 to current year. Monthly discharge only for some periods, published in WSP 1303. Prior to October 1945, published as North River at Rockbridge Baths.

REVISED RECORDS.--WSP 972: 1929-40, 1941(M). WSP 1002: 1930(m). WSP 1553: 1931(m).

GAGE.--Water-stage recorder. Datum of gage is 1,100.33 ft above sea level (levels by U.S. Army Corps of Engineers).

REMARKS.--Records good except for period of no gage-height record, Nov. 12-14, which is fair. Since 1966, some regulation at times by Lake Merriweather on Little Calfpasture River. National Weather Service gage-height telemeter at station. Maximum discharge, 87,700 ft³/s, from rating curve extended above 16,000 ft³/s on basis of slope-area measurement at peak flow. Minimum gage height, 0.79 ft, Sept. 10, 1966. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 4,500 ${\rm ft}^3/{\rm s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 8	1715	*22,900	*11.52	Mar. 19	1000	7,160	7.68
Feb. 18	0230	4,560	6.44	Mar. 21	0745	8,940	8.31

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Minimum discharge, 18 ft³/s, Sept. 29.

			•		Di	AILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	32	110	166	214	1220	922	407	387	136	307	35	23
2	28	265	161	203	1040	844	376	634	123	213	34	22
3	27	239	143	210	1050	723	313	763	110	162	31	21
4	27	188	155	298	1690	613	514	1080	102	135	30	21
5	27	145	154	633	2970	492	810	947	101	140	30	22
6	27	122	142	883	2320	396	749	1040	99	114	28	22
7	26	584	130	883	2080	354	657	859	94	95	28	20
8	26	1130	123	13100	1660	447	583	1630	86	122	30	24
9	25	966	117	5540	1410	1890	853	2060	81	132	33	22
10	25	556	128	3260	1220	2340	1640	1390	87	98	37	22
11	24	365	188	2210	1170	1400	1230	991	84	81	49	23
12	25	e243	207	1670	1440	1010	946	851	86	69	41	22
13	25	e195	204	1420	1620	803	772	713	90	63	35	22
14	25	e174	195	1190	1330	687	658	590	89	58	32	22
15	28	208	178	1200	1050	589	579	501	261	55	34	21
16	26	189	161	2060	878	499	504	416	461	52	40	20
17	28	170	148	2020	2020	432	600	428	898	51	44	21
18	27	154	138	1650	3710	495	554	468	410	49	41	21
19	29	139	128	1380	2260	5150	677	345	352	48	38	21
20	28	129	120	1200	1710	3580	2480	285	660	46	36	21
21	27	125	114	797	1450	7500	1700	248	400	43	33	21
22	27	158	118	636	1180	3590	1100	218	264	41	32	21
23	26	176	129	1490	1090	1990	876	204	204	41	31	20
24	28	168	131	2260	1240	1410	785	213	172	51	29	19
25	42	159	331	1800	1170	1070	648	210	145	44	67	20
26	50	150	412	1310	1040	872	556	165	204	39	128	21
27	54	141	403	1050	949	744	519	185	148	39	120	21
28	46	130	362	2040	883	647	450	294	136	38	90	20
29	39	122	310	2550		572	356	223	565	37	26	19
30	36	119	298	1990		508	338	183	479	35	25	19
31	35		263	1610		445		156		36	24	
TOTAL	945	7719	5957	58757	42850	43014	23230	18677	7127	2534	1311	634
MEAN	30.5	257	192	1895	1530	1388	774	602	238	81.7	42.3	21.1
MAX	54	1130	412	13100	3710	7500	2480	2060	898	307	128	24
MIN	24	110	114	203	878	354	313	156	81	35	24	19
CFSM	.09	.78	.58	5.76	4.65	4.22	2.35	1.83	.72	. 25	.13	.06
IN.	.11	.87	.67	6.64	4.85	4.86	2.63	2.11	.81	. 29	.15	.07

e Estimated.

02021500 MAURY RIVER AT ROCKBRIDGE BATHS, VA--Continued

STATIST	TICS OF M	ONTHLY MEAN	DATA	FOR WATER	YEARS 1929	- 1998,	BY WATE	R YEAR (WY))			
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	196	276	409	560	626	852	625	471	274	120	138	135
MAX	1254	2689	1450	1895	1530	2017	2245	1463	1374	807	1016	1388
(WY)	1980	1986	1974	1998	1998	1936	1987	1989	1995	1972	1969	1996
MIN	16.5	24.1	26.6	32.3	50.9	117	122	81.0	34.7	14.6	14.9	16.1
(WY)	1931	1931	1966	1981	1934	1981	1995	1930	1964	1966	1964	1930
SUMMAR	Y STATIST	CICS	FOR	1997 CAL	ENDAR YEAR	F	OR 1998	WATER YEAR		WATER YE	ARS 1929	- 1998
ANNUAL	TOTAL			107322			212755					
ANNUAL	MEAN			294			583			389		
HIGHEST	r annual	MEAN								685		1973
LOWEST	ANNUAL M	IEAN								157		1981
HIGHEST	r daily M	IEAN		3950	Mar 4		13100	Jan 8		41500	Nov	5 1985
LOWEST	DAILY ME	AN		24	Oct 11		19	aSep 24		7.1	Sep	10 1966
ANNUAL	SEVEN-DA	Y MINIMUM		25	Oct 8		20	Sep 24		8.2	Sep	7 1966
INSTANT	TANEOUS F	PEAK FLOW					22900	Jan 8		87700	Nov	5 1985
INSTAN	TANEOUS F	PEAK STAGE					11.	52 Jan 8		b19.19	Nov	5 1985
INSTAN	TANEOUS I	OW FLOW					18	Sep 29		5.8	Sep	10 1966
ANNUAL	RUNOFF (CFSM)		. :	89		1.	77		1.18		
ANNUAL	RUNOFF (INCHES)		12.	13		24.	06		16.07		
10 PERG	CENT EXCE	EDS		646			1540			900		
50 PERG	CENT EXCE	EDS		171			188			157		
90 PERG	CENT EXCE	EDS		28			25			30		

a Also Sept. 29, 30, 1998. b From floodmarks.

CFSM

IN.

.17

.19

.67

.75

.60

4.47

5.16

4.86

5.06

3.65

4.21

2.44

2.73

2.00

2.30

.91

.49

1.02

.15

.17

.31

JAMES RIVER BASIN

02024000 MAURY RIVER NEAR BUENA VISTA, VA

LOCATION.--Lat 37°45'45", long 79°23'30", Rockbridge County, Hydrologic Unit 02080202, on right bank 0.5 mi downstream from South River and 2.8 mi northwest of Buena Vista.

DRAINAGE AREA. -- 646 mi².

PERIOD OF RECORD.--October 1938 to current year. Monthly discharge only for some periods, published in WSP 1303. Prior to October 1945, published as North River near Buena Vista.

REVISED RECORDS. -- WSP 952: 1940-41. WSP 2104: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 846.58 ft above sea level.

REMARKS.--No estimated daily discharges. Records good. Since 1966, some regulation at times by Lake Merriweather on Little Calfpasture River. Maximum discharge, $105,000~{\rm ft}^3/{\rm s}$, from rating curve extended above 17,000 ${\rm ft}^3/{\rm s}$ on basis of slope-area measurement of peak flow. Minimum discharge, 20 ft³/s, occurred during filling of a small reservoir 2 mi upstream. Unqualified minimum discharge, 37 ft³/s, Sept. 9, 1966. Minimum gage height, 0.98 ft, Jan. 5, 1981. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Mar. 18, 1936, reached a stage of about 22 ft, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of $6,200~{\rm ft}^3/{\rm s}$ and maximum (*):

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 8	1945	*22,500	*15.20	Mar. 19	1345	7,790	8.56
Feb. 17	1800	8,890	9.24	Mar. 21	0900	11,300	10.62

Minimum discharge, 80 ft³/s, Sept. 30.

DAY OCT FEB MAR JUN JUL SEP NOV DEC JAN APR MAY AUG ------___ ___ TOTAL MEAN MAX MIN .52 .43 .27

JAMES RIVER BASIN

02024000 MAURY RIVER NEAR BUENA VISTA, VA--Continued

STATIS	TICS OF M	ONTHLY MEAN	DATA F	OR WATER	YEARS 1939	- 1998,	BY WATER	YEAR (WY)				
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	366	476	704	921	1082	1378	1066	824	554	280	326	291
MAX	1997	3400	2430	2891	3140	3187	3672	2373	2647	1351	3060	2087
(WY)	1980	1986	1949	1998	1998	1993	1987	1989	1995	1972	1969	1996
MIN	72.1	83.3	76.4	100	273	240	276	224	120	53.7	63.4	75.2
(WY)	1942	1966	1966	1981	1977	1981	1995	1941	1964	1966	1964	1963
SUMMAR	Y STATIST	'ICS	FOR	1997 CALE	NDAR YEAR	F	OR 1998 WA'	TER YEAR		WATER Y	EARS 1939	- 1998
ANNUAL	TOTAL			202442			399332					
ANNUAL	MEAN			555			1094			687		
HIGHES'	T ANNUAL	MEAN								1181		1973
LOWEST	ANNUAL M	IEAN								269		1981
HIGHES'	T DAILY M	IEAN		5830	Mar 4		14300	Jan 8		56000	Aug	20 1969
LOWEST	DAILY ME	AN		90	Oct 14		82	Sep 30		22	Oct	10 1941
ANNUAL	SEVEN-DA	Y MINIMUM		92	Oct 8		92	Sep 24		40	Sep	7 1966
INSTAN	TANEOUS P	EAK FLOW					22500	Jan 8		105000	Aug	20 1969
INSTAN	TANEOUS P	EAK STAGE					15.20	Jan 8		31.2	3 Aug	20 1969
INSTAN	TANEOUS L	OW FLOW					80	Sep 30		20	Oct	10 1941
ANNUAL	RUNOFF (CFSM)		.8	6		1.69			1.0	16	
ANNUAL	RUNOFF (INCHES)		11.6	6		23.00			14.4	15	
10 PER	CENT EXCE	EDS		1290			2810			1520		
50 PER	CENT EXCE	EDS		339			418			350		
90 PER	CENT EXCE	EDS		107			101			107		

02025500 JAMES RIVER AT HOLCOMB ROCK, VA

LOCATION.--Lat 37°30'04", long 79°15'46", Bedford County, Hydrologic Unit 02080203, on right bank at Holcomb Rock, 0.9 mi downstream from Pedlar River, and at mile 268.6.

DRAINAGE AREA. -- 3,259 mi².

PERIOD OF RECORD.--January 1900 to September 1915 (gage heights only), October 1926 to current year. Monthly discharge only for some periods, published in WSP 1303. Published as "at Salt Creek" December 1926 to June 1931 and as "at Holcombs Rock" June 1931 to September 1990.

REVISED RECORDS.--WSP 972: 1913(M), 1932-33, 1935(M), 1936. WSP 1303: 1928(M). WSP 2104: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 548.53 ft above sea level. January 1900 to September 1915, nonrecording gage in powerhouse of Owens Illinois Glass Company 1,000 ft upstream at different datum. December 1926 to June 1931, water-stage recorder at site 2 mi downstream at different datum.

REMARKS.--Records good, except for periods of doubtful gage-height record, Jan. 8, 9, 24, Feb. 4-6, Mar. 21, 22, and Apr. 17, 18, which are fair. Some diurnal fluctuation caused by powerplants upstream from station. Flow regulated since December 1979 by Lake Moomaw (station 02011795) 117.4 mi upstream; since October 1984 by Back Creek Lake 145.4 mi upstream; and since January 1985 by Little Back Creek Lake 148.5 mi upstream; amount unknown. National Weather Service gage-height telemeter at station. Maximum discharge, 207,000 ft³/s, from rating curve extended above 73,000 ft^3/s on basis of records for other stations in James River Basin. Minimum gage height, 2.80 ft, Oct. 29, 1987. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood in March 1913 reached a stage of 31.3 ft, from floodmarks, discharge, 118,000 ft³/s, from rating curve extended as explained above.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 25,000 ft³/s and maximum (*):

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 9 Feb. 4	Unknown Unknown	*Unknown Unknown	*Unknown Unknown	Mar. 19 Mar. 21	2245 Unknown	26,700 Unknown	14.87 Unknown
Feb. 18	1345	41,600	18.55	Apr. 20	1945	35,500	17.14

Minimum daily discharge, 555 ft³/s, Sept. 3.

		DISC	HARGE, I	.N CODIC FE.	EI PEK S	DAILY MEA		CIOBER 199	/ 10 SE.	PIEMBER 199	0	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	921	1180	1130	1530	11300	8100	4650	4410	2740	2030	1010	899
2	881	1410	1430	1420	9270	7900	4490	5250	2450	1740	990	827
3	847	1760	1480	1370	8210	7120	4480	6370	2160	1590	834	555
4	805	1680	1330	1460	e24000	6360	5570	7020	2070	1490	918	848
5	791	1440	1270	1820	e37500	5700	8030	8270	1930	1530	912	787
6	774	1170	1310	2760	e25000	5090	8910	9830	1920	1500	897	806
7	778	1630	1090	3980	22100	4320	7550	8770	1880	1370	865	790
8	766	2170	1120	e27500	17000	4930	6430	9830	1700	1350	953	872
9	732	3300	1090	e48500	14100	10000	6470	15100	1680	1460	1080	970
10	638	2870	1090	16900	11900	17500	10100	12600	1720	1440	1090	878
11	715	2030	1090	10100	10600	13900	11100	9880	1690	1310	1050	705
12	714 762	1610 1420	1210 1280	7090 5890	13000 14000	11100 9170	8760 7400	9680 7950	1700 1780	1250 1180	1150 1070	857 769
13 14	762	1340	1280	4900	13000	9170 7170	6640	7950 6670	1760	1180	1160	769 793
15	733	1340	1270	4860	10800	6350	5900	5580	1890	1150	1020	793 792
		1300				0330		5560	1090	1150	1020	192
16	717	1270	1180	7820	9460	5660	5620	4960	2350	1130	1100	790
17	725	1180	1170	9450	19100	4720	e10000	4780	3330	1160	1510	785
18	746	1200	1100	7940	38300	4470	e15000	4270	2870	1090	1560	793
19	738	1130	1060	6710	26600	13500	11500	3930	2270	1090	1390	792
20	734	1140	1020	5950	20600	23900	28000	3560	2280	1080	1160	797
21	734	1070	1020	5070	17900	e46000	24500	3240	2310	1060	1120	795
22	734	1210	1060	4190	15300	e37300	16300	2970	2110	1050	1030	801
23	724	1270	1090	7060	12800	21800	12000	2770	1870	1070	1000	786
24	739	1290	1160	e12500	13000 12100	17600	9500	2820 3030	1710 1620	1070	959	774
25	778	1280	1310	12600	12100	15000	8120	3030	1620	1080	971	775
26 27	860	1220	1810 2050	10000 8340	10400 9360	12400 9500	7110 6210	3190 3050	1520 1530	1020 1060	982 1020	774 774
28	963 953	1140 1140	2010	15300	8550	7480	5360	5600	1510	1040	999	768
28 29	902	1090	1930	20400	8550	6650	4810	5340	1770	1020	999	780
30	888	1070	1810	15800		6070	4380	3980	2290	992	941	764
31	837		1690	14100		5460		3250		1030	913	
TOTAL	24358	44010	40880	303310	455250	362220	274890	187950	60410	38602	32635	23896
MEAN	786	1467	1319	9784	16260	11680	9163	6063	2014	1245	1053	797
MAX	963	3300	2050	48500	38300	46000	28000	15100	3330	2030	1560	970
MIN	638	1070	1020	1370	8210	4320	4380	2770	1510	992	834	555
(†)	-3731	+2672	+1361	+20822	-1160	-151	-101	+504	+101	-5092	-6201	-5949
MEAN‡	665	1556	1363	10456	16218	11680	9160	6079	2017	1081	853	598
CFSM‡	.20	.48		3.21	4.98	3.58	2.81			.33	.26	.18
IN.‡	.24	.53	.42	3.70	5.18	4.13	3.14	2.15	.62 .69	.38	.30	.20
CAL YR	1997	TOTAL 101	1886	MEAN 2772			MIN 620		2719	CFSM‡ .8		‡ 11.33
WTR YR	1998	TOTAL 184	8411	MEAN 5064	MAX	48500	MIN 555	MEAN‡	5073	CFSM‡ 1.5	6 IN.	‡ 21.14

[†] Total change in contents, equivalent in cubic feet per second, per month, in Lake Moomaw; provided by U.S. Army Corps of Engineers.

‡ Adjusted for monthly change in contents.

02025500 JAMES RIVER AT HOLCOMB ROCK, VA--Continued

NEAR NEAR	STATISTICS OF MONTHLY MEAN	N DATA FOR WATER YEA	ARS 1927 - 1979,	BY WATER YEAR (WY)	[UNREGULATED]	
ANNUAL MEAN 3663 HIGHEST ANNUAL MEAN 6241 1973 LOWEST ANNUAL MEAN 1947 1956 HIGHEST ANNUAL MEAN 118000 Jun 22 1972 LOWEST DAILY MEAN 118000 Jun 22 1972 LOWEST DAILY MEAN 18000 Jun 22 1972 LOWEST DAILY MEAN 18000 Aug 20 1969 INSTANTANEOUS PEAK FLOW 150000 Aug 20 1969 INSTANTANEOUS PEAK STAGE 335.50 Aug 20 1969 INSTANTANEOUS DEAK STAGE 35.50 Aug 20 1969 INSTANTANEOUS LOW FLOW 71 Oct 24 1963 ANNUAL RUNOFF (CFSM) 1.12 ANNUAL RUNOFF (INCHES) 15.26 10 PERCENT EXCEEDS 7910 50 PERCENT EXCEEDS 2100 90 PERCENT EXCEEDS 655 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1980 - 1998, BY WATER YEAR (WY) [REGULATED, UNADJUSTED] TO OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP MEAN 1980 3090 3426 5141 5934 7528 6752 4525 3258 1591 1526 1668 MAX 7966 17270 9246 13540 16260 16910 21670 12380 9990 4562 5640 7233 (WY) 1980 1986 1997 1996 1998 1993 1987 1989 1995 1995 1984 1996 MIN 690 785 890 730 2139 1472 1616 2205 1234 1009 595 674 (WY) 1992 1992 1981 1981 1981 1981 1981 1995 1991 1988 1986 1981 1983 SUMMARY STATISTICS FOR 1997 CALENDAR YEAR FOR 1998 WATER YEAR WATER YEAR 980 - 1998 ANNUAL TOTAL 1011886 1848411 ANNUAL MEAN 2772 5064 3855	OCT NOV MEAN 2031 2352 MAX 10050 8975 (WY) 1938 1973 MIN 432 511	DEC JAN 3690 4904 12750 14490 1 1949 1937 580 631	FEB MAR 5803 7376 11260 15510 1939 1936 690 2741	APR MAY 5785 4270 11840 10020 1935 1942 1798 1188	JUN JUL 2701 1606 11320 6610 1972 1972 910 415	AUG SEP 1953 1572 9834 7414 1940 1979 458 421
ANNUAL MEAN 3663 HIGHEST ANNUAL MEAN 6241 1973 LOWEST ANNUAL MEAN 1947 1956 HIGHEST DAILLY MEAN 118000 Jun 22 1972 LOWEST DAILLY MEAN 118000 Jun 22 1972 LOWEST DAILLY MEAN 118000 Jun 22 1972 LOWEST DAILLY MEAN 1233 Jul 28 1930 ANNUALSEVEN-DAY MINIMUM 306 Jul 23 1966 INSTANTANEOUS PEAK FLOW 150000 Aug 20 1969 INSTANTANEOUS PEAK STAGE 35.50 Aug 20 1969 INSTANTANEOUS LOW FLOW 71 Oct 24 1963 ANNUAL RUNOFF (CFSM) 1.12 ANNUAL RUNOFF (CFSM) 15.26 10 PERCENT EXCEEDS 7910 50 PERCENT EXCEEDS 7910 90 PERCENT EXCEEDS 655 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1980 - 1998, BY WATER YEAR (WY) [REGULATED, UNADJUSTED] MEAN 1980 3090 3426 5141 5934 7528 6752 4525 3258 1591 1526 1668 MAX 7966 17270 9246 13540 16260 16910 21670 12380 9990 4562 5640 7233 (WY) 1980 1986 1997 1996 1998 1993 1987 1989 1995 1995 1994 1996 MIN 690 785 890 730 2139 1472 1616 2205 1234 1009 595 674 (WY) 1992 1992 1981 1981 1981 1981 1981 1995 1991 1988 1986 1981 1983 SUMMARY STATISTICS FOR 1997 CALENDAR YEAR FOR 1998 WATER YEAR WATER YEAR WATER YEARS 1980 - 1998 ANNUAL TOTAL 1011886 1848411 ANNUAL TOTAL 1011886 1848411 ANNUAL TOTAL 2772 5064 3855				1942 1930	1964 1966	1930 1930
STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1980 - 1998, BY WATER YEAR (WY) [REGULATED, UNADJUSTED] OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP MAX 1980 1980 1980 1940 1526 1668 1691 1526 1668 1691 17270 9246 13540 16260 16910 21670 12380 9990 4562 5640 7233 (WY) 1980 1986 1997 1996 1998 1993 1987 1989 1995 1995 1995 1984 1996 MIN 690 785 890 730 2139 1472 1616 2205 1234 1009 595 674 (WY) 1992 1992 1981 1981 1981 1981 1981 1995 1991 1988 1986 1981 1983 SUMMARY STATISTICS FOR 1997 CALENDAR YEAR FOR 1998 WATER YEAR WATER YEARS 1980 - 1998 ANNUAL TOTAL ANNUAL MEAN 2772 5064 3855	SUMMARY STATISTICS	WATER YEARS	S 1927 - 1979			
OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP MEAN 1980 3090 3426 5141 5934 7528 6752 4525 3258 1591 1526 1668 MAX 7966 17270 9246 13540 16260 16910 21670 12380 9990 4562 5640 7233 (WY) 1980 1986 1997 1996 1998 1993 1987 1989 1995 1995 1984 1996 MIN 690 785 890 730 2139 1472 1616 2205 1234 1009 595 674 (WY) 1992 1992 1981 1981 1981 1981 1981 1995 1991 1988 1986 1981 1983	ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS	3663 6241 1947 118000 223 306 150000 35.50 71 1.12 15.26 7910 2100 655	1973 1956 Jun 22 1972 Jul 28 1930 Jul 23 1966 Aug 20 1969 Aug 20 1969 Oct 24 1963			
MAX 7966 17270 9246 13540 16260 16910 21670 12380 9990 4562 5640 7233 (WY) 1980 1986 1997 1996 1998 1993 1987 1989 1995 1995 1984 1996 MIN 690 785 890 730 2139 1472 1616 2205 1234 1009 595 674 (WY) 1992 1992 1981 1981 1981 1981 1995 1991 1988 1986 1981 1983 SUMMARY STATISTICS FOR 1997 CALENDAR YEAR FOR 1998 WATER YEAR WATER YEARS 1980 - 1998 ANNUAL TOTAL 1011886 1848411 ANNUAL MEAN 2772 5064 3855	STATISTICS OF MONTHLY MEAN	N DATA FOR WATER YEA	ARS 1980 - 1998,	BY WATER YEAR (WY)	[REGULATED, UNAD	JUSTED]
ANNUAL TOTAL 1011886 1848411 ANNUAL MEAN 2772 5064 3855	OCT NOV MEAN 1980 3090 MAX 7966 17270 (WY) 1980 1986 MIN 690 785 (WY) 1992 1992	DEC JAN 3426 5141 9246 13540 1 1997 1996 890 730 1981 1981	FEB MAR 5934 7528 16260 16910 1998 1993 2139 1472 1981 1981	APR MAY 6752 4525 21670 12380 1987 1989 1616 2205 1995 1991	JUN JUL 3258 1591 9990 4562 1995 1995 1234 1009 1988 1986	5640 7233 1984 1996 595 674
ANNUAL TOTAL 1011886 1848411 ANNUAL MEAN 2772 5064 3855 HIGHEST ANNUAL MEAN 5064 1998 LOWEST ANNUAL MEAN 1613 1981 HIGHEST DAILY MEAN 28100 Mar 4 e48500 Jan 9 180000 Nov 5 1985 LOWEST DAILY MEAN 620 Sep 7 555 Sep 3 244 Aug 28 1981 ANNUAL SEVEN-DAY MINIMUM 715 Oct 10 715 Oct 10 401 Aug 26 1981 INSTANTANEOUS PEAK FLOW (a) (b) 207000 Nov 5 1985	SUMMARY STATISTICS	FOR 1997 CALENDA	AR YEAR F	OR 1998 WATER YEAR	WATER YE	ARS 1980 - 1998
INSTANTANEOUS PEAK STAGE (a) (b) c42.15 Nov 5 1985 INSTANTANEOUS LOW FLOW d100 Oct 10 20 Oct 29 1987 ANNUAL RUNOFF (CFSM) .85 1.55 1.18 ANNUAL RUNOFF (INCHES) 11.55 21.10 16.07 10 PERCENT EXCREDS 5770 13000 8400	ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS	1011886 2772 28100 620 715 .85 11.55	Mar 4 Sep 7 Oct 10	1848411 5064 e48500 Jan 9 555 Sep 3 715 Oct 10 (a) (b) d100 Oct 10 1.55 21.10 13000		1998 1981 Nov 5 1985 Aug 28 1981 Aug 26 1981 Nov 5 1985 Nov 5 1985 Oct 29 1987
50 PERCENT EXCEEDS 1680 1700 1980 90 PERCENT EXCEEDS 815 792 828	50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	1680 815		1700 792	1980 828	

a Not determined.
b Probably occurred Jan. 9, 1998.
c From high-water mark in gage house.
d Result of regulation.
e Estimated.

02026000 JAMES RIVER AT BENT CREEK, VA

LOCATION.--Lat 37°32'10", long 78°49'30", Nelson County, Hydrologic Unit 02080203, on left bank at town of Bent Creek, 150 ft downstream from Bent Creek, 525 ft upstream from bridge on U.S. Highway 60, 1.3 mi southeast of Gladstone, and at mile 227.8.

DRAINAGE AREA. -- 3,683 mi².

PERIOD OF RECORD.--October 1924 to current year. Monthly discharge only for some periods, published in WSP 1303. Prior to 1926, published as "at Bent Creek, near Gladstone."

REVISED RECORDS.--WSP 742: 1931(m). WSP 972: 1935-36. WSP 1066: 1940. WSP 1203: 1942. WSP 2104: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 381.39 ft above sea level. Prior to Sept. 12, 1930, nonrecording gage at same site and datum.

REMARKS.--No estimated daily discharges. Records good. Large diurnal fluctuation caused by powerplants upstream from station. Flow regulated since December 1979 by Lake Moomaw (station 02011795) 158.3 mi upstream; since October 1984 by Back Creek Lake 186.3 mi upstream; and since January 1985 by Little Back Creek Lake 189.4 mi upstream, amount unknown. National Weather Service gage-height telemeter at station. Maximum discharge, 226,000 ft³/s, from rating curve extended above 177,000 ft³/s on basis of slope-area measurement of peak flow. Minimum gage height, 2.21 ft, Oct. 13, 14, 1930. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 26,500 ft³/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 9	0700	*71,700	*17.02	Mar. 21	2315	55,400	14.93
Feb. 5	0200	49,300	14.09	Apr. 21	0300	35,200	11.88
Feb. 18	2115	41.900	12 98				

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Minimum discharge, 711 ft³/s, Oct. 13, 14-15, Dec. 7.

DAILY MEAN VALUES DAY OCT SEP NOV DEC JAN FEB APR MAY JUN JUL AUG 2.4 2570 ---TOTAL MEAN MAX MIN -5092 -3731 +2672 +1361 +20822 -1160 -151 -101 +504 +101 -5949 MEAN± .56 .48 2.72 CFSM‡ . 25 3.20 4.66 3.40 1.86 .80 .34 .21 IN.‡ .28 .62 . 55 3.69 4.85 3.92 3.03 2.15 .89 .51 .39 .23 IN.‡ IN.‡ CAL YR 1997 TOTAL 1224103 MIN MEAN‡ CFSM‡ 12.17 TOTAL 2088318 CFSM‡ 1.56 WTR YR 1998 MEAN MIN MEAN‡ MAX 21.12

[†] Total change in contents, equivalent in cubic feet per second, per month, in Lake Moomaw; provided by U.S. Army Corps of Engineers.

 [#] Adjusted for monthly change in contents.

02026000 JAMES RIVER AT BENT CREEK, VA--Continued

		0.2		01111		–		, , , , , , , , , , , , , , , , , ,	00110			
STATIST	ICS OF M	ONTHLY MEA	AN DATA	FOR WATER	YEARS 1925	- 1979,	BY WATE	R YEAR (WY)	[UNRE	GULATED]		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	2388	2739 9718	4200	5569	6661	8137	6592	4811	3149	1933	2325	1926
MAX	11180	9718	13990	15920	12630	17410	13490	10790	13360	7286	11930	7642
(WY)	1938	1973	1949	1937	1939	1936	1958	1942	1972	1972	1940 475 1966	1979
MIN	424	581	710	782	889	3227	1893	1509	1045	419	475	450
(WY)	1931	1931	1966	1937 782 1956	1934	1940	1942	4811 10790 1942 1509 1930	1964	1966	1966	1930
SUMMARY	STATIST	ICS		WATER YE	ARS 1925 -	1979						
ANNUAL N				4192								
	ANNUAL			7514		1973						
LOWEST A	ANNUAL M	EAN		2228	Jun 22 Oct 13 Sep 6 Jun 21 Jun 21 bOct 13	1956						
HIGHEST	DAILY M	EAN		130000	Jun 22	1972						
TOMESI I	CEMENT DY	MIN MINITMIIM		256	COD 6	1950						
TNUTANT	VIEUTIC D	EVK ETUM		176000	Jun 21	1972						
INSTANT	ANEOUS P	EAK STAGE		a27 13	Jun 21	1972						
INSTANTA	ANEOUS L	OW FLOW		222	b0gt 13	1930						
ANNUAL I	RUNOFF (CFSM)		1.14								
ANNUAL I	RUNOFF (INCHES)		15.46								
10 PERCI	ENT EXCE	INCHES) EDS		8910								
50 PERCI	ENT EXCE	EDS		2500								
90 PERCI	ENT EXCE	EDS		831								
STATIST	ICS OF M	ONTHLY MEA	AN DATA	FOR WATER	YEARS 1980	- 1998.	BY WATE	R YEAR (WY)	[REGU	LATED, UNADJ	USTED 1	
									-		_	
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	2398		4107		6783	8494	7650	5326	3861	2011	1896	2178
MAX			10380		17200	18860			10710	4973	6027	9873
(WY)	1980	1986	1997	1991	1998 2521	1993	1987	1989 2788	1995	1995	1984 725	1996
MIN	743											841
(WY)	1987	1992	1981	1981	1981	1981	1995	1982	1986	1986	1981	1980
SUMMARY	STATIST	ICS	FOI	R 1997 CAL	ENDAR YEAR	F	FOR 1998 1	WATER YEAR		WATER YEA	RS 1980	- 1998
ANNUAL :				1224103			2088318					
ANNUAL I				3354			5721			4475		
HIGHEST	ANNUAL	MEAN								5735		1980
LOWEST A	ANNUAL M	EAN								1791		1981
HIGHEST	DAILY M	EAN		24700	Mar 5		61600	Jan 9		142000	Nov	5 1985
LOWEST I	DAILY ME	AN		754	Oct 10		754	Oct 10		467	Aug	30 1981
ANNUAL S	SEVEN-DA	Y MINIMUM		904	Oct 10 Oct 10		904	Oct 10		523	Oct	2 1981
		EAK FLOW										5 1985
		EAK STAGE					17	Jan 9 02 Jan 9		30.76		5 1985
	ANEOUS L						711	cOct 13		382		30 1981
	RUNOFF (21		1.			1.22	1149	JJ 1701
				10	2.5		21.			16.51		
AMMUAL I	CONOFF (INCHES) EDS		12.	30			0.5				
				6660			13900			9590		
	ENT EXCE			2380			2480			2590		
90 PERCI	ENT EXCE	EDS		1110	91 36		1000			974		

a From high-water mark.
b Also Oct. 14, 1930.
c Also Oct. 14-15, Dec. 7, 1997.

02029000 JAMES RIVER AT SCOTTSVILLE, VA

LOCATION.--Lat 37°47'50", long 78°29'30", Albemarle County, Hydrologic Unit 02080203, on left bank 900 ft downstream from bridge on State Highway 20 at Scottsville, 6.8 mi upstream from Hardware River, and at mile 188.6.

DRAINAGE AREA. -- 4,584 mi².

PERIOD OF RECORD.--October 1924 to current year. Monthly discharge only for some periods, published in WSP 1303.

REVISED RECORDS.--WSP 727: 1931(m). WSP 972: 1936(M), 1940(M). WSP 2104: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 253.18 ft above sea level. Prior to Nov. 28, 1928, nonrecording gage at same site and datum.

REMARKS.--Records good except for period of no gage-height record, Feb. 9-12. Large diurnal fluctuation caused by powerplants upstream from station. Flow regulated since December 1979 by Lake Moomaw (station 02011795) 197.5 mi upstream; since October 1984 by Back Creek Lake 225.5 mi upstream; and since January 1985 by Little Back Creek Lake 228.6 mi upstream, amount unknown. National Weather Service gage-height telemeter at station. Maximum discharge, 301,000 ft³/s, from rating curve extended above 120,000 ft³/s on basis of slope-conveyance study. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in October 1870 reached a stage of 30.7 ft, discharge, about 215,000 ${\rm ft}^3/{\rm s}$, and flood in November 1877 reached a stage of 27.9 ft, discharge, about 160,000 ${\rm ft}^3/{\rm s}$, from information by local resident. Flood in March 1913 reached a stage of 25.16 ft, from floodmarks, discharge, 121,000 ${\rm ft}^3/{\rm s}$.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of $35,000~{\rm ft}^3/{\rm s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 9	1700	*78,800	*21.13	Feb. 18	0630	53,900	17.85
Jan. 28	2030	52,400	17.60	Mar. 22	0645	63,200	19.79
Feb. 5	1000	59,300	18.64	Apr. 21	0945	41,400	15.70

Minimum discharge, 812 ft³/s, Oct. 11; minimum gage height, 2.50 Sept. 17, 29.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES

DAY	OCT	NO	V DEC	JAI	N FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1410 1330 1420 1350 1270	170 307 363 325 281	0 1980 0 2140 0 2270		0 13900 0 12000 0 21200	11000 10900 10600 9290 8470	7650 7140 6340 10600 15100	6740 7770 8340 8880 10500	4930 4300 3870 3710 3460	3540 3080 2630 2520 2360	1520 1520 1400 1310 1160	1350 1260 1410 1200 943
6 7 8 9 10	1270 1220 1030 1190 1130	244 507 588 477 547	0 1580 0 1390 0 1790		0 31900 0 26000 0 e22000	7640 6970 7700 17500 22200	12600 12000 10100 9500 11300	11600 12400 16900 19600 20200	3400 3310 3220 2930 3140	2480 2330 2330 2310 2460	1260 1260 1220 2590 2690	1190 1160 1220 1200 1290
11 12 13 14 15	874 999 1060 1040 1110	467 354 290 269 267	0 1800 0 2010 0 1920	17900 12200 9100 7760 6950	0 e14500 0 18500 0 18400	22500 17100 13900 11400 9410	15300 13600 11400 9850 9020	15500 13000 12500 10200 8960	3290 3080 3120 3040 3320	2390 2140 2300 2160 1830	1810 1750 1730 1740 1830	1400 1260 1020 1190 1080
16 17 18 19 20	1070 1110 1510 1400 1250	239 228 212 200 200	0 1840 0 1860 0 1740	12600 12900 12300 10100 8860	0 21700 0 50900 0 44000	8630 7820 7080 9090 25300	8160 16000 22000 18500 25800	7730 9210 7800 6460 6000	3890 4110 4610 4590 4300	1790 1970 2140 1840 1680	1950 2310 2950 2540 2340	1180 939 1420 1030 1230
21 22 23 24 25	1200 1200 1200 1150 1190	196 211 245 228 215	0 1630 0 1690 0 1910		0 22100 0 19300 0 18500	51600 60000 34200 24600 20500	37400 26100 19300 14800 12500	5520 5020 4740 4820 5130	3660 3630 3610 3010 3020	1440 1120 1630 1850 1910	2020 1730 1730 1600 1540	1260 1180 1080 1290 1080
26 27 28 29 30 31	1470 1790 1950 1760 1490 1340	221 211 187 193 177	0 2990 0 3620 0 3550 0 3520		13300 0 12300 0 0	17600 14100 11200 9740 8900 8270	10700 9710 8540 7590 7080	5020 5190 5640 8060 6710 5470	2590 2580 2460 2550 2660	1670 1670 1680 1910 1490 1580	1420 1520 1460 1610 1420 1600	965 1210 1080 952 1070
TOTAL MEAN MAX MIN (†) MEAN‡ CFSM‡ IN.‡	39783 1283 1950 874 -3731 1163 .25 .29	8619 287 588 170 +267 296 .6	3 2207 0 3620 0 1390 2 +1361 2 2251 5 .49	68100 2440 +20822 15561 3.40	0 22960 0 54100 0 12000 2 -1160 7 22219 0 4.85	505210 16300 60000 6970 -151 16292 3.55 4.10	405680 13520 37400 6340 -101 13519 2.95 3.29	281610 9084 20200 4740 +504 9100 1.99 2.29	103390 3446 4930 2460 +101 3450 .75	64230 2072 3540 1120 -5092 1908 .42 .48	54530 1759 2950 1160 -6201 1559 .34	35139 1171 1420 939 -5949 973 .21 .24
CAL YR WTR YR			1550825 2748832		4249 MAX 7531 MAX	33400 68100		874 MEAN:		CFSM‡ CFSM‡ 1	.92 IN.‡	12.43 22.31

[†] Total change in contents, equivalent in cubic feet per second, per month, in Lake Moomaw; provided by U.S. Army Corps of Engineers.

Adjusted for monthly change in contents.

e Estimated.

02029000 JAMES RIVER AT SCOTTSVILLE, VA--Continued

								•				
STATIS	TICS OF M	ONTHLY MEA	AN DATA	FOR WATER	YEARS 192	5 - 1979	, BY WATER	YEAR (WY)	[UNRE	GULATED]		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	3139	3440	5208	6854	8040	9495	7988		4024	2453	2992	2521
MAX	14550	12920	18620	19350		20320	16600	12480	18960	9225	15330	11690
(WY)	1938	1973	1949	1937			1935	1942	1972	1972	1940	1979
MIN	499	1973 792 1931	844	1002	1335	3942	2571 1942	2007	1202	527 1966	594	502
(WY)	1931	1931	1966	1956	1934	1925	1942	1930	1964	1966	1930	1930
SUMMAR	Y STATIST	ICS		WATER Y	EARS 1925	- 1979						
ANNUAL	MEAN			5149								
	T ANNUAL			9317		1973						
LOWEST	ANNUAL M	EAN		2477		1956						
HIGHES	T DAILY M	EAN		208000	Jun 1	22 1972						
LOWEST	DAILY ME	AN		300	Sep .	13 1966 7 1966						
TNOTAN	AU-NEVER	I MINIMOM		201000	Sep	22 1972						
INSTAN	TANEOUS P	EAK FLOW		a34 N	2 Jin 1	22 1972						
INSTAN	TANEOUS L	OW FLOW		b302	Oct.	1 1930						
ANNUAL	RUNOFF (CFSM)		1.1	2							
ANNUAL	RUNOFF (INCHES)		2477 208000 300 321 301000 a34.0 b302 1.1 15.2 10600	6							
10 PER	CENT EXCE	EDS		10600								
JU PER	CENI EVCE	FDS		3190								
90 PER	CENT EXCE	EDS		1000								
STATIS	TICS OF M	ONTHLY MEA	AN DATA	FOR WATER	YEARS 198	0 - 1998	, BY WATER	YEAR (WY)	[REGU	LATED, UNAD	JUSTED]	
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	3043	4548	5224						4868	2602	2434	2795
MAX			13450	18230			28930				7934	13180
(WY)	1980	1986	1997								1984	1996
MIN	963	1251	1318	1996 1165	3198	1961	1987 2493	3610	1799	1262	934	844
(WY)		1992	1981	1981		1981		1982		1986	1987	1983
(11 ±)	1007	1002	1701	1701	1701	1701	1000	1702	1700	1000	1707	1703
SUMMAR	Y STATIST	ICS	FOR	1997 CALE	NDAR YEAR	1	FOR 1998 W	ATER YEAR		WATER YE.	ARS 1980	- 1998
ANNUAL	T∩TAI.			1550825			2748832					
ANNUAL				4249			7531			5701		
	T ANNUAL	ME AN		7279			7331			7532		1998
	ANNUAL M									2217		1981
				22400			60100	T 0		199000	37.	
	T DAILY M			33400	Mar 5		68100					6 1985
	DAILY ME			874 1040	Oct 11 Oct 11		874	Oct 11		571		10 1983
		Y MINIMUM		1040	OCT II		1040	Oct 11		602		3 1981
	TANEOUS P						78800	Jan 9		243000		6 1985
		EAK STAGE						3 Jan 9		31.77		6 1985
	TANEOUS L						812			548		10 1981
	RUNOFF (.9	3		1.6			1.24		
	RUNOFF (12.5	9		22.3	1		16.90		
10 PER	CENT EXCE	EDS		8320			18500			12300		
50 PER	CENT EXCE	EDS		2990			3040			3320		
90 PER	CENT EXCE	EDS		1290	9		1220			1190		

a From floodmarks.
b Probably lower during period of doubtful record in September 1966.

DAY

JAMES RIVER BASIN

02030000 HARDWARE RIVER BELOW BRIERY CREEK, NEAR SCOTTSVILLE, VA

LOCATION.--Lat 37°48'45", long 78°27'20", Fluvanna County, Hydrologic Unit 02080203, on left bank 75 ft upstream from bridge on State Highway 637, 0.8 mi downstream from Briery Creek, 2.4 mi northeast of Scottsville, and 10.8 mi upstream from mouth.

DRAINAGE AREA. -- 116 mi².

PERIOD OF RECORD.--October 1938 to September 1995, October 1996 to September 1997. Monthly discharge only for some periods, published in WSP 1303. Published as "below Briery Run" prior to October 1990.

REVISED RECORDS.--WSP 952: 1941(M). WSP 1002: 1940, 1943. WSP 1032: 1940, 1944.

GAGE.--Water-stage recorder. Datum of gage is 294.96 ft above sea level.

REMARKS.--No estimated daily discharges. Records good. Maximum discharge, 52,000 ft³/s, from rating curve extended above 18,000 ft³/s on basis of slope-area measurements at gage heights 23.8 ft and 31.0 ft. Minimum gage height, 0.81 ft, Sept. 8, 1966. Several measurements of water temperature were made during the year.

EXTREMES FOR CURRENT YEAR. -- Peak discharges equal to or greater than base discharge of 1,500 ft³/s and maximum (*):

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

AUG

SEP

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Nov. 7	1715	1,720	9.20	Feb. 17	2330	4,820	14.40
Jan. 8 Jan. 28	1945 2030	1,570 *4,840	8.75 *14.43	Mar. 21 Mav 8	0645 0800	4,060 2,110	13.49 10.13
Feb. 4	2330	3,290	12.50	nay o	0000	2,110	10.15

Minimum discharge, 7.4 ft³/s, Sept. 29, 30.

DAILY MEAN VALUES

OCT NOV DEC JAN FEB MAR APR MAY JUN JUL

50 101 90 94 320 289 256 217 136 94

1 2	50 46	101 173	90 78	94 96	320 277	289 296	256 264	217 286	136 128	94 91	49 43	27 26
3	40	173	78 75	101	258	314	231	248	128	105	43	25
4	37	74	103	112	1640	271	435	214	121	92	42	25
5	37	62	93	112	2100	257	362	457	121	92	37	23
5	35	0.2	93	112	2100	257	302	457	124	96	3 /	23
6	34	63	82	107	1060	244	266	272	124	88	35	22
7	35	1120	77	148	857	238	240	331	117	84	35	22
8	34	979	73	965	580	678	230	1710	114	86	37	25
9	33	372	72	571	452	1160	402	656	114	85	234	24
10	34	199	81	277	372	611	480	399	134	114	129	18
11	33	149	97	200	330	411	331	318	128	79	84	18
12	31	125	84	170	611	331	275	311	127	69	83	16
13	31	112	78	163	383	296	251	293	122	65	68	15
14	32	208	75	147	314	281	241	248	115	63	60	14
15	37	163	71	345	276	261	235	225	165	62	57	13
16	36	129	70	687	256	247	222	212	165	61	64	12
17	40	111	69	332	1830	239	635	205	254	97	76	12
18	79	102	67	240	2280	283	410	195	134	82	85	20
19	58	95	65	202	655	803	361	186	130	65	67	20
20	47	90	64	187	509	668	685	175	143	61	54	21
21	40	91	64	166	427	2540	388	172	117	59	48	18
22	38	178	69	156	364	698	316	162	110	55	45	17
23	36	132	94	801	498	479	280	163	109	53	43	14
24	36	110	83	600	572	394	275	169	143	84	40	11
25	60	98	197	414	407	343	244	167	112	60	37	10
26	75	92	136	281	345	317	226	154	105	56	35	12
27	140	87	119	325	318	299	216	173	99	55	33	12
28	77	82	143	3140	303	282	208	197	98	61	38	11
29	60	79	132	1780		268	199	160	106	54	37	8.0
30	57	79	125	580		259	195	148	101	49	33	8.0
31	53		110	402		247		141		48	30	
TOTAL	1474	5576	2836	13901	18594	14304	9359	8964	3821	2273	1800	519.0
MEAN	47.5	186	91.5	448	664	461	312	289	127	73.3	58.1	17.3
MAX	140	1120	197	3140	2280	2540	685	1710	254	114	234	27
MIN	31	62	64	94	256	238	195	141	98	48	30	8.0
CFSM	.41	1.60	.79	3.87	5.72	3.98	2.69	2.49	1.10	.63	.50	.15
IN.	.47	1.79	.91	4.46	5.96	4.59	3.00	2.87	1.23	.73	.58	.17

Sep 1 1966

Aug 20 1969 Aug 20 1969

JAMES RIVER BASIN

02030000 HARDWARE RIVER BELOW BRIERY CREEK, NEAR SCOTTSVILLE, VA--Continued

STATISTICS	OF MONTHLY	MEAN DATA	FOR	WATER	YEARS	1939	_ 19	95 1997	_	1998	RY	MATER	VEAR	(WV)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	91.1	101	133	156	190	219	186	139	109	78.0	99.1	82.1
MAX	370	514	514	448	664	613	604	398	560	273	1155	750
(WY)	1977	1986	1949	1998	1998	1993	1983	1989	1972	1975	1969	1944
MIN	11.4	17.5	20.5	25.0	50.3	35.1	39.5	36.0	24.2	9.45	4.71	7.93
(WY)	1942	1942	1966	1966	1954	1981	1981	1981	1956	1966	1966	1954
SUMMAR	Y STATIST	ICS	FOR :	1997 CALEI	NDAR YEAR	F	OR 1998 W.	ATER YEAR		WATER YE	EARS 1939	- 1998
ANNUAL	TOTAL			42500			83421.0					
ANNUAL	MEAN			116			229			132		
HIGHES	T ANNUAL I	MEAN								249		1973
LOWEST	ANNUAL MI	EAN								39.0		1981
HIGHES	T DAILY M	EAN		1120	Nov 7		3140	Jan 28		28400	Aug	20 1969
LOWEST	DATLY ME	ΔN		11	Sen 6		8 0	agan 20		1.0) Sen	5 1966

LOWEST DAILY MEAN Sep aSep 29 Sep 3 Sep 24 ANNUAL SEVEN-DAY MINIMUM 13 10 .16 INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE 52000 4840 Jan 28 14.43 Jan 28 b31.00 INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 7.4 aSep 29 cSep 5 1966 .10 1.00 13.63 1.97 26.75 1.14 15.43 10 PERCENT EXCEEDS 197 454 241 50 PERCENT EXCEEDS 87 121 82 31 90 PERCENT EXCEEDS 26 33

a Also Sept. 30, 1998. b From floodmarks. c Also Sept. 6-8, 1966.

02034000 RIVANNA RIVER AT PALMYRA, VA

LOCATION.--Lat 37°51'28", long 78°15'58", Fluvanna County, Hydrologic Unit 02080204, on left bank 10 ft upstream from bridge on U.S. Highway 15 at Palmyra, 0.5 mi upstream from Cunningham Creek, and 15 mi upstream from mouth.

DRAINAGE AREA. -- 664 mi².

PERIOD OF RECORD.--October 1933 to current year. Monthly discharge only for some periods, published in WSP 1303.

REVISED RECORDS.--WSP 802: 1936(M). WSP 852: 1937. WSP 892: 1934-35. WSP 1303: 1945-46(M). WSP 1503: 1956. WSP 2104: Drainage area. WDR VA-72-1: 1969(M).

GAGE.--Water-stage recorder. Datum of gage is 210.39 ft above sea level. Prior to Oct. 24, 1942, water-stage recorder at site 200 ft downstream at same datum. Oct. 24, 1942, to Dec. 18, 1947, nonrecording gage 10 ft downstream at same datum.

REMARKS.--No extimated daily discharges. Records good. Some diurnal fluctuation at times mostly at low and medium flow by South Fork Rivanna River Reservoir. Combined diversion of water supply and discharge from waste-water treatment plant upstream at Charlottesville results in an average gain of about 1.3 ft³/s upstream from the gage. National Weather Service gage-height telemeter at station. Maximum discharge, 86,000 ft³/s, from rating curve extended above 76,000 ft³/s on basis of contracted-opening measurement of peak flow and velocity-area study. Minimum gage height, 2.13 ft, Sept. 9-11, 1966. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 6,000 ${\rm ft}^3/{\rm s}$ and maximum (*):

Discharge Gage height Date Time $(\mathrm{ft}^3/\mathrm{s})$ (ft) Date Time $(\mathrm{ft}^3/\mathrm{s})$ (ft)

Minimum discharge,

02034000 RIVANNA RIVER AT PALMYRA, VA--Continued

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1934 - 1998, BY WATER YEAR (WY)

OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP

a Also Sept. 10, 11, 1966.

02035000 JAMES RIVER AT CARTERSVILLE, VA

LOCATION.--Lat 37°40'15", long 78°05'10", Goochland County, Hydrologic Unit 02080205, on left bank 200 ft downstream from bridge on State Highway 45 at Cartersville, 1.8 mi downstream from Willis River, and at mile 156.4.

DRAINAGE AREA.--6,257 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1898 to current year. Monthly discharge only for some periods, published in WSP 1303.

REVISED RECORDS.--WSP 972: 1936(M). WSP 1203: 1901-2(M), 1923-25(M), 1928(M). WSP 2104: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 163.90 ft above sea level. Prior to June 4, 1927, nonrecording gage at same site and datum.

REMARKS.--Records good except those for periods of doubtful gage-height record, Jan. 30-31, Feb. 25 to Mar. 1, July 15-17, 20-22, 25-27, Aug. 28, and Sept. 1-2, which are fair. Moderate diurnal fluctuation caused by powerplants upstream from station. National Weather Service gage-height telemeter at station. Maximum discharge, 362,000 ft³/s, from rating curve extended above 160,000 ft³/s on basis of slope-conveyance study. Minimum gage height, 0.02 ft, Sept. 13, 14, 1966.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 40,000 ft³/s and maximum (*):

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 10	0415	76,900	21.05	Mar. 22	0145	81,000	21.71
Jan. 29	0700	82,000	21.87	Apr. 21	1530	48,000	15.68
Feb. 5	2345	80,800	21.69	May 9	1200	41,200	14.22
Feb. 18	1930	*82,200	*21.91				

Minimum discharge, 879 ft³/s, Oct. 13-14; minimum gage height, 0.72 ft, Sept. 30.

		DISC	HARGE, IN	CUBIC FE		COND, WATI AILY MEAN		CTOBER 199	97 TO SEPT	EMBER 199	8	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2640	1770	2990	4980	25600	e15900	10500	9280	6730	4000	1980	e1850
2	1420	2870	3270	4460	20500	15200	10200	11300	6180	4370	1930	e1600
3	1440	5480	3380	4150	17400	15700	9140	12400	5530	3850	1860	1510
4	1390	4620	3690	4100	23800	13900	10800	12200	5230	3660	1810	1600
5	1360	4040	4210	4150	70800	12500	24100	15800	4860	3400	1660	1390
6	1230	3540	4160	4290	71500	11200	17300	17600	4860	3180	1500	1080
7	1270	8190	4670	5350	51800	10100	16900	17200	4760	3270	1660	1310
8	1190	23500	2510	13300	41000	10700	14300	29300	4530	3170	1560	1350
9	1090	14600	2620	59000	31800	25900	12900	40000	4450	3220	1820	1420
10	1130	9630	3100	64500	26300	33100	15800	30500	4350	3500	5120	1470
11	1090	8270	3360	26200	22500	31500	17900	23400	4760	3740	3500	1490
12	950	6290	3570	17100	23500	24300	18300	19000	4750	3180	2540	1560
13	980	5150	3160	13300	27200	19300	15000	18400	4740	2930	2280	1360
14	1040	4810	3290	11200	25900	16300	13200	15500	4520	3090	2310	1100
15	1130	5270	3170	10000	23900	13500	12100	13400	4880	e2550	2270	1260
16	1160	4720	3250	20000	20500	11700	11100	11500	6580	e2350	2400	1160
17	1200	4060	3080	19200	23600	10800	18600	11300	6580	e2400	2840	1210
18	2660	3660	2860	17600	74200	10400	32100	12300	6610	2750	3480	1270
19	2970	3520	2980	14800	71400	19900	25500	9600	6700	2760	3720	1860
20	2040	3300	2790	12800	45400	29000	29900	8750	6410	e2350	3560	1430
21	1630	3310	2730	11200	35800	68400	45100	8040	5680	e2000	2820	1420
22	1430	3810	2590	9910	30300	78500	35400	7460	5260	e1700	2630	1480
23	1380	4630	2870	14300	27500	56800	25600	6850	5230	1630	2160	1380
24	1330	4320	3220	29500	31600	34100	20200	6810	6240	2170	2280	1270
25	1330	3850	4310	27100	e25000	27100	16500	7150	5270	e2450	1940	1440
26	1560	3620	5810	23300	e21000	22600	14600	7140	4460	e2350	1980	1200
27	2750	3490	5040	19000	e18300	19100	12800	7140	3760	e2100	1730	1080
28	3320	3410	5870	48300	e16900	15800	11800	8200	3550	2190	e1900	1310
				77300						2190		1200
29	2490	2980	6150			13100	10600	9030	3610		1850	
30	2190	3160	5840	e46500		12400	9730	10300	3730	2370	1940	1090
31	1810		5680	e31000		11100		8120		1930	1700	
TOTAL	50600	163870	116220	667890	945000	709900	537970	424970	154800	86880	72730	41150
MEAN	1632	5462	3749	21540	33750	22900	17930	13710	5160	2803	2346	1372
MAX	3320	23500	6150	77300	74200	78500	45100	40000	6730	4370	5120	1860
MIN	950	1770	2510	4100	16900	10100	9140	6810	3550	1630	1500	1080
CFSM	.26	.87	.60	3.44	5.39	3.66	2.87	2.19	.82	.45	.37	.22
IN.	.30	.97	.69	3.97	5.62	4.22	3.20	2.53	.92	.52	.43	.24

e Estimated.

02035000 JAMES RIVER AT CARTERSVILLE, VA--Continued

STATISTICS	OF	MONTHLY	MEAN	DATA	FOR	WATER	YEARS	1899	_	1998.	BY	WATER	YEAR	(WY)

							•		•			
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	4248	4795	7038	9664	10980	13200	11140	7999	6097	3821	4034	3517
MAX	20830	28210	25990	26480	33750	31810	33500	23530	30330	15070	20490	18150
(WY)	1907	1986	1949	1936	1998	1993	1987			1919	1969	1996
MIN	528	924	1054	1353	2055	2646	3286	2710	1620	605	652	561
(WY)	1931	1931	1966	1956	1934	1981	1995	1930	1964	1966	1930	1930
SUMMARY	Y STATIST	'ICS	FOR	1997 CAL	ENDAR YEAR		FOR 1998	WATER YE	AR	WATER	YEARS 189	9 - 1998
ANNUAL	TOTAL			2239090			3971980					
ANNUAL	MEAN			6134			10880			7191		
HIGHEST	r annual	MEAN								12410		1973
LOWEST	ANNUAL M	IEAN								2981		1981
HIGHEST	r daily m	IEAN		40400	Mar 5		78500	Mar	22	280000	Jun	22 1972
LOWEST	DAILY ME	AN		950	Oct 12		950			330	-	14 1966
ANNUAL	SEVEN-DA	Y MINIMUM		1060	Oct 9		1060	Oct	9	386	Sep	8 1966
INSTANT	raneous p	EAK FLOW					82200			362000		22 1972
		EAK STAGE						.91 Feb		a37.		22 1972
INSTANT	TANEOUS L	OW FLOW					b879		13	316	cSep	13 1966
	RUNOFF (1			1.		
	RUNOFF (13.	31			.61		15.	61	
	CENT EXCE			12300			26600			15100		
	CENT EXCE			4560			4750			4490		
90 PERC	CENT EXCE	EDS		1440			1420			1450		

a From floodmarks.
b May have been affected by regulation from Lake Moomaw, 230 mi upstream.
c Also Sept. 14, 1966.

02035000 JAMES RIVER AT CARTERSVILLE, VA--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1930, 1948, 1967 to current year.

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: April 1968 to January 1976, October 1980 to May 1981, October 1991 to September 1994.
WATER TEMPERATURE: April 1968 to January 1976, October 1980 to May 1981, October 1991 to September 1994.
SUSPENDED-SEDIMENT DISCHARGE: October 1980 to May 1981.

COOPERATION.--Chemical data as noted were provided by the Virginia Division of Consolidated Laboratory Services (VDCLS) and reviewed by the U.S. Geological Survey.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	TUR- BID- ITY (NTU) (00076)	OXYGEN, DIS- SOLVED (MG/L) (00300)
OCT 1997										
17	1000	1230	311	7.4	10.0	17.0	767	VDCLS	3.7	7.2
NOV										
08	1345	24100	94	6.5	11.0	10.0	741	VDCLS	97	10.7
10	0845	9380	137	6.9	8.5	10.5	760	VDCLS	34	10.4
DEC	0015	,,,,,	137	0.5	0.5	10.5	, 00	12020	31	10.1
23	0900	2930	227	6.6	5.0	5.0	762	VDCLS	4.0	12.6
JAN 1998	0900	2930	221	0.0	5.0	5.0	702	VDCLS	4.0	12.0
	1100	61100	1.71		1.5 0	11.0			222	0 5
09	1100	61100	174	6.3	16.0	11.0	755	VDCLS	330	9.5
10	0930	74400	109	6.8	6.5	10.0	768	VDCLS	480	9.9
*10	0945	74100	109	6.8	6.5	10.0	768	VDCLS	420	9.9
11	0925	27000	92	6.4	6.5	10.0	766	VDCLS	290	10.9
13	1230	13100	108	6.5	12.0	8.0	762	VDCLS	52	11.3
16	0915	20400	98	6.5	8.0	5.0	754	VDCLS	110	11.7
24	0930	32000	92	7.0	6.0	6.0	759	VDCLS	93	12.4
*24	0945	31900	92	7.0	6.0	6.0	759	USGS		12.4
26	1045	23600	140	6.9	6.0	5.5	772	VDCLS	43	12.6
29	1015	81300	62	7.0	10.5	5.0	761	VDCLS	190	12.4
30	0930	47000	98	6.8	9.5	4.5	759	VDCLS	72	12.2
FEB	0,50	47000	20	0.0	5.5	4.5	733	VDCID	72	12.2
	1000	60000	78	<i>c</i> 0		4 5	750	TIDGE C	100	10 2
05	1000	69800		6.9	5.5	4.5	752	VDCLS	120	12.3
06	1030	74900	104	7.0	6.5	5.0	762	VDCLS	160	12.5
12	0830	22100	103	7.2	8.5	6.4	752	USGS	13	12.3
18	0945	74400	71	6.8	15.0	7.0	752	VDCLS	200	11.7
*18	1000	74700	71	6.8	15.0	7.0	752	USGS		11.7
MAR										
03	1230	15700	128	6.8	11.0	9.0	755	VDCLS	10	11.1
22	1000	79600	99	6.6	10.0	8.5	755	VDCLS	240	13.8
APR										
03	0930	9150	130	7.3	19.0	17.5	762	VDCLS	11	9.2
18	1300	31100	91	7.0	17.5	16.2	750	VDCLS	160	8.8
*18	1315	30900	91	7.0	17.5	16.2	750	VDCLS	110	8.8
21	0915	45600	102	7.7	15.0	13.6	750	VDCLS	80	9.9
MAY	0913	43000	102	/./	13.0	13.0	730	VDCLIS	80	9.9
	0015	12700	140	7 0	17 0	17.0	750	TIDGE C	1.5	0 0
05	0915	13700	148	7.2	17.0	17.0	759	VDCLS	15	8.9
06	0915	17200	142	6.9	19.0	18.0	762	VDCLS	29	9.2
28	1015	8190	155	7.8	24.0	21.0	766	VDCLS	5.6	7.8
*28	1020	8210	155	7.8	24.0	21.0	766	VDCLS	4.9	7.8
JUN										
09	1000	4730	170	7.1	23.0	21.0	769	VDCLS	1.3	8.7
*09	1015	4730	170	7.1	23.0	21.0	769	USGS		8.7
16	0930	6720	152	7.5	26.5	24.0	755	VDCLS	22	7.9
JUL										
07	1000	3400	238	6.3	28.0	28.0	766	VDCLS	2.4	7.7
*07	1015	3400	238	6.3	28.0	28.0	766	VDCLS	3.1	7.7
AUG	1013	2400	230	0.5	20.0	20.0	, 00	A D C T D	J.1	, . ,
04	0020	1000	254	6.5	24.0	26.0	755	TIDGI C		7.2
	0930	1960	254	0.5	24.0	26.0	755	VDCLS	1.1	1.2
SEP	1100	1.400	0.50	0 0	00 5	0.5.0			4.6	
08	1100	1490	263	8.0	20.5	26.0	741	VDCLS	4.0	6.5

^{*} Replicate sample.

JAMES RIVER BASIN

02035000 JAMES RIVER AT CARTERSVILLE, VA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

	OXYGEN, DIS-	SILICA,	RESIDUE TOTAL		RESIDUE	NITRO-	NITRO- GEN,	NITRO- GEN,	NITRO- GEN,	NITRO- GEN,
	SOLVED (PER-	DIS- SOLVED	AT 105 DEG. C,	FIXED NON	VOLA- TILE,	GEN DIS-	NITRATE DIS-	NITRITE DIS-	NO2+NO3 DIS-	AMMONIA DIS-
	CENT	(MG/L	SUS-	FILTER-	SUS-	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED
DATE	SATUR-	AS	PENDED	ABLE	PENDED	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L
	ATION)	SIO2)	(MG/L)	(MG/L)	(MG/L)	AS N)	AS N)	AS N)	AS N)	AS N)
	(00301)	(00955)	(00530)	(00540)	(00535)	(00602)	(00618)	(00613)	(00631)	(00608)
			**	**	**	* *		**	**	**
OCT 1997	7.4	2.0	. 3	<3	. 3	020	0.45	. 000	0.45	. 004
17 NOV	74	3.2	<3	-	<3	.232	.045	<.002	.045	<.004
08	97	7.9	93	80	13	.505	.207	.002	. 209	.014
10	93	8.7	29	24	5	.493	.247	.002	.247	.020
DEC 23	99	4.2	<3	<3	<3	.272	.110	<.002	.110	<.004
JAN 1998	99	4.2	< 3	< 3	< 3	.2/2	.110	<.002	.110	<.004
09	87	5.8	472	380	92	.464	.245	.004	.249	.036
10	87	6.1	372	326	46	.577	.301	.004	.305	.036
*10	87	5.8	356	314	42	.546	.295	.004	. 299	.036
11	96	7.1	212	182	30	.624	.372	.003	.375	.015
13	95	8.3	35	30	5	.604	.508	.002	.510	.020
16	93	9.1	103	87	16	.574	.365	.003	.368	.029
24	100	8.3	109	92	17	.538	.293	.002	. 295	.025
*24	100	7.7	102	80	22	.46			.28	.018
26	99	8.1	43	37	6	.455	.358	.002	.360	.017
29	97	6.1	190	164	26	.483	.220	.002	.222	.040
30	95	7.3	98	85	13	.423	.292	.002	.294	.016
FEB										
05	96	6.7	202	175	27	.533	.270	.002	.272	.028
06	98	6.4	154	135	19	.529	.266	.002	.268	.020
12	101	8.5	24	21	3 30	.491	.397	<.002	.397	.011
18	98 98	6.4	219 198	189 168	30	.476 .38	.228	.002	.230	.024 .015
*18 MAR	98	5.8	198	108	30	. 38			.21	.015
03	97	8.6	16	14	<3	.487	.332	.002	.334	.011
22	119	6.1	274	244	30	.431	.215	.003	.218	.022
APR		0.1	2,1		30		.223	.003	.210	.022
03	96	8.2	10	7	<3	.349	.228	.002	.230	
18	91	6.2	257	216	41	.378	.120	.002	.122	.017
*18	91	1.2	116	98	18	.415	.120	.002	.122	.018
21	97	7.8				.373	.200	.003	.203	.032
MAY										
05	92	8.0	24	20	4	.301	.214	.002	.216	.012
06	97	7.5	70	59	11	.448	.210	.003	.213	.012
28	87	7.1	11	8	3	.291	.151	.003	.154	<.004
*28	87	7.2	11	9	<3	.328	.152	.003	.155	
JUN	97	0 0	2	<3	. 3	0.5.1	.071	. 000	071	
09 *09	97	8.0 7.4	3 2	<3	<3 5	.251 .20	.071	<.002	.071 .052	<.002
16	95	9.3	31	25	6	.481	.248	.003	.251	.016
JUL	20	9.3	21	25	O	.401	.240	.003	. 431	.010
07	97	8.6	3	<3	<3	.334	.169	.002	.171	.006
*07	97	8.6	3	<3	<3	.406	.167	.002	.169	.008
AUG	<i></i>	0.0	5	-5	- 5	. 100				
04	90	7.5	<3	<3	<3	.265	.116	< .002	.116	.005
SEP			-	-	-					
08	83	4.1	<3	<3	<3	.243	.027	<.002	.027	<.004

^{*} Replicate sample.

** For these constituents, there are differences in the minimum constituent reporting levels between the analyzing agencies.

< Actual value is known to be less than the value shown.

02035000 JAMES RIVER AT CARTERSVILLE, VA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DATE	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	NITROGN TOTAL SEDIMNT SUSP TOTAL AS N (MG/L) (00601)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS TOTAL SEDIMNT SUSP TOTAL AS P (MG/L) (00667)	CARBON, INORG + ORGANIC SUSP. TOTAL (MG/L AS C) (00694)
OGT 1005					**			
OCT 1997 17			.024	.05	.045	.038	.002	.19
NOV			.024	.03	.045	.030	.002	.17
08			.419		.033	.018	.081	4.35
10			.108		.036	.031	.022	1.06
DEC								
23			.021		.029	.023	.010	.25
JAN 1998 09			1.846		.020	.015	.698	17.95
10			1.110		.025	.020	.239	10.52
*10			1.528		.031	.020	.330	14.90
11			.686		.020	.016	.226	6.23
13			.152		.060	.018	.056	1.41
16			.418		.026	.018	.105	4.38
24			.358		.025	.022	.108	3.76
*24	. 4	. 2		.13	.01	.018		
26			.157 .561		.037	.031	.050	1.52
29 30			.247		.037	.013	.199 .098	5.83 2.83
FEB			.24/		.022	.014	.090	2.03
05			.386		<.010	.006	.206	4.51
06			.384		.010	.013	.128	3.92
12			.070		.020	.017	.027	.76
18			.505		.020	.014	.240	5.50
*18	.7	. 2		.33	.02	.007		
MAR			056		010	0.1.0	000	
03 22			.056 .862		.018	.013	.022	.51
APR			.802		.033	.023	.220	8.63
03			.064		.020	.014	.019	.52
18			.514		.035	.012	.227	5.22
*18			.607		.034	.012	.227	6.71
21			.359		.024	.016	.121	3.86
MAY								
05			.080		.019	.018	.027	.76
06			.196		.024	.021	.071	1.92
28 *28			.051 .068		.026 .029	.025 .024	.015 .015	.45 .64
JUN			.000		.025	.024	.013	.04
09			.033		.028	.018	.009	.21
*09	<.1	.1		.05	< .01	.016		
16			.118		.039	.031	.031	1.37
JUL								
07			.030		.042	.035	.009	.22
*07 AUG			.031		.045	.035	.009	.24
04			.019		.052	.042	.007	.17
SEP			.010		.032	.012	.007	• ± /
08			.016		.044	.034	.006	.19

^{*} Replicate sample.
** For these constituents, there are differences in the minimum constituent reporting levels between the analyzing agencies.
< Actual value is known to be less than the value shown.

THIS IS A BLANK PAGE

02038850 HOLIDAY CREEK NEAR ANDERSONVILLE, VA

LOCATION.--Lat 37°24'55", long 78°38'10", Appomattox County, Hydrologic Unit 02080207, on right bank 350 ft downstream from culvert on State Highway 614, 1.0 mi upstream from Holiday Lake, and 5.2 mi southwest of Andersonville.

DRAINAGE AREA.--8.53 mi².

PERIOD OF RECORD. -- April 1966 to current year.

REVISED RECORDS.--WDR VA-72-1: 1967-71(M), 1966-69(P), 1971(P).

GAGE.--Water-stage recorder. Datum of gage is 472.97 ft above sea level.

REMARKS.--Records good except those for periods of doubtful gage-height record, Feb. 13-16, 20-22, Feb. 25 to Mar. 7, Mar. 10-18, Mar. 24 to Apr. 3, Apr. 7-16, 21-25, Aug. 5-7, 13-15, and Sept. 7, 9-20, 26-30, which are fair. Maximum discharge, 9,640 ft³/s, from rating curve extended above 4,200 ft³/s on basis of slope-area measurement of peak flow. Minimum gage height, 0.73 ft, Aug. 12, 14, 15, 1987. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES FOR CURRENT YEAR.—Peak discharges equal to or greater than base discharge of 150 ${\rm ft}^3/{\rm s}$ and maximum (*): REVISIONS.—The minimum discharge for water year 1997 has been revised to 1.0 ${\rm ft}^3/{\rm s}$ September 7, 8, 1997. Revised daily discharges, in cubic feet per second, for September 12 to 30, 1997 are given below. These figures supersede those published in the report for 1997.

Sept. 12	3.5	Sept.	17	2.0	Sept.	22	1.9	Sept.	27	2.0	
13	2.6		18	4.4		23	1.9		28	4.3	
14	2.2		19	2.8		24	2.4		29	5.2	
15	2.2		20	2.4		25	2.9		30	3.1	
16	2.3		21	2.0		26	2.5				
MONTH		TOTAL	M	EAN		MAX	I	MIN	CFS	M	IN.
September 19	997	80.7	2	.69		9.1		1.1	.3	2	.35
Wtr Yr 1997		3432.5	9	.40		107		1.1	1.1	0	14.97

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 28	1500	*488	*4.27	Apr. 4	0945	225	2.91
Feb. 4	1230	351	3.59	Apr. 17	0815	367	3.67
Feb. 17	1315	357	3.62	Aug. 16	0830	161	2.54
Mar 20	2400	271	3 16	_			

Minimum daily discharge, 0.90 ft³/s, Sept. 30.

		DISCHA	RGE, IN C	UBIC FEET	PER SECON	ID, WATER LY MEAN V		OBER 1997	TO SEPTEM	BER 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2.5 2.3 2.4 2.3 2.1	11 9.4 6.5 4.9 4.0	7.4 5.8 5.3 11 8.1	7.2 6.0 7.0 8.1 7.5	27 26 23 133 73	e20 e20 e19 e18 e17	e15 e15 e14 100 33	16 18 15 14 27	6.6 6.2 6.0 6.6 7.0	3.9 3.5 3.5 3.3 3.4	2.0 1.9 1.9 1.7 e1.6	1.9 1.9 1.8 2.1
6 7 8 9 10	2.0 1.9 2.1 2.3 2.5	4.2 35 27 13 8.7	6.6 5.7 5.3 5.3	7.5 10 16 13 8.9	57 38 25 26 23	e16 e15 44 65 e27	25 e21 e19 e19 e18	17 21 47 22 17	6.7 6.2 5.8 6.0 9.2	3.1 3.7 3.8 3.7	e1.5 e1.5 6.4 6.0 3.5	1.7 e1.8 2.1 e1.6 e1.5
11 12 13 14 15	2.4 2.4 2.5 3.0 5.1	6.8 5.8 5.9 9.6 7.1	7.1 5.9 5.6 5.4 5.1	7.6 7.0 7.5 6.9	24 39 e27 e24 e23	e25 e23 e21 e20 e19	e17 e17 e16 e16 e15	14 14 13 12	8.3 7.5 6.7 5.9 6.8	3.1 2.8 2.7 2.6 2.5	3.1 2.6 e2.3 e2.2 e2.2	e1.4 e1.3 e1.2 e1.1
16 17 18 19 20	4.2 7.5 15 7.3 5.4	6.2 5.7 5.4 4.7 4.5	4.8 5.0 5.0 4.8 4.7	35 16 11 9.0 8.6	e22 124 42 24 e22	e18 e17 e16 72 62	e15 102 29 34 47	11 10 9.4 9.0 8.8	6.0 5.5 5.2 9.3 7.6	2.5 3.4 2.7 2.4 2.3	27 7.8 5.3 3.7 3.1	e1.0 e1.1 e1.2 e1.3 e1.3
21 22 23 24 25	3.8 3.2 2.9 3.0 3.5	5.2 12 7.9 6.3 5.4	4.7 5.8 7.0 6.4	7.4 7.1 57 30 20	e21 e20 39 34 e28	99 33 23 e21 e20	e27 e23 e20 e18 e16	8.6 8.2 9.9 10 9.4	6.0 5.5 5.4 5.1 4.8	2.1 2.0 2.3 2.7 2.3	2.8 2.7 2.6 2.5 2.4	1.4 1.3 1.3 1.1
26 27 28 29 30 31	6.9 8.8 4.9 3.8 3.5	5.3 5.0 5.0 5.0 6.2	8.8 8.4 8.9 8.6 8.1 7.1	13 40 275 48 25 28	e25 e23 e21 	e19 e18 e17 e16 e16 e15	15 13 13 13 12	8.5 13 11 8.7 7.7 7.0	4.5 4.1 4.6 5.6 4.5	2.3 3.1 3.4 2.5 2.1	2.3 2.4 2.3 2.2 2.1 2.1	e.98 e.96 e.94 e.92 e.90
TOTAL MEAN MAX MIN CFSM IN.	124.7 4.02 15 1.9 .47	248.7 8.29 35 4.0 .97 1.08	207.6 6.70 13 4.7 .79	773.3 24.9 275 6.0 2.92 3.37	1033 36.9 133 20 4.33 4.50	851 27.5 99 15 3.22 3.71	757 25.2 102 12 2.96 3.30	428.2 13.8 47 7.0 1.62 1.87	185.2 6.17 9.3 4.1 .72 .81	88.9 2.87 3.9 2.0 .34 .39	113.7 3.67 27 1.5 .43	41.00 1.37 2.1 .90 .16

e Estimated.

02038850 HOLIDAY CREEK NEAR ANDERSONVILLE, VA--Continued

STATISTICS	OF	MONTHLY	MEAN	DATA	FOR	WATER	YEARS	1966	-	1998,	BY	WATER	YEAR	(WY)	
------------	----	---------	------	------	-----	-------	-------	------	---	-------	----	-------	------	------	--

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN MAX	6.25 25.6	7.71 32.3	8.99 25.6	11.4 30.5	13.0 36.9	14.4 37.9	12.0 32.6	9.98 36.0	8.51 70.2	4.72 15.3	4.71 24.9	6.32 36.8
(WY)	1972	1986	1974	1978	1998	1994	1973	1971	1972	1972	1973	1996
MIN	1.23	2.40	2.16	2.40	5.38	4.12	4.37	2.93	1.63	.61	.58	.81
(WY)	1987	1982	1989	1989	1989	1981	1967	1981	1966	1966	1987	1970
SUMMARY	STATISTI	CS	FOR 3	1997 CALENI	DAR YEAR	FC	OR 1998 WA	TER YEAR		WATER YEA	ARS 1966	- 1998
ANNUAL	TOTAL			2884.1			4852.30					
ANNUAL	MEAN			7.90			13.3			9.03		
HIGHEST	ANNUAL M	IEAN								18.6		1973
LOWEST	ANNUAL ME	AN								3.28		1981
HIGHEST	DAILY ME	AN		42	Jul 24		275	Jan 28		1740		21 1972
LOWEST	DAILY MEA	M		1.1	Sep 8		e.90	Sep 30		.20	aJul	25 1966
ANNUAL	SEVEN-DAY	MINIMUM		1.3	Sep 2		.97	Sep 24		.20	Sep	6 1966
INSTANT	ANEOUS PE	AK FLOW					488	Jan 28		9640	Jun	21 1972
INSTANT	ANEOUS PE	AK STAGE					4.27	Jan 28		14.64	Jun	21 1972
INSTANT	ANEOUS LO	W FLOW								.10	Sep	11 1966
ANNUAL	RUNOFF (C	FSM)		.93			1.56			1.06		
ANNUAL	RUNOFF (I	NCHES)		12.58			21.16			14.38		
10 PERC	ENT EXCEE	DS		14			27			15		
50 PERC	ENT EXCEE	DS		6.9			7.0			5.4		
90 PERC	ENT EXCEE	DS		2.0			2.0			1.9		

a And 11 other days in July and September 1966. e Estimated.

02042500 CHICKAHOMINY RIVER NEAR PROVIDENCE FORGE, VA

LOCATION.--Lat 37°26'10", long 77°03'40", New Kent County, Hydrologic Unit 02080206, on left bank 100 ft downstream from bridge on State Highway 618, 1.1 mi southwest of Providence Forge, and 1.7 mi downstream from Schiminoe Creek.

DRAINAGE AREA. -- 252 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- January 1942 to current year.

REVISED RECORDS.--WSP 1553: 1956. WSP 2104: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 6.07 ft above sea level.

REMARKS.--No estimated daily discharges. Records good. Maximum discharge, 7,710 ft³/s, from rating curve extended above 5,520 ft³/s. Minimum gage height, 1.53 ft, Sept. 13, 1965. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,880 $\rm ft^3/s$, Mar. 22, gage height, 9.84 ft; minimum discharge, .07 $\rm ft^3/s$, Oct. 9, 10, 11-14, gage height, 1.75 ft.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.16	92	181	390	2240	860	395	210	171	322	22	14
2	.12	87	153	378	1520	714	364	211	164	297	19	14
3	.10	85	140	319	1090	574	333	201	148	274	17	12
4	.10	80	137	265	1000	474	425	210	123	287	16	22
5	.10	72	144	215	1490	416	642	217	99	269	13	34
6	.09	64	156	176	1980	379	764	239	87	204	10	39
7	.08	120	154	153	2330	383	797	304	76	132	8.4	42
8	.08	263	141	149	2540	451	835	463	65	85	7.7	41
9	.08	410	131	176	1900	845	819	827	56	65	7.0	36
10	.08	530	126	197	1410	1320	825	913	67	167	6.0	33
11	.08	458	126	246	1130	1360	724	750	76	190	14	29
12	.07	515	124	264	936	1580	637	627	83	204	45	27
13	.07	613	124	306	773	1520	559	688	88	223	49	23
14	.27	646	123	313	648	1160	505	676	93	231	36	18
15	.89	596	122	292	534	849	447	589	108	283	22	13
16	.11	461	120	329	466	654	376	468	143	362	18	8.9
17	.36	332	113	400	540	510	359	369	175	351	20	6.1
18	20	234	105	496	791	528	412	318	199	256	18	4.1
19	30	188	98	467	958	940	475	288	210	137	15	2.4
20	51	180	91	479	1070	1630	638	254	233	84	12	1.8
21	57	172	87	474	1340	2070	904	214	305	64	10	1.3
22	59	174	87	411	1230	2750	927	174	340	52	8.2	4.3
23	56	172	100	369	1000	2500	809	146	295	49	6.6	6.0
24	51	190	107	466	923	2130	677	141	212	41	4.8	9.5
25	45	221	124	744	902	1640	552	132	175	34	4.1	10
26	40	266	132	1100	875	1210	456	122	199	29	3.2	9.5
27	54	431	156	1600	950	927	369	176	217	28	4.5	7.8
28	63	427	225	1880	968	750	309	270	262	33	9.6	5.5
29	73	307	283	2170		622	265	236	297	40	15	3.8
30	81	220	361	2170		521	232	221	309	32	16	11
31	88		376	2540		448		191		28	15	
TOTAL	770.84	8606	4647	19934	33534	32715	16831	10845	5075	4853	472.1	489.0
MEAN	24.9	287	150	643	1198	1055	561	350	169	157	15.2	16.3
MAX	88	646	376	2540	2540	2750	927	913	340	362	49	42
MIN	.07	64	87	149	466	379	232	122	56	28	3.2	1.3
CFSM	.10	1.14	.59	2.55	4.75	4.19	2.23	1.39	.67	.62	.06	.06
IN.	.11	1.27	.69	2.94	4.95	4.83	2.48	1.60	.75	.72	.07	.07
	•			2.,,1	2.23	1.05	2.10		•		,	,

02042500 CHICKAHOMINY RIVER NEAR PROVIDENCE FORGE, VA--Continued

STATIS'	TICS OF M	ONTHLY MEA	N DATA	FOR WATER	YEARS 1942	- 1998,	BY WATER	YEAR (WY)				
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	144	209	287	380	430	481	384	240	165	146	161	107
MAX	794	768	1043	1214	1198	1055	1152	676	757	1081	1445	737
(WY)	1980	1986	1958	1978	1998	1998	1984	1978	1972	1945	1955	1979
MIN	3.81	17.5	28.0	58.7	94.4	108	102	34.9	14.1	12.5	5.53	.17
(WY)	1969	1966	1966	1955	1942	1981	1995	1985	1977	1968	1995	1997
SUMMAR	Y STATIST	ICS	FOR	1997 CALE	NDAR YEAR	F	OR 1998 W.	ATER YEAR		WATER YE	CARS 1942	- 1998
ANNUAL	TOTAL			74943.3	0		138771.9	4				
ANNUAL	MEAN			205			380			263		
HIGHES'	r annual	MEAN								482		1958
LOWEST	ANNUAL M	EAN								91.4		1966
HIGHES'	T DAILY M	EAN		1090	May 1		2750	Mar 22		6680	Aug	15 1955
LOWEST	DAILY ME	AN		.0	7 aSep 12		.0	7 b0ct 12		.07	aSep	12 1997
ANNUAL	SEVEN-DA	Y MINIMUM		.0	7 Sep 12		.0	8 Oct 7		.07	' Sep	12 1997
INSTAN'	TANEOUS P	EAK FLOW					2880	Mar 22		7710	Aug	15 1955
INSTAN'	TANEOUS P	EAK STAGE					9.8			11.67		15 1955
	TANEOUS L						.0	7 cOct 9		.06	dSep	12 1997
	RUNOFF (.8			1.5			1.04		
	RUNOFF (11.0	16		20.4			14.16	5	
	CENT EXCE			442			944			600		
	CENT EXCE			144			201			166		
90 PER	CENT EXCE	EDS		.1	.7		8.3			22		

a Also Sept. 15-17, and Oct. 12, 13, 1997. b Also Oct. 13, 1997. c Also Oct. 10, 11-14, 1997. d Also Sept. 14-15, 16, 17, 18, 1997.

02042500 CHICKAHOMINY RIVER NEAR PROVIDENCE FORGE, VA--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- April 1995 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)
OCT 1997												
21 NOV	1200	56	138	6.6	13.5	12.6	770	7.8	73	12	2.5	8.4
07	1130	111	160	6.2	8.5	10.3				11	2.5	11
08	1140	265	142	5.9	10.9	10.6				10	2.4	7.6
09	1415	437	143	5.9	11.1	10.8						
12	1550	541	142	5.5	8.6	10.4				9.0	2.2	9.6
18	1330	236	144			5.1						
20	1345	181										
JAN 1998	1313	101										
16	1115	362	101	6.4	4.0	5.3	755	11.4	91	5.8	1.4	9.4
FEB												J. 1
16	1520	458	76	6.5	6.8	5.4						
17	1140	513	75	6.3	12.3	7.4				4.9	1.3	5.9
17	1715	590	73	6.5	15.0	8.3						
18	1115	788	70	6.4	12.0	9.2				4.8	1.2	5.2
18	1515	804	69	6.5	16.5	10.3						
19	1515	967	66	6.5	21.3	11.2				4.5	1.1	5.2
20	1100	1030	65	6.2		9.9						
21	0900	1350	67	6.8	15.4	9.4				4.3	1.1	5.5
22	0910	1280	66	6.6	11.4	8.9				4.4	1.2	5.4
23	0930	995	66	6.5		9.2				4.5	1.2	5.3
24	0915	930	67	6.6		7.9				4.4	1.2	4.8
25	0930	898	64	6.6		7.5						
26	0945	871	67	6.5		8.3						
27	0845	943	67	6.6		8.7						
MAR												
02	1030	722	75	6.5		11.8						
04	1100	476	74	6.7	12.3	8.0						
06	0930	380	78	6.6		6.8						
09	0900	769	62	6.6		12.0						
10	0915	1290	55	6.5		12.4						
11	0945	1370	47	6.5		8.8						
12	0850	1570	62	6.6		7.0						
13	0800	1590	60	6.6		5.8						
APR	0000	±370	30	0.0		٥.٥						
16	1015	380	76	6.3	22.5	17.6	735	6.5	71	6.4	1.6	5.8
JUL	1013	300	70	0.3	44.5	1/.0	133	0.5	/ 1	0.4	1.0	3.0
	1000	262	0.1	<i>c</i> 1	26.0	22 5	752	1 0	E 7	6 2	1 5	6 1
16	1000	362	81	6.4	26.0	23.5	753	4.8	57	6.2	1.5	6.4
AUG	1200	2 0	110	E 0	27 5	24 5		4 7		0 0	2 1	6 5
26	1200	2.8	110	5.8	27.5	24.5		4.7		8.8	2.1	6.5

JAMES RIVER BASIN

02042500 CHICKAHOMINY RIVER NEAR PROVIDENCE FORGE, VA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

		ANC						SOLIDS,	NITRO-	NITRO-	NITRO-	NITRO-
	POTAS-	WATER		CHLO-	FLUO-		SILICA,	RESIDUE	GEN,	GEN,	GEN,	GEN, AM-
	SIUM,	UNFLTRD	SULFATE	RIDE,	RIDE,	BROMIDE	DIS-	AT 180	NITRITE	NO2+NO3	AMMONIA	MONIA +
	DIS-	FET	DIS-	DIS-	DIS-	DIS-	SOLVED	DEG. C	DIS-	DIS-	DIS-	ORGANIC
D	SOLVED	FIELD	SOLVED	SOLVED	SOLVED	SOLVED	(MG/L	DIS-	SOLVED	SOLVED	SOLVED	TOTAL
DATE	(MG/L AS K)	MG/L AS CACO3	(MG/L AS SO4)	(MG/L AS CL)	(MG/L AS F)	(MG/L AS BR)	AS SIO2)	SOLVED (MG/L)	(MG/L AS N)	(MG/L AS N)	(MG/L AS N)	(MG/L AS N)
	(00935)	(00410)	(00945)	(00940)	(00950)	(71870)	(00955)	(70300)	(00613)	(00631)	(00608)	(00625)
	(00)33)	(00410)	(00)43)	(00540)	(00)30)	(71070)	(00)33)	(70300)	(00013)	(00031)	(00000)	(00023)
OCT 1997												
21	2.8	12	26	12		<.010	8.6	97				
NOV												
07	4.3		35	16	<.10	<.010	12	107				
08	4.8	6	32	13	<.10	<.010	9.2	99				
09 12	4.1	 3	32	14	 <.10	<.010	 11	 105				
18				14				105				
20												
JAN 1998												
16	2.2	8	13	14	<.10	<.010	7.1	81				
FEB												
16									<.010	.134	<.020	.36
17	1.9	8	11	8.5	.11	<.010	3.7	61	<.010	.136	<.020	1.1
17												
18	1.8	8	9.9	7.2	<.10	<.010	3.7	58				
18	1 0	8 8	8.7	 7.4	 <.10	<.010	 3.7	 58	 <.010	1.40	<.020	.31
19 20	1.8	10	8.7	7.4	<.10	<.010	3.7	58	<.010	.140	<.020	
21	1.9	12	9.0	7.2	<.10	<.010	3.7	55	<.010	.147	<.020	.38
22	1.9	11	9.3	6.8	<.10	<.010	4.0	60				
23	1.9	9	9.3	6.6	<.10	<.010	3.8	57	<.010	.129	<.020	.37
24	1.8	8	13	6.4	<.10	<.010	3.2	56				
25		8										
26		9										
27		9										
MAR												
02		11 12										
04 06		13										
09		11										
10		10										
11		10										
12		10										
13		9										
APR												
16	1.5	19	4.0	7.4	<.10	<.010	1.6	60				
JUL	1 0	- 4			1.0	0.1.0	0 0					
16	1.0	14	9.0	7.7	<.10	<.010	9.3	73				
AUG 26	1.8		7.3	9.2	<.10	<.010	6.9	74				
۷٠	1.0		1.3	٥.۵	\.±U	<.U1U	0.9	/ 1				

< Actual value is known to be less than the value shown.

02042500 CHICKAHOMINY RIVER NEAR PROVIDENCE FORGE, VA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DATE	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	NITRO- GEN DIS- SOLVED (MG/L AS N) (00602)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	H-2 / H-1 STABLE ISOTOPE RATIO PER MIL (82082)	O-18 / O-16 STABLE ISOTOPE RATIO PER MIL (82085)	LIGHT ABSOR- BENCE AT 253.7 NM (PER CM)** (99905)
OCT 1997											
21							120	60	-24.8	-4.33	.210
NOV											
07							84	178	-32.5	-5.51	.179
08							250	464	-45.7	-7.11	.244
09											.309
12							120	254	-44.7	-7.22	.249
18									-45.1	-7.24	.231
20									-45.6	-7.23	.197
JAN 1998											
16							550	24			.284
FEB	0.4	20	010	. 010	017						0.40
16 17	.24	.38	.012	<.010 .018	.017 .017		300	23			.242
17	.20		.013	.010	.017			2.3			.252
18							270	16			.246
18							270				.240
19	.28	.42	.017	.010	.017		320	17			.285
20									-49.3	-8.07	
21	.27	.42	.027	.012	.020		340	17	-49.5	-8.14	.296
22							350	17	-50.9	-8.26	.324
23	.29	.42	.023	.014	.021		350	21	-50.6	-8.15	.371
24							420	21			.357
25											.320
26											.314
27											.280
MAR											
02											.325
04											.345
06											.300
09											.309
10											.327
11											.386
12											.326
13											.360
APR								0.5			450
16							680	85			.450
JUL 16						12	440	71			.388
AUG						12	440	/ 1			.300
26							220	546			
∠0							∠∠∪	240			

^{**} Abbreviations used: NM, nanometers; PER CM, per centimeter. < Actual value is known to be less than the value shown.

THIS IS A BLANK PAGE

MTN

3.70

4.16

5.11

5.15

4.95

GREAT DISMAL SWAMP BASIN

02043600 LAKE DRUMMOND IN GREAT DISMAL SWAMP, VA

LOCATION.--Lat 36°35'42", long 76°26'23", Chesapeake City, Hydrologic Unit 03010205, on right bank in outlet canal, 200 ft upstream from dam and gates, 0.5 mi downstream from Lake Drummond, 3.1 mi north of North Carolina State line, and 20 mi southwest of Norfolk.

PERIOD OF RECORD.--May 1926 to current year. Prior to October 1973, published as Lake Drummond in Dismal Swamp.

REVISED RECORDS. -- WSP 1032: 1934-43.

GAGE.--Nonrecording gage. Datum of gage is 12.16 ft above sea level. Aug. 22, 1978, to Oct. 1, 1981, water-stage recorder at same site and datum.

REMARKS.--Mean daily gage heights are shown in table below. Maximum gage height, 6.68 ft, Sept. 17, 1960. Minimum gage height, -0.67 ft, Nov. 3, 1952.

EXTREMES FOR CURRENT YEAR.--Maximum instantaneous gage height, 5.76 ft, Feb. 7; minimum instantaneous gage height, 3.70 ft, Oct. 15.

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 4.00 4.16 5.11 5.23 5.27 5.13 5.17 5.24 5.22 5.20 5.12 4.63 1 5.15 5.21 5.27 5.23 5.10 5.10 2 4.00 4.18 5.14 5.25 5.18 4.62 5.03 5.27 5.06 3.95 4.20 5.18 5.26 5.18 5.17 5.20 5.05 4.60 3 5.23 5.24 4 3.93 4.19 5.20 5.27 5.16 5.31 5.33 4.99 5.05 4.76 5 3.91 4.20 5.28 5.28 5.33 5.08 5.21 5.31 5.27 5.04 4.99 4.71 6 3.88 4.18 5.34 5.27 5.48 5.12 5.19 5.31 5.23 5.01 4.96 4.67 5 75 4 99 4 94 7 3 87 4 20 5 30 5 25 5 14 5 18 5 29 5 21 4 66 8 3 87 4 25 5.32 5 25 5 74 5.19 5.15 5 32 5.20 4.97 4 88 4.74 9 3.84 4.35 5.36 5.25 5.62 5.29 5.13 5.34 5.18 4.95 4.88 4.71 10 3.82 4.36 5.35 5.22 5.48 5.28 5.18 5.22 5.20 4.95 4.88 4.69 11 3.80 4.36 5.36 5.23 5.34 5.20 5.19 5.17 5.22 4.93 4.87 4.60 12 3.78 4.40 5.30 5 22 5.31 5.27 5 16 5.17 5.22 4.86 4.86 4.60 13 3.74 4.44 5.24 5.27 5.17 5.25 5.15 5.12 5.22 4.82 4.82 4.57 14 3.72 4.58 5.23 5.26 5.12 5.26 5.16 5.13 5.24 4.79 4.79 4.54 15 3.70 4.57 5.25 5.26 5.11 5.28 5.15 5.14 5.24 4.74 4.78 4.51 3.72 4.59 5.26 5.13 5.19 4.85 5.32 5.25 5.12 5.28 4.75 4.50 17 3.74 4.60 5.26 5.32 5.20 5.17 5.10 5.27 5.28 5.11 4.97 4.45 3.84 4.62 5.28 5.28 5.22 5.16 5.10 5.29 5.28 5.14 4.93 18 4.42 19 3.89 4.65 5.28 5.22 5.20 5.13 5.18 5.31 5.28 5.16 4.89 4.41 20 3.94 4.69 5.28 5.22 5.19 5.11 5.22 5.32 5.30 5.15 4.90 3.92 5.28 5.18 5.33 3.91 4.77 5.29 5.19 5.11 5.22 5.21 5.32 5.28 5.15 4.82 4.40 23 3.90 4.88 5.31 5.18 4.95 5.22 5.28 5.31 5.35 5.16 4.78 4.36 3.90 4.90 5.28 5.08 4.75 24 5.18 5.24 5.30 5.33 5.30 5.25 4.32 5.23 25 3.92 4.92 5.32 5.15 5.05 5.30 5.30 5.29 5.22 4.70 4.28 3.93 4.94 5.26 5.18 5.15 5.26 5.26 5.36 5.26 5.23 4.25 26 4.65 4.02 4.94 5.25 4.23 27 5.28 5.19 5.17 5.26 5.27 5.25 5.19 4.50 4.95 5.28 5.26 4.72 28 4.08 5.33 5.22 5.18 5.22 5.26 5.18 4.22 29 4.08 4.98 5.32 5.22 5.19 5.28 5.21 5.24 4.69 4.21 ---5.17 ___ 30 4.05 5.08 5.30 5.23 5.18 5.25 5.19 5.12 5.13 4.65 4.20 31 4 06 ___ 5 27 5 26 ___ 5 17 5 20 5 14 4 64 ___ MEAN 3 89 4 56 5 28 5 24 5 25 5 20 5 20 5 26 5 25 5 05 4 85 4 49 MAX 4 08 5.08 5 36 5 32 5 75 5.29 5 31 5.36 5.35 5.25 5 12 4.76

5.08

5.10

5.12

5.12

4.74

4.50

4.20

02043600 LAKE DRUMMOND IN GREAT DISMAL SWAMP, VA--Continued

CHOWAN RIVER BASIN

02047000 NOTTOWAY RIVER NEAR SEBRELL, VA

LOCATION.--Lat 36°46'13", long 77°09'59", Southampton County, Hydrologic Unit 03010201, on right bank at bridge on State Highway 653, 1 mi downstream from Three Creek, 2.5 mi southwest of Sebrell, and 5.5 mi upstream from Assamoosick Swamp.

DRAINAGE AREA. -- 1,421 mi².

PERIOD OF RECORD. -- September 1941 to current year.

REVISED RECORDS.--WSP 1333: 1942, 1944, 1948-49. WSP 2104: Drainage area. WDR-91-1: 1982(m).

GAGE.--Water-stage recorder. Datum of gage is 5.94 ft above sea level. Prior to Aug. 23, 1950, nonrecording gage on right bank at site 1,000 ft upstream at same datum. Aug. 23, 1950 to Oct. 1, 1996, water-stage recorder at above site and datum. Nonrecording gage Oct. 1, 1996 to Apr. 9, 1997 at present site and datum. Apr. 9, 1997 to current year, water-stage recorder at present site and datum.

REMARKS.--Records good except those for period of no gage-height record, May 3-7, which is fair. Maximum discharge, 26,000 ft³/s, from rating curve extended above 25,000 ft³/s. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, $16,000 \text{ ft}^3/\text{s}$, Mar. 24, gage height, 21.31 ft; minimum, 52 ft $^3/\text{s}$, Oct. 14, 15, 17, gage height, 2.98 ft.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

	DAILY MEAN VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	79	250	746	1830	10500	3840	2260	1120	872	251	100	62
2	90	209	864	1560	10400	3130	1980	1070	777	236	109	65
3	93	188	1000	1300	9250	2440	1820	e1150	567	221	107	66
4	92	191	992	1140	7870	2050	1900	e1360	488	199	93	83
5	85	204	949	1020	7650	1820	2340	e1550	436	188	85	105
6	78	201	894	933	8120	1640	2950	e1500	403	177	81	122
7	73	219	845	881	9300	1510	3510	e1360	381	165	79	279
8	69	321	789	877	11100	1500	4020	1250	354	156	75	328
9	65	469	734	1050	11400	2620	4220	1810	328	148	72	238
10	61	801	684	1620	10300	4160	3760	2460	313	138	74	176
		205		0110	0.400	61.00	2020	2010	201	100		100
11	60	905	664	2110	8480	6170	3030	3010	301	130	72	137
12	57	818	673	2130	6430	9360	2630	3560	301	126	68	114
13	55	686	697	1690	4710	11000	2390	3980	319	123	92	97
14	53	622	687	1370	3730	10400	2050	3630	326	121	127	83
15	52	727	651	1250	3100	8240	1740	2740	321	123	119	73
16	53	916	604	1500	2630	5710	1560	1960	315	122	104	66
17	52	940	571	2360	2440	3930	1470	1460	329	208	109	62
18	56	883	564	3110	3000	3320	1610	1170	361	241	164	60
19	84	750	542	3720	3660	4350	2140	971	355	163	115	56
20	124	638	512	4190	4200	7140	2750	828	388	165	206	55
21	136	556	484	4140	4900	9780	3320	702	684	128	182	54
22	158	550	471	3510	5580	12700	3900	609	744	113	134	56
23	181	643	509	2830	5550	15300	4270	551	554	104	106	63
24	175	1040	563	2680	4720	15900	4170	511	493	103	90	74
25	163	1490	668	3070	4020	14700	3640	480	512	98	79	70
26	145	1310	764	3590	3890	12300	2860	492	706	94	72	65
27	138	982	878	4230	4050	9590	2180	529	524	91	73	66
28	130	805	1060	5780	4170	6880	1720	601	403	90	77	67
29	168	714	1350	7530		4690	1420	727	329	89	70	63
30	286	662	1740	8290		3520	1230	873	279	93	69	60
31	294		1930	9250		2760		858		102	64	
TOTAL	3405	19690	25079	90541	175150	202450	78840	44872	13463	4506	3067	2965
MEAN	110	656	809	2921	6255	6531	2628	1447	449	145	98.9	98.8
MAX	294	1490	1930	9250	11400	15900	4270	3980	872	251	206	328
MIN	52	188	471	877	2440	1500	1230	480	279	89	64	54
CFSM	.08	.46	.57	2.06	4.40	4.60	1.85	1.02	.32	.10	.07	.07
IN.	.09	.52	.66	2.37	4.59	5.30	2.06	1.17	.35	.12	.08	.08

e Estimated.

CHOWAN RIVER BASIN

02047000 NOTTOWAY RIVER NEAR SEBRELL, VA--Continued

STATIST	rics of M	ONTHLY MEAN	DATA F	OR WATER	YEARS 1941	- 1998,	BY WATER	YEAR (WY)				
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	656	877	1340	2074	2527	2826	2099	1338	766	729	625	534
MAX	4491	4854	4310	6115	6255	6531	5127	5180	2246	5782	2831	4631
(WY)	1973	1986	1958	1978	1998	1998	1987	1978	1972	1975	1955	1979
MIN	27.4	59.5	98.8	196	516	389	427	300	131	48.9	43.3	27.8
(WY)	1955	1942	1966	1966	1981	1981	1966	1942	1942	1966	1963	1954
SUMMAR	Y STATIST	ICS	FOR	1997 CAL	ENDAR YEAR	F	OR 1998 W	ATER YEAR		WATER Y	EARS 1941	- 1998
ANNUAL	ANNUAL MEAN			448897			664028					
ANNUAL	ANNUAL TOTAL ANNUAL MEAN			1230			1819			1360		
HIGHEST	ANNUAL MEAN HIGHEST ANNUAL MEAN									2671		1978
LOWEST	ANNUAL M	EAN								366		1981
HIGHEST	r daily M	EAN		9400	May 4		15900	Mar 24		25500	Jul	19 1975
LOWEST	DAILY ME.	AN		52	Oct 15		52	Oct 15		14	Oct :	14 1954
ANNUAL	SEVEN-DA	Y MINIMUM		54	Oct 12		54	Oct 12		15	Oct	8 1954
INSTAN	TANEOUS P	EAK FLOW					16000	Mar 24		26000	Jul	19 1975
INSTAN	TANEOUS P	EAK STAGE					21.3	1 Mar 24		24.4	3 Jul	19 1975
INSTAN	TANEOUS L	OW FLOW					52	a0ct 14		b12	Oct :	23 1941
ANNUAL RUNOFF (CFSM)			- 1	87		1.2	8		.9	6		
ANNUAL	ANNUAL RUNOFF (INCHES)			11.	75		17.3	8		13.0	1	
10 PERG	10 PERCENT EXCEEDS			2710			4700			3380		
50 PERG	CENT EXCE	EDS		714			673			742		
90 PER	CENT EXCE	EDS		78			73			102		

a Also Oct. 15, 17, 1997. b Observed.

CHOWAN RIVER BASIN

02049500 BLACKWATER RIVER NEAR FRANKLIN, VA

LOCATION.--Lat 36°45'45", long 76°53'55", Southampton County, Hydrologic Unit 03010202, on right bank 0.4 mi south of Burdette, 0.5 mi upstream from Black Creek, 3.3 mi downstream from Corrowaugh Swamp, and 6.0 mi north of

DRAINAGE AREA. -- 617 mi².

PERIOD OF RECORD. -- August 1944 to current year.

REVISED RECORDS. -- WSP 2104: Drainage area.

GAGE. -- Water-stage recorder. Datum of gage is 1.56 ft above sea level.

REMARKS.--Records good except those for periods of doubtful or no gage-height record, Nov. 9-14, 24, 25, Feb. 6, 7, and Apr. 28, 29, which are fair, and for periods of tidal effect below 15 ft³/s, which are poor. Low flow reversed by tide some years. Diversion upstream from station by city of Norfolk for municipal water supply most years. Maximum discharge, 9,420 ft³/s, from rating curve extended above 9,400 ft³/s. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in August 1940 reached a stage of about 22 ft, discharge, 21,000 $\rm ft^3/s$, from rating curve extended above 9,400 $\rm ft^3/s$.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 7,250 ${\rm ft}^3/{\rm s}$, Feb. 7, gage height, 15.27 ft; minimum daily, 0.80 ${\rm ft}^3/{\rm s}$, Oct. 17.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB APR MAY JUL AUG SEP e2.4 9.2 e2.3 9.7 9.0 e2.2 7.7 e2.1 e2.0 e1.9 e6970 8.3 e1.8 e7150 e1 7 4 8 e1.6 e70 8.5 3.2 1.0 e1 5 e115 6 8 2 9 e1.4 e210 5.5 2.7 e1 3 e360 4 5 2 2 e1.2 e560 3.4 1.9 e1.1 e720 2.8 1.8 e1.0 2 8 1.9 e.90 4.2 3.1 e.80 3.9 e3.5 3.3 9.4 e7.1 1.9 1.2 8.2 .96 5.9 e.90 6.9 6.4 e.87 6.2 e.85 2.4 5.2 e496 6.2 7.3 e510 e.83 7.4 e2.0 7.7 6.4 7.7 7.3 7.8 e720 7.1 e640 7.6 7.0 ---7.1 6.9 7.0 ------------9.4 ---TOTAL 122.00 628.9 218.91 1088.8 MEAN 3.94 56 8 20 3 7 06 36 3 MAX MTN .80 1.0 2.8 .83 6.2 29 2 1 14 29 5 19 9 Ω Ω 0.3 Ω Ω Ω Ω (†) MEAN± 5.08 56.8 20.3 7.06 36.3 .01 .09 .03 .01 .06 CFSM‡ .62 .87 2.52 5.70 4.07 1.49 .84 IN.‡ .01 .69 1.00 2.91 5.94 4.70 1.66 .97 .10 .04 .01 .07

CFSM# .83 IN.# 11.31

† Average daily diversion, in cubic feet per second, by city of Norfolk.

TOTAL 183451.33 MEAN 503 MAX 2650 MIN .77 MEAN‡ 514

WTR YR 1998 TOTAL 297801.61 MEAN 816 MAX 7150 MIN .80 MEAN; 823 CFSM; 1.33 IN.; 18.11

CAL YR 1997

[‡] Adjusted for diversion.

e Estimated

(b)

1.02

13.83

8.2

1640

375

CHOWAN RIVER BASIN

02049500 BLACKWATER RIVER NEAR FRANKLIN, VA--Continued

STAT	ISTICS OF	MONTHLY MEAN	I DATA	FOR WATER	YEARS 1944	- 1998,	BY WATER	YEAR (WY)	[UNADJ	USTED]		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	1 291	373	634	1011	1206	1298	918	562	345	294	353	279
MAX	1795	1713	2082	2271	3520	2915	2783	1890	1925	2003	1481	2490
(WY)	1973	1980	1958	1978	1998	1989	1989	1958	1963	1945	1969	1960
MIN	.94	1.69	2.12	12.5	152	158	107	51.4	15.0	3.02	2.08	2.16
(WY)	1988	1981	1981	1981	1981	1981	1995	1985	1986	1986	1995	1995
SUMM	IARY STATI	STICS	FOR	1997 CALI	ENDAR YEAR	F	OR 1998 WA	ATER YEAR		WATER YE	ARS 1944	- 1998
ANNU	JAL TOTAL			183451.3	33		297801.61	_				
ANNU	JAL MEAN			503			816			628		
HIGH	EST ANNUA	L MEAN								1155		1958
LOWE	ST ANNUAL	MEAN								133		1981
HIGH	EST DAILY	MEAN		2650	May 3		7150	Feb 7		9420	Sep 3	14 1960
LOWE	ST DAILY	MEAN			77 Jul 15		e.80	Oct 17		.07	Oct 3	16 1981
ANNU	JAL SEVEN-	DAY MINIMUM		1.1	l Oct 11		1.1	Aug 19		.26	Oct :	10 1987
INST	CANTANEOUS	PEAK FLOW					7250	Feb 7		9420	Sep 3	14 1960
INST	ANTANEOUS	PEAK STAGE					a15.27	Feb 7		a17.14	Sep 3	14 1960
							(1)			(1.)		

INSTANTANEOUS LOW FLOW

ANNUAL RUNOFF (INCHES)

ANNUAL RUNOFF (CFSM)

10 PERCENT EXCEEDS

50 PERCENT EXCEEDS

90 PERCENT EXCEEDS

.81

11.06

2.0

1210

342

(b)

1.32

17.95

3.4

2380

396

a From floodmarks. b Not determined, tidally affected most years during periods of extreme low flows; minimum measured flow, $2.4~{\rm ft}^3/{\rm s}$ (reverse flow), Sept. 17, 1952.

e Estimated.

CHOWAN RIVER BASIN

02051500 MEHERRIN RIVER NEAR LAWRENCEVILLE, VA

LOCATION.--Lat 36°43'00", long 77°49'55", Brunswick County, Hydrologic Unit 03010204, on right bank 50 ft upstream from Gholson Bridge on State Highway 715, 0.6 mi upstream from Allen Creek, and 3.0 mi southeast of Lawrence-ville.

DRAINAGE AREA. -- 552 mi².

PERIOD OF RECORD. --October 1928 to current year. Monthly discharge only for some periods, published in WSP 1303.

REVISED RECORDS.--WSP 972: 1932(M), 1935. WSP 2104: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 136.56 ft above sea level. Prior to Nov. 17, 1931, nonrecording gage at same site and datum.

REMARKS.--Records good except those for periods of doubtful or no gage-height record, Nov. 27 to Dec. 2, Mar. 20-25, June 4-15, July 1-15, Aug. 18-21, and Aug. 30 to Sept. 3, which are fair. Maximum discharge, 38,000 ft³/s, from rating curve extended above 13,000 ft³/s on basis of velocity-area studies and records for Nottoway River near Stony Creek. Minimum gage height, 0.72 ft, Sept. 23, 24, 1932. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 4,500 ${\rm ft}^3/{\rm s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 25	0330	5,090	16.68	Feb. 19	1030	6,600	19.50
Jan. 30	0400	6,560	19.42	Mar. 10	1230	6,830	19.90
Feb. 6	0900	8,520	22.31	Mar. 21	Unknown	*14,300	*28.39

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Minimum discharge, 28 ft^3/s , Sept. 30, gage height, 1.53 ft .

			•		D	AILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	121	124	e400	437	836	600	560	423	391	e170	67	e56
2	96	134	e370	360	666	570	650	567	294	e150	65	e52
3	82	141	336	303	573	546	661	633	250	e130	62	e62
4	75	138	280	280	2630	527	998	519	e230	e120	60	119
5	72	133	264	266	6510	489	2780	459	e220	e180	58	488
6	72	127	251	252	8110	460	1410	419	e228	e160	55	249
7	71	166	232	246	4230	445	892	394	e210	e125	52	107
8	67	312	208	533	1480	665	730	1320	e200	e105	52	70
9	65	410	197	1710	1040	4930	788	2800	e190	e100	287	66
10	65	269	200	979	815	6690	1170	1220	e185	e200	368	63
11	64	210	226	551	700	3230	993	726	e200	e225	379	60
12	61	177	232	413	680	1020	774	590	e210	e140	214	59
13	60	169	228	352	852	804	633	549	e220	e120	117	56
14	60	306	209	336	703	703	570	510	254	e90	74	53
15	71	461	195	421	585	637	559	459	e230	e85	67	49
16	113	430	185	3040	530	573	537	414	291	82	66	49
17	120	267	182	2970	1320	535	1010	389	375	89	88	48
18	119	209	178	1100	4970	1650	3600	369	286	83	e190	45
19	124	185	173	769	6050	5140	1970	339	269	93	e110	43
20	167	172	171	757	1560	e11000	1680	315	302	82	e70	44
21	166	165	167	723	928	e13500	1380	304	338	75	e63	45
22	136	766	173	545	772	e11500	882	290	301	77	61	46
23	121	1880	228	787	830	e9000	748	276	246	73	60	47
24	105	622	258	4110	2240	e3000	670	295	230	84	59	42
25	101	368	309	3740	1450	e1450	589	319	244	91	58	39
26	108	278	401	1290	896	887	525	367	212	163	59	38
27	153	e250	426	863	721	787	482	438	189	77	61	40
28	240	e220	977	3730	646	719	455	397	173	89	64	36
29	212	e210	1000	5980		664	438	427	172	87	66	33
30	147	e235	633	5340		616	425	339	189	69	e64	30
31	124		496	1260		577		323		83	e60	
TOTAL	3358	9534	9785	44443	53323	83914	29559	17189	7329	3497	3176	2234
MEAN	108	318	316	1434	1904	2707	985	554	244	113	102	74.5
MAX	240	1880	1000	5980	8110	13500	3600	2800	391	225	379	488
MIN	60	124	167	246	530	445	425	276	172	69	52	30
CFSM	.20	.58	. 57	2.60	3.45	4.90	1.78	1.00	. 44	. 20	.19	.13
IN.	.23	.64	.66	3.00	3.59	5.66	1.99	1.16	.49	.24	.21	.15

e Estimated.

CHOWAN RIVER BASIN

02051500 MEHERRIN RIVER NEAR LAWRENCEVILLE, VA--Continued

STATIST	rics of Mo	ONTHLY MEAN	I DATA FO	R WATER	YEARS 1929	- 1998,	BY WATER Y	ZEAR (WY)				
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	307	381	474	735	843	927	750	460	317	316	296	243
MAX	2266	2853	1340	2391	1904	2707	2067	1571	1555	2358	4199	1532
(WY)	1972	1986	1997	1936	1998	1998	1987	1958	1938	1945	1940	1979
MIN	17.1	44.1	64.6	88.8	175	190	162	128	96.5	42.8	33.0	9.70
(WY)	1931	1934	1966	1934	1931	1981	1966	1942	1959	1932	1995	1954
SUMMARY	Y STATIST	ICS	FOR 1	.997 CALE	NDAR YEAR	F	OR 1998 WAT	TER YEAR		WATER YEA	RS 1929	- 1998
ANNUAL	ANNUAL TOTAL ANNUAL MEAN			195204			267341					
ANNUAL	MEAN			535			732			502		
HIGHEST	r annual i	MEAN								916		1973
LOWEST	ANNUAL MI	EAN								202		1981
HIGHEST	r DAILY M	EAN		8910	Apr 30		e13500	Mar 21		35300	Aug 1	7 1940
LOWEST	DAILY ME	AN		60	a0ct 13		30	Sep 30		4.2	b0ct	7 1954
ANNUAL	SEVEN-DAY	MINIMUM		63	Oct 8		37	Sep 24		4.6	Oct	4 1954
INSTANT	TANEOUS PI	EAK FLOW					14300	Mar 21		38000	Aug 1	7 1940
INSTANT	TANEOUS PI	EAK STAGE					c28.39	Mar 21		42.00	Aug 1	7 1940
INSTANT	FANEOUS LO	OW FLOW					28	Sep 30		4.2	Oct	7 1954
ANNUAL	RUNOFF (CFSM)		.9	7		1.33			.91		
ANNUAL	RUNOFF (INCHES)		13.1	6		18.02			12.37		
10 PERC	CENT EXCE	EDS		1020			1390			974		
50 PERC	CENT EXCE	EDS		307			269			252		
90 PERC	CENT EXCE	EDS		90			61			66		

a Also Oct. 14, 1997. b Also Oct. 8, 1954. c From floodmarks. e Estimated.

02055000 ROANOKE RIVER AT ROANOKE, VA

LOCATION.--Lat 37°15'30", long 79°56'20", Roanoke City, Hydrologic Unit 03010101, on left bank 50 ft downstream from Walnut Avenue bridge, 3.2 mi upstream from Tinker Creek, and at mile 360.6.

DRAINAGE AREA. -- 395 mi².

PERIOD OF RECORD.--February 1899 to current year. Monthly discharge only for some periods, published in WSP 1303. Records for July 1896 to January 1899 published in WSP 11, 15, 27, and 20th Annual Report, Part 4, are unreliable, due to doubtful gage-height record, and should not be used.

REVISED RECORDS.--WSP 972: 1928, 1930, 1933. WSP 1433: 1899-1904, 1914-17(M), 1918-24, 1925-27(M), 1929-34(M), 1935, 1936-39(M). WSP 2104: Drainage area. WDR VA-72-1: 1928(M), 1940(M). See also PERIOD OF RECORD.

GAGE.--Water-stage recorder. Datum of gage is 906.84 ft above sea level (levels by U.S. Army Corps of Engineers). Prior to June 7, 1937, nonrecording gage on downstream side of highway bridge 50 ft upstream at same datum.

REMARKS.--Records good except those for period of no gage-height record Aug. 2-3, and period of doubtful gage-height record, Aug. 30 to Sept. 30, which are fair. Prior to 1949, diurnal fluctuation at low flow caused by powerplants upstream from station. Since March 1994, water withdrawn upstream for municipal use by the city of Roanoke, amount unknown. American Electric Power and Virginia Department of Emergency Services gage-height radio transmitters at station. Maximum discharge, 32,300 ft³/s, from rating curve extended above 26,000 ft³/s. Practically no flow Dec. 23, 1909, Dec. 19, 1963, when flow was retarded by freezing, gage height, 0.0 ft. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 2,500 ${\rm ft}^3/{\rm s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 8	1300	7,700	9.43	Feb. 17	1745	8,990	10.37
Jan. 28	1600	3,790	6.16	Mar. 21	0300	*12,900	*13.01
Feb. 4	1730	11,500	12.14	Apr. 20	0245	5,130	7.40

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Minimum daily discharge, 56 ft³/s, Sept. 16, 17.

		2200111	1102, 11	00210 122		AILY MEAN	VALUES	310 <u>221</u> (133 .	10 02111			
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	99	156	108	135	1050	749	460	745	381	185	81	e72
2	84	143	109	125	833	644	427	1320	328	165	e83	e68
3	77	154	107	134	805	571	399	944	622	151	e78	e66
3 4 5	74	140	114	145	6970	508	809	1170	421	157	71	e68
5	72	118	108	168	5530	455	995	1130	380	160	70	e66
6	69	113	106	195	3980	411	746	919	361	148	69	e65
7 8	66	119	101	303	2740	396	624	772	325	126	65	e64
8	66	114	97	3980	1800	498	551	820	283	121	368	e66
9	64	109	97	1770	1330	908	699	756	264	140	154	e64
10	63	105	108	814	1100	985	733	650	275	145	155	e62
11	63	104	108	639	1020	731	650	1200	311	136	172	e60
12	65	99	112	612	1080	596	570	1060	375	127	134	e60
13	64	107	106	584	1140	523	500	867	338	118	112	e58
14	64	118	100	521	953	497	473	699	304	106	102	e58
15	66	110	97	747	763	454	447	614	321	102	104	e58
16	64	111	94	1540	719	398	419	586	296	114	276	e56
17	65	106	92	1020	5030	370	1450	548	254	137	303	e56
18	72	101	92	709	4250	391	1360	455	223	102	171	e140
19	76	99	93	613	2050	1360	1560	398	212	105	133	e62
20	73	97	92	592	1530	4080	3840	365	212	104	116	e62
20	/ 3	97	92	592	1530	4080	3840	305	218	104	110	600
21	69	141	91	567	1250	8810	2020	343	203	97	104	e64
22	67	165	124	532	1030	2960	1470	328	188	125	97	e64
23	66	164	116	663	1390	1810	1210	368	173	117	93	e66
24	75	138	143	801	1470	1350	1060	482	160	103	92	e63
25	102	109	160	788	1130	1050	895	529	178	100	85	e60
26	128	107	154	639	961	878	771	465	174	99	83	e60
27	114	110	195	624	845	766	669	671	164	97	82	e58
28	109	108	181	2770	788	686	614	845	161	94	78	e58
29	94	105	157	2210		617	559	600	222	87	79	e60
30	84	105	161	1770		540	521	505	207	87 79	e75	
												e62
31	77		147	1360		492		456		78	e70	
TOTAL	2391	3579	3670	28070	53537	35484	27501	21610	8322	3725	3755	1944
MEAN	77.1	119	118	905	1912	1145	917	697	277	120	121	64.8
MAX	128	165	195	3980	6970	8810	3840	1320	622	185	368	140
MIN	63	97	91	125	719	370	399	328	160	78	65	56
CFSM	.20	.30	.30	2.29	4.84	2.90	2.32	1.76	.70	.30	.31	.16
IN.	.23	.34	.35	2.64	5.04	3.34	2.59	2.04	.78	.35	.35	.18

e Estimated.

212

ROANOKE RIVER BASIN

02055000 ROANOKE RIVER AT ROANOKE, VA--Continued

STATISTICS (OF	MONTHLY	MEAN	DATA	FOR	WATER	YEARS	1899	- 1998	. B	WATER	YEAR	(WY)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	233	248	351	481	576	699	588	422	307	220	226	201
MAX	1080	1626	1425	1353	1912	2521	2558	1466	1206	1190	2140	1569
(WY)	1907	1986	1902	1937	1998	1899	1987	1901	1972	1905	1940	1928
MIN	47.9	43.8	55.2	65.5	52.5	119	108	112	75.3	45.6	43.5	42.6
(WY)	1992	1932	1918	1981	1934	1981	1942	1941	1926	1930	1981	1930
SUMMARY	SUMMARY STATISTICS ANNUAL TOTAL		FOR 1	L997 CALE	NDAR YEAR	F	OR 1998	WATER YEAR		WATER YE	ARS 1899	- 1998
ANNUAL	ANNUAL TOTAL ANNUAL MEAN			108139			193588					
ANNUAL	MEAN		296				530			376		
HIGHEST	NNUAL MEAN IGHEST ANNUAL MEAN									836		1901
LOWEST	ANNUAL M	EAN								113		1981
HIGHEST	DAILY M	EAN		2550	Mar 4		8810	Mar 21		18200	Aug 1	5 1940
LOWEST	DAILY MEA	AN		51	aSep 22		56	bSep 16		19	Aug 2	9 1981
ANNUAL	SEVEN-DAY	MINIMUM		56	Sep 17		58	Sep 11		22	Aug 2	4 1981
INSTANT	ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW						12900	Mar 21		32300	Nov	4 1985
INSTANT	INSTANTANEOUS PEAK STAGE						13.	01 Mar 21		c23.35	Nov	4 1985
INSTANT	INSTANTANEOUS LOW FLOW							l)		(f)	Dec 2	3 1909
ANNUAL	ANNUAL RUNOFF (CFSM)			.75				. 34		.95		
ANNUAL	RUNOFF (INCHES)		10.1	8		18.	. 23		12.93		

10 PERCENT EXCEEDS 50 PERCENT EXCEEDS

90 PERCENT EXCEEDS

a Also Sept. 23, 1997.
b Also Sept. 17, 1998.
c From floodmark.
d Not determined.
f Practically no flow; retarded by freezing.

02055100 TINKER CREEK NEAR DALEVILLE, VA

LOCATION.--Lat 37°25'03", long 79°56'08", Botetourt County, Hydrologic Unit 03010101, on left bank 1,100 ft downstream from Norfolk Southern Railway bridge, 0.2 mi downstream from unnamed tributary, 0.5 mi south of Glebe Mills, and 1.3 mi northwest of Daleville.

DRAINAGE AREA. -- 11.7 mi².

PERIOD OF RECORD. -- April 1956 to current year.

REVISED RECORDS.--WSP 1904: 1958-60(P). WSP 2104: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,217.47 ft above sea level (Norfolk Southern Railway bench mark).

REMARKS.--Records good except those for periods of no gage-height record, Aug. 15-18 and Sept. 11-15, which are fair. Withdrawal of water 1,000 ft downstream of gage by city of Roanoke for Carvins Cove Reservoir. Virginia Department of Emergency Services radio transmitter at station. Maximum discharge, 10,400 ft³/s, from rating curve extended above 130 ft³/s on basis of contracted-opening measurement at gage height 9.82 ft and slope-area measurements at gage heights 8.52 ft, 9.82 ft, and 13.36 ft. Minimum discharge, 0.20 ft³/s, result of freezeup. Minimum gage height, 0.99 ft, June 12, 24, 1970. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in 1940 reached a stage of 9.0 ft, from information by local resident.

EXTREMES FOR CURRENT YEAR.—Peak discharges equal to or greater than base discharge of 250 ft^3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 8 Feb. 4 Feb. 17	0500 1315 0815	1,670 1,010 635	7.65 6.40 5.30	Mar. 20 Apr. 17	1830 0630	*2,050 580	*8.18 5.11

Minimum discharge, 1.8 ft^3/s , Sept. 28, gage-height, 1.16 ft.

		DISCHA	RGE, IN C	UBIC FEET	PER SECON	ID, WATER LY MEAN V		OBER 1997	TO SEPTE	MBER 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2.9 2.7 2.6 2.5 2.3	8.0 8.0 4.8 3.8 3.3	3.2 3.0 2.9 3.3 3.0	3.4 3.4 4.0 4.8 5.2	35 31 38 454 187	32 30 28 27 26	23 22 22 33 26	26 24 25 28 26	11 11 10 10	5.7 5.6 5.5 6.2 6.4	3.9 3.6 3.5 3.4 3.3	2.4 2.3 2.2 2.3 2.2
6 7 8 9 10	2.2 2.2 2.2 2.2 2.3	3.3 4.3 4.0 4.2 4.1	2.8 2.8 2.8 2.8 3.5	5.3 9.3 207 27 17	149 98 75 61 52	25 24 34 60 38	24 23 22 24 22	23 22 22 20 19	10 9.4 9.0 9.1 9.7	5.5 5.2 5.6 5.6 5.4	3.2 3.1 9.7 7.4 6.1	2.1 2.1 2.2 2.1 2.1
11 12 13 14 15	2.4 2.3 2.3 2.1 2.1	4.1 3.8 3.7 4.4 4.0	3.3 3.1 3.0 3.0 2.8	14 13 14 13 30	49 49 44 39 35	33 30 28 27 27	20 19 18 18 17	27 23 21 20 19	10 11 9.9 9.5	5.0 4.8 4.7 4.6 4.5	7.6 5.0 4.4 4.2 e4.2	e2.1 e2.1 e2.1 e2.1
16 17 18 19 20	2.2 2.3 2.5 2.5 2.4	3.7 3.5 3.5 3.4 3.3	2.8 2.8 2.8 2.8 2.7	28 22 19 17 15	36 281 104 66 58	26 25 29 52 390	19 115 39 72 61	18 17 16 16	9.0 8.5 7.8 7.9 7.2	4.4 4.5 4.2 4.1 4.1	e12 e15 e10 6.5 4.5	2.0 2.1 2.5 2.1 2.1
21 22 23 24 25	2.4 2.3 2.4 3.3 4.2	5.0 5.3 4.0 3.5 3.3	2.7 3.8 3.5 3.5	13 13 36 27 23	48 42 70 56 45	185 75 53 44 38	40 33 33 31 27	14 13 15 16 14	6.9 6.9 6.7 6.5	3.9 4.5 5.1 4.8 4.6	3.5 3.1 2.9 2.8 2.7	2.1 2.1 2.0 2.0 2.0
26 27 28 29 30 31	4.1 4.3 3.4 3.3 3.1 3.2	3.2 3.1 3.1 3.1 3.2	3.6 4.8 4.6 4.5 4.2 3.7	19 18 73 55 52 42	40 37 35 	34 31 29 27 25 24	25 23 22 21 20	13 23 17 14 13	6.0 5.7 6.0 8.7 6.5	4.5 4.4 4.3 4.0 3.8 4.0	2.6 2.6 2.5 2.5 2.5	2.1 2.1 2.0 2.0 2.2
TOTAL MEAN MAX MIN CFSM IN.	83.2 2.68 4.3 2.1 .23 .26	122.0 4.07 8.0 3.1 .35	102.5 3.31 4.8 2.7 .28 .33	842.4 27.2 207 3.4 2.32 2.68	2314 82.6 454 31 7.06 7.36	1556 50.2 390 24 4.29 4.95	914 30.5 115 17 2.60 2.91	591 19.1 28 12 1.63 1.88	257.1 8.57 11 5.7 .73 .82	149.5 4.82 6.4 3.8 .41 .48	150.8 4.86 15 2.4 .42 .48	63.9 2.13 2.5 2.0 .18 .20

e Estimated.

14.43

2.6

24

ROANOKE RIVER BASIN

02055100 TINKER CREEK NEAR DALEVILLE, VA--Continued

STATISTICS	OF	MONTHLY	MEAN	DATA	FOR	WATER	YEARS	1956	_	1998.	BY	WATER	YEAR	(WY)

10.06

5.5

2.4

18

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	8.20	11.2	10.7	14.6	19.5	23.1	20.1	12.8	8.94	6.76	6.43	6.87
MAX	34.2	118	32.6	35.9	82.6	69.3	87.9	33.8	39.0	21.8	29.8	50.4
(WY)	1980	1986	1973	1996	1998	1993	1987	1958	1972	1973	1984	1979
MIN	2.09	1.76	2.00	1.78	3.78	3.16	3.21	3.44	2.01	1.13	2.01	1.36
(WY)	1987	1982	1966	1966	1981	1981	1981	1981	1988	1966	1981	1968
SUMMARY	STATIST:	ICS	FOR 1	L997 CALEN	DAR YEAR	FC	OR 1998 WA	ATER YEAR		WATER YE	ARS 1956	- 1998
ANNUAL	TOTAL			3164.6			7146.4					
ANNUAL	MEAN			8.67			19.6			12.4		
HIGHEST	C ANNUAL N	MEAN								21.6		1973
LOWEST	ANNUAL M	EAN								3.23		1981
HIGHEST	C DAILY ME	EAN		93	Mar 3		454	Feb 4		2560	Nov	4 1985
LOWEST	DAILY MEA	AN		2.0	Aug 17		2.0	aSep 16		.90	Jul	26 1966
ANNUAL	SEVEN-DAY	Y MINIMUM		2.1	Sep 2		2.0	Sep 23		.99	Jul	21 1966
INSTANT	TANEOUS PI	EAK FLOW					2050	Mar 20		10400	Nov	4 1985
INSTANT	TANEOUS PI	EAK STAGE					8.18	Mar 20		b13.36	Nov	4 1985
INSTANT	TANEOUS LO	OW FLOW					1.8	Sep 28		c.20	Jan	24 1961
ANNUAL	RUNOFF (CFSM)		.74			1.67	7		1.06		

22.72

6.2

2.3

39

ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES)

10 PERCENT EXCEEDS 50 PERCENT EXCEEDS

90 PERCENT EXCEEDS

a Also Sept. 23-25, 28, 29, 1998. b From floodmarks. c Result of freezeup.

02056000 ROANOKE RIVER AT NIAGARA, VA

LOCATION.--Lat 37°15'18", long 79°52'18", Roanoke County, Hydrologic Unit 03010101, on right bank 200 ft downstream from powerplant of American Electric Power at Niagara, 2 mi downstream from Tinker Creek, 2.1 mi southeast of Vinton, and at mile 355.3.

DRAINAGE AREA. -- 512 mi².

PERIOD OF RECORD. -- July 1926 to current year.

REVISED RECORDS.--WSP 972: 1927(M), 1929(M), 1934(M), 1937(M). WSP 1303: 1928, 1930, 1933-38, 1940. WSP 2104: Drainage area. WDR VA-72-1: 1928(M), 1930(M), 1933(M), 1935-36(M), 1938(M), 1940, 1944-45(M), 1948-49(M), 1951(M), 1955(M), 1960(M), 1967(M), 1969(M).

GAGE.--Water-stage recorder. Datum of gage is 820.15 ft above sea level (levels by U.S. Army Corps of Engineers).

REMARKS.--Records good except those for period of no gage-height record, Oct. 15 to Nov. 14, and period of doubtful gage height record, June 18 to July 28, which are fair. Flow regulated by dam and powerplant 200 ft upstream from station. Maximum discharge, 52,300 ft³/s, from rating curve extended above 12,000 ft³/s on basis of slope-area measurements at gage heights 18.98 ft and 25.30 ft. Minimum gage height, 0.17 ft, Aug. 25, 1971. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 3,500 ft^3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 8	1345	11,500	12.79	Mar. 20	2045	18,400	15.53
Jan. 28	1500	7,770	10.84	Apr. 20	0315	7,840	10.88
Feb. 4	1645	*20,000	*16.06	Aug. 8	1415	4,350	8.45
Feb. 17	1800	12,800	13.37				

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Minimum discharge, 70 ft^3/s , Sept. 29, gage height, 1.37 ft .

	DAILY MEAN VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	194	e240	159	207	1330	1000	715	980	527	e350	179	154
2	159	e220	171	193	1080	887	668	1650	472	e330	175	145
3	149	e240	157	203	1110	788	626	1140	749	e350	169	146
4	142	e220	170	214	12400	712	1180	1410	571	e380	162	153
5	136	e190	170	238	8410	666	1280	1420	552	e340	155	137
6	135	e180	149	264	5570	605	999	1130	514	e310	159	141
7	127	e190	148	401	3640	585	878	959	467	e270	147	134
8	129	e180	149	6490	2450	769	795	1020	429	e260	833	149
9	127	e170	160	2230	1910	1320	978	940	409	e300	262	139
10	122	e170	167	980	1550	1360	976	822	435	e310	354	133
11	120	e160	163	660	1460	1030	891	1620	506	e290	447	132
12	123	e150	176	538	1540	860	799	1320	593	e270	235	127
13	146	e160	157	525	1540	752	724	1070	482	e250	206	129
14	126	e180	151	469	1300	713	701	885	453	e230	198	128
15	e125	172	150	979	1060	660	675	774	501	e220	213	129
16	e125	143	148	1970	1020	597	661	793	440	e260	814	126
17	e130	170	144	1280	7590	566	2450	681	406	e290	546	120
18	e140	165	144	879	6190	612	2000	589	e360	e220	288	251
19	e150	152	139	716	2860	1770	2430	529	e345	e230	254	134
20	e140	140	137	622	2130	6360	5620	510	e380	e220	229	125
21	e135	228	142	520	1690	12600	2630	483	e350	e210	213	157
22	e132	281	213	439	1370	4360	1760	458	e330	e270	203	140
23	e130	236	178	1040	2120	2510	1410	539	e310	e240	200	154
24	e150	201	216	1110	2110	1820	1240	667	e300	e220	179	141
25	e170	183	267	1040	1590	1400	1020	663	e330	e210	172	140
26	e200	170	218	826	1320	1170	889	607	e315	e220	184	137
27	e180	156	297	795	1150	1040	792	857	e300	e210	162	123
28	e170	169	296	5220	1060	952	720	1020	e350	e190	159	126
29	e150	159	245	3210		879	664	751	e420	184	164	131
30	e130	161	241	2390		803	627	626	e385	178	157	140
31	e120		245	1770		746		593		182	146	
TOTAL	4412	5536	5667	38418	78550	50892	37798	27506	12981	7994	7964	4221
MEAN	142	185	183	1239	2805	1642	1260	887	433	258	257	141
MAX	200	281	297	6490	12400	12600	5620	1650	749	380	833	251
MIN	120	140	137	193	1020	566	626	458	300	178	146	120
CFSM	.28	.36	.36	2.42	5.48	3.21	2.46	1.73	. 85	.50	.50	. 27
IN.	.32	.40	.41	2.79	5.71	3.70	2.75	2.00	.94	.58	.58	.31

e Estimated.

02056000 ROANOKE RIVER AT NIAGARA, VA--Continued

STATISTICS	OF	MONTHLY	MEAN	DATA	FOR	WATER	YEARS	1927	_	1998.	BY	WATER	YEAR	(WY)

141

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	355	372	478	644	790	922	833	569	425	293	342	317
MAX	1722	2100	2065	1941	2805	2846	3661	1447	1550	1396	2456	2051
(WY)	1938	1986	1949	1937	1998	1993	1987	1958	1972	1949	1940	1928
MIN	86.0	101	115	110	117	210	157	193	158	109	92.2	84.0
(WY)	1931	1942	1966	1966	1934	1981	1942	1930	1966	1930	1956	1954
SUMMARY	STATIST	ICS	FOR 1	L997 CALE	NDAR YEAR	F	OR 1998	WATER YEAR		WATER YEA	ARS 1927	- 1998
ANNUAL	TOTAL			155989			281939					
ANNUAL	MEAN			427			772			527		
HIGHEST	ANNUAL N	MEAN								984		1949
LOWEST	ANNUAL MI	EAN								198		1981
HIGHEST	DAILY M	EAN		3600	Mar 4		12600	Mar 21		19700	Nov	4 1985
LOWEST	DAILY MEA	AN		120	aSep 21		120	b0ct 11		8.0	Oct	9 1954
ANNUAL	SEVEN-DAY	MINIMUM		126	Oct 6		126	Oct 6		67	Jan 2	28 1966
INSTANT	CANEOUS PI	EAK FLOW					20000	Feb 4		52300	Nov	4 1985
INSTANT	CANEOUS PI	EAK STAGE					16	.06 Feb 4		c25.30	Nov	4 1985
INSTANT	CANEOUS LO	OW FLOW					70	Sep 29		1.0	dOct 1	6 1956
ANNUAL	RUNOFF (CFSM)		.8	3		1.	. 51		1.03		
ANNUAL	RUNOFF (INCHES)		11.3	3		20	. 48		13.98		
10 PERC	CENT EXCE	EDS		886			1540			996		
50 PERC	CENT EXCE	EDS		280			310			314		

140

137

90 PERCENT EXCEEDS

a Also Oct. 11, 31, 1997. b Also Oct. 31, 1997, and Sept. 17, 1998. c From floodmark. d Also Oct. 20, 1956, and Nov. 25, 26, 1990.

02056650 BACK CREEK NEAR DUNDEE, VA

LOCATION.--Lat 37°13'39", long 79°52'06", Roanoke County, Hydrologic Unit 03010101, on right bank 65 ft upstream from bridge on State Highway 660, 0.9 mi upstream from Horseshoe Branch, 1.1 mi southeast of Dundee, 2.8 mi west of Hardy Post Office, and at mile 2.4.

DRAINAGE AREA. -- 56.8 mi².

PERIOD OF RECORD. -- July 1974 to current year.

GAGE.--Water-stage recorder. Datum of gage is 822.67 ft above sea level. Prior to Apr. 4, 1975, nonrecording gage, and Apr. 4, 1975, to Nov. 4, 1985, water-stage recorder, at site 80 ft downstream at same datum.

REMARKS.--Records good except for period of no gage-height record, Oct. 1-22, which is fair. Maximum discharge, $20,000 \text{ ft}^3/\text{s}$, from rating curve extended above 5,900 ft $^3/\text{s}$ on basis of slope-area measurement of peak flow. Several measurements of water temperature were made during the year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Floods of May 30, 1971, and June 21, 1972, reached a stage of 17.5 ft and 20.0 ft, respectively, from information by local resident.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 600 ft^3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 8	0700	1,880	9.01	Feb. 17	1530	1,400	8.04
Jan. 28	1645	660	6.05	Mar. 20	2115	2,720	10.44
Feb. 4	1315	*3,940	*12.16	Apr. 19	2115	727	6.28

Minimum discharge, 3.0 ft³/s, Sept. 9, 14-16, gage-height 2.41 ft.

		DISCHAR	RGE, IN C	UBIC FEET		ND, WATER LY MEAN V		OBER 1997	TO SEPTE	MBER 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	e15	32	19	26	154	137	100	141	64	31	10	5.7
2	e14	42	16	27	122	125	90	141	58	25	9.0	5.4
3	e14	32	15	28	123	112	85	105	56	25	7.2	5.7
4	e13	22	20	28	1790	101	158	120	54	25	6.4	6.2
5	e13	19	20	35	651	93	130	144	57	27	5.8	6.0
6	e12	17	16	41	479	87	110	107	59	24	5.4	5.2
7	e12	23	14	74	327	82	100	98	52	22	5.0	5.1
8	e12	23	13	703	250	120	95	104	48	22	81	4.0
9	e13	21	15	286	205	237	132	92	47	28	42	3.4
10	e14	19	18	133	167	188	122	84	54	23	23	4.2
11	e16	18	21	84	161	143	106	152	53	19	22	4.0
12	e15	17	18	67	199	120	96	118	65	18	16	3.9
13	e15	17	16	63	178	107	91	102	55	17	13	3.7
14	e14	32	15	53	154	100	89	91	47	16	13	3.3
15	e13	28	14	143	129	92	86	83	53	14	14	3.3
16	e14	21	14	219	123	86	82	83	47	13	32	3.5
17	e15	17	15	135	873	82	188	110	44	40	40	3.8
18	e17	17	14	93	512	87	142	77	39	19	22	5.6
19	e15	16	14	77	318	131	264	69	38	16	16	5.0
20	e13	16	13	64	254	789	364	65	38	19	13	5.9
21	e11	18	13	55	214	694	233	62	34	13	11	6.5
22	e10	38	18	52	178	343	181	59	34	11	11	7.7
23	9.3	31	22	173	320	251	154	67	32	12	9.9	8.6
24	10	23	20	156	291	203	145	80	31	11	9.5	6.1
25	20	20	39	132	223	167	120	83	30	11	8.9	5.3
26	23	19	32	96	184	145	107	74	28	12	8.1	5.5
27	34	18	33	105	162	132	99	118	26	12	7.7	5.3
28	16	16	43	539	147	123	92	99	26	13	7.5	4.5
29	11	16	32	332		113	86	78	46	11	7.1	4.1
30	9.8	18	34	263		105	84	67	33	8.4	6.2	4.5
31	9.5		28	210		99		81		8.6	5.9	
TOTAL	442.6	666	634	4492	8888	5394	3931	2954	1348	566.0	488.6	151.0
MEAN	14.3	22.2	20.5	145	317	174	131	95.3	44.9	18.3	15.8	5.03
MAX	34	42	43	703	1790	789	364	152	65	40	81	8.6
MIN	9.3	16	13	26	122	82	82	59	26	8.4	5.0	3.3
CFSM	.25	.39	.36	2.55	5.59	3.06	2.31	1.68	.79	.32	.28	.09
IN.	.29	.44	.42	2.94	5.82	3.53	2.57	1.93	.88	.37	.32	.10

e Estimated.

ROANOKE RIVER BASIN

02056650 BACK CREEK NEAR DUNDEE, VA--Continued

STATISTICS	OF	MONTHLY	MEAN	DATA	FOR	WATER	YEARS	1974	- 1998	BY	WATER	YEAR	(WY)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	35.4	50.1	49.3	72.4	86.5	114	115	68.4	54.9	29.2	25.3	40.6
MAX	154	292	117	146	317	265	396	190	173	110	121	314
(WY)	1977	1986	1987	1996	1998	1993	1987	1978	1992	1989	1985	1979
MIN	5.61	6.58	13.9	11.6	21.6	20.5	22.4	20.8	11.1	6.96	3.47	5.03
(WY)	1992	1982	1981	1981	1989	1981	1981	1981	1986	1981	1981	1998
SUMMARY	STATIST	ICS	FOR I	1997 CALEN	NDAR YEAR	F	OR 1998 W <i>I</i>	ATER YEAR		WATER YE	ARS 1974	- 1998
ANNUAL	TOTAL			16902.8			29955.2					
ANNUAL	MEAN			46.3			82.1			61.6		
HIGHEST	' ANNUAL I	MEAN								108		1987
LOWEST	ANNUAL MI	EAN								15.9		1981
HIGHEST	M VITACL	EΔN		401	Jun 2		1790	Feb 4		4000	Nov	4 1985

ANNUAL IUIAL	10902.0	29933.2		
ANNUAL MEAN	46.3	82.1	61.6	
HIGHEST ANNUAL MEAN			108 1987	
LOWEST ANNUAL MEAN			15.9 1981	
HIGHEST DAILY MEAN	401 Jun 2	1790 Feb 4	4000 Nov 4 1985	
LOWEST DAILY MEAN	5.1 aSep 5	3.3 bSep 14	.90 Aug 30 1981	
ANNUAL SEVEN-DAY MINIMUM	7.1 Sep 17	3.6 Sep 11	1.1 Aug 26 1981	
INSTANTANEOUS PEAK FLOW		3940 Feb 4	20000 Nov 4 1985	
INSTANTANEOUS PEAK STAGE		12.16 Feb 4	c25.10 Nov 4 1985	
INSTANTANEOUS LOW FLOW		3.0 dSep 9	(f)	
ANNUAL RUNOFF (CFSM)	.82	1.44	1.09	
ANNUAL RUNOFF (INCHES)	11.07	19.62	14.75	
10 PERCENT EXCEEDS	92	178	118	
50 PERCENT EXCEEDS	35	32	34	
90 PERCENT EXCEEDS	10	7.4	10	

a Also Sept. 6, 8, 1997. b Also Sept. 15, 1998. c From floodmark, present site. d Also Sept. 14-16, 1998. f Not determined.

02058400 PIGG RIVER NEAR SANDY LEVEL, VA

LOCATION.--Lat 36°56'45", long 79°31'30", Pittsylvania County, Hydrologic Unit 03010101, on left bank 300 ft downstream from Harpen Creek, 0.5 mi upstream from bridge on State Highway 40, and 1.1 mi south of Sandy Level.

DRAINAGE AREA. -- 350 mi².

PERIOD OF RECORD. -- May 1963 to current year.

REVISED RECORDS.--WSP 2104: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 617.00 ft above sea level (U.S. Army Corps of Engineers bench mark). Prior to Nov. 18, 1963, nonrecording gage at same site and datum.

REMARKS.--No estimated daily discharges. Records good. American Electric Power gage-height transmitter at station, recorder at Roanoke. Maxi- mum discharge, 65,600 ft³/s, from rating curve extended above 25,500 ft³/s on basis of slope-area measurement of peak flow. Minimum gage height, 1.95 ft, Aug. 29, 30, 1981. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of $4,000~{\rm ft}^3/{\rm s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 28	1330	*12,500	18.52	Feb. 17	1830	6,210	11.44
Feb. 5	0200	6,820	12.32	Apr. 20	0530	4,980	9.63

Minimum discharge, 80 ft³/s, Sept. 17.

		DISCHARGE,	IN CUI	BIC FEET		D, WATER Y MEAN VA		BER 1997 I	O SEPTEME	ER 1998		
					DAIL	I MEAN VA	TOES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	180	242	222	241	502	460	387	423	334	217	152	105
2	161	343	211	243	438	435	395	700	320	204	152	104
3	159	364	196	263	421	416	370	483	316	205	138	103
4	161	252	218	289	3300	394	487	474	352	203	128	118
5	160	209	230	290	3900	385	548	516	341	237	123	128
6	156	201	210	285	1440	373	435	449	338	227	119	116
7	150	240	194	313	960	368	401	435	328	199	117	105
8	149	246	190	1980	706	685	391	686	309	195	128	100
9	149	224	189	1300	565	2770	404	571	299	224	450	94
10	149	209	203	559	488	1260	470	459	326	305	253	90
11	147	197	222	390	459	672	416	522	334	227	198	88
12	145	194	215	339	928	531	389	585	326	196	178	90
13	145	196	199	335	632	472	373	473	341	190	158	89
14	146	245	193	326	496	447	375	436	299	186	152	86
15	165	262	189	603	440	427	381	411	290	177	148	83
16	179	231	186	1340	433	403	368	391	343	169	178	82
17	168	207	186	624	3760	396	2120	406	411	390	267	82
18	179	197	186	422	2650	423	1340	375	327	256	272	117
19	196	194	183	370	943	573	1040	356	283	185	194	101
20	226	192	182	355	689	1160	3450	345	284	179	162	95
21	186	197	181	315	589	2390	1030	340	266	168	150	101
22	168	253	209	292	500	1070	700	335	252	158	144	114
23	160	271	283	1470	1320	678	600	349	255	221	140	137
24	160	233	268	1140	1510	552	541	420	243	176	139	112
25	181	208	359	689	757	489	483	416	229	161	135	102
26	220	200	368	475	584	459	449	368	225	155	131	101
27	336	199	323	859	515	444	426	401	217	153	125	99
28	263	194	392	9520	489	426	416	502	208	166	123	93
29	205	193	355	2540		411	399	392	256	166	119	88
30	187	201	335	952		397	391	362	259	151	114	87
31	183		288	641		389		340		140	109	
TOTAL	5519		7365	29760	30414	20755	19975	13721	8911	6186	5096	3010
MEAN	178	226	238	960	1086	670	666	443	297	200	164	100
MAX	336	364	392	9520	3900	2770	3450	700	411	390	450	137
MIN	145	192	181	241	421	368	368	335	208	140	109	82
CFSM	.51	.65	.68	2.74	3.10	1.91	1.90	1.26	.85	.57	.47	.29
IN.	.59	.72	.78	3.16	3.23	2.21	2.12	1.46	.95	.66	.54	.32

02058400 PIGG RIVER NEAR SANDY LEVEL, VA--Continued

STATIST	TICS OF M	ONTHLY MEAN	DATA I	FOR WATER	YEARS 1963	- 1998,	BY WATE	R YEAR	(WY)				
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MA	y JUN	JUL	AUG		SEP
MEAN	303	317	361	491	517	608	549	41	1 344	264	247		306
MAX	1220	995	836	1054	1086	1578	2265	98	9 1200	814	867	1	1864
(WY)	1991	1986	1974	1978	1998	1993	1987	197	3 1972	1972	1985	1	1987
MIN	110	103	143	160	228	203	202	16	5 114	85.4	49.3	7	70.0
(WY)	1982	1982	1966	1981	1968	1981	1985	198	1 1981	1967	1981	1	1968
SUMMAR	Y STATIST	ICS	FOR	1997 CAL	ENDAR YEAR	F	OR 1998	WATER Y	EAR	WATER Y	YEARS 1963	3 – 1	1998
ANNUAL	TOTAL			137785			157506						
ANNUAL	MEAN			377			432			394			
HIGHES	T ANNUAL	MEAN								709		1	1987
LOWEST	ANNUAL M	EAN								155		1	1981
HIGHES	T DAILY M	EAN		3320	Apr 29		9520	Jan	28	34900	Sep	8]	1987
LOWEST	DAILY ME	AN		105	Sep 9		82	aSep	16	25	Aug	29 1	1981
ANNUAL	SEVEN-DA	Y MINIMUM		125	Sep 3		86	Sep	11	29	Aug	24]	1981
INSTAN	TANEOUS P	EAK FLOW					12500	Jan	28	65600	Sep	8 1	1987
INSTAN	TANEOUS P	EAK STAGE					18.	52 Jan	28	b31.1	l2 Sep	8]	1987
INSTAN	TANEOUS L	OW FLOW					80	Sep	17	24	cAug	29 1	1981
ANNUAL	RUNOFF (CFSM)		1.	08		1.	23		1.1	13		
ANNUAL	RUNOFF (INCHES)		14.	64		16.	74		15.2	29		
10 PER	CENT EXCE	EDS		602			685			606			
50 PER	CENT EXCE	EDS		332			272			262			
90 PER	CENT EXCE	EDS		161			127			126			

a Also Sept. 17, 1998. b From high-water marks. c Also Aug. 30, 1981.

02060500 ROANOKE (STAUNTON) RIVER AT ALTAVISTA, VA

LOCATION.--Lat 37°06'16", long 79°17'44", Pittsylvania County, Hydrologic Unit 03010101, on right bank 12 ft upstream from bridge on alternate U.S. Highway 29, 0.3 mi south of Altavista, 0.3 mi downstream from Sycamore Creek, 3.5 mi upstream from Big Otter River, and at mile 286.5.

DRAINAGE AREA. -- 1,789 mi².

PERIOD OF RECORD. -- August 1930 to current year.

REVISED RECORDS.--WSP 892: 1938(M). WSP 972: 1931-33. WSP 2104: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 503.10 ft above sea level. Prior to Feb. 21, 1951, on left bank 50 ft downstream at same datum.

REMARKS.--No estimated daily discharges. Records good. Flow regulated since 1962 by Leesville Lake (station 02059400) 9.5 mi upstream and since 1963 by Smith Mountain Lake (station 02057400) 27.5 mi upstream. U.S. Army Corps of Engineers satellite gage-height telemeter at station. American Electric Power gage-height transmitter at station with recorder at Roanoke. Hadson Power Company gage-height telemeter at station. Maximum discharge, 105,000 ft³/s, from rating curve extended above 52,000 ft³/s on basis of unit hydrograph and flood-routing studies by U.S. Army Corps of Engineers and records for other stations in Roanoke River Basin. Minimum gage height, 1.53 ft, Jan. 2, 1977, result of freezeup. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 19,300 ${\rm ft}^3/{\rm s}$, Jan. 28, gage height, 19.32 ft; minimum daily, 668 ${\rm ft}^3/{\rm s}$, Aug. 28.

		DISCH	ARGE, IN	CUBIC FE	ET :		ND, WATER LY MEAN V		остові	ER 1997	TO SEPTE	MBER 199	98		
DAY	OCT	NOV	DEC	JA	N	FEB	MAR	A	PR	MAY	JUN	JUI	_	AUG	SEP
1	799	851	851	83	8	9250	2470	20	10	2640	1660	896	5	705	673
2	783	1100	826	84	0	5320	2270	21	90	3860	1550	783	3	708	677
3	789	938	810			4870	2280	19		5000	1400	755		698	703
4	791	833	843			11600	2260	30		3490	1410	753		687	700
5	778	839	846			15900	2230	40		3190	1410	784		690	705
3	,,,	033	010			13700	2230	10	00	3170	1110	70	-	050	703
6	773	834	821	91	.3	13800	1870	31	10	3110	1420	775	5	687	677
7	768	970	816	96	9	12200	1560	22	20	2990	1400	75	7	691	683
8	782	917	806	291	.0	10300	1790	18	40	3410	1280	723	3	904	689
9	806	885	821	189	0	9910	4690	19	80	3140	1080	763	L	872	670
10	784	848	830			5830	5590	25		2650	1070	757		724	678
11	779	852	834	106	0	2890	5260	25	20	3050	1010	730)	749	713
12	771	843	835	152	0	4580	5210	22	30	4530	1830	708	3	741	686
13	775	830	832	202	0	3930	3520	20	20	3170	1880	726	5	721	689
14	789	827	807	357	0	3130	1710	19	70	2630	1430	717	7	711	681
15	819	843	786	298	0	2490	1640	18	70	2370	1230	693	3	719	681
16	815	811	813	613	0	2010	1750	18	50	2040	1190	704	1	1590	686
17	807	796	795	513	0	9930	2000	80	60	2000	1110	773	3	862	687
18	812	829	802	224	0	12400	2320	103	00	1950	1250	738	3	810	691
19	785	812	807			11900	4130	49		1840	1140	743		741	712
20	794	827	820	179		9850	7650	131		1640	1060	73		713	744
21	802	831	826	168	0	5320	14800	115	00	1580	1040	722	2	705	709
22	778	899	825	431	.0	3950	13700	46	40	1500	1030	719	9	702	720
23	796	941	829	385	0	7400	11700	34	40	1470	898	729	9	689	702
24	775	859	838	425	0	8770	5480	30	40	1790	820	724	1	702	687
25	801	855	892	306	0	3900	2770	26	50	1900	821	729	€	1880	691
0.6	070	0.47	005	01.0		0750	0700	0.2	0.0	1710	0.0.4	71	_	1000	707
26	878	847	895			2750	2700	23		1710	804	715		1220	707
27	895	842	885			2600	2850	18		2010	805	73		669	686
28	914	833	929			2540	2810	18		2870	1220	743		668	699
29	810	819	927				2200	16		2150	1030	720		2210	763
30	795	845	915				2010	19		1630	1020	690		732	681
31	789		872	1100	0		2000	-		1650		703	3	673	
TOTAL	24832	25856	26034	12180	6	199320	125220	1086	10	78960	36298	2294	1	26573	20870
MEAN	801	862	840	392	9	7119	4039	36	20	2547	1210	740)	857	696
MAX	914	1100	929	1730	0	15900	14800	131	00	5000	1880	896	5	2210	763
MIN	768	796	786			2010	1560	16		1470	804	690		668	670
(†)	-5409	-1380	-60			-3250	+1880	+7		-1350	+471	-1790		-7160	-10400
MEAN‡	627	816	838			7002	4100	36		2504	1226	682		626	349
CFSM‡	.35	.46	.47	2.6		3.91	2.29	2.		1.40	.69	. 38		.35	.20
IN.‡	.40	.51	.54			4.08	2.64	2.		1.61	.76	. 44		.40	.22
~	1000				1.50		5016				1500	~=~			11 6-
CAL YR WTR YR		TOTAL TOTAL	579961 817323	MEAN MEAN	158 223		7910 17300	MIN MIN	759 668	MEAN‡ MEAN‡	1530 2215	CFSM‡ CFSM‡	1.24		11.61 16.81

[†] Total change in contents, equivalent in cubic feet per second, per month, in Smith Mountain and Leesville Lakes; provided by American Electric Power.

[‡] Adjusted for monthly change in contents.

02060500 ROANOKE (STAUNTON) RIVER AT ALTAVISTA, VA--Continued

STATISTICS OF MONTHLY MEAN	I DATA FOR WATER Y	EARS 1931 -	- 1962, BY	WATER Y	YEAR (WY)	[UNREGU	LATED]		
OCT NOV MEAN 1431 1366 MAX 6570 3335 (WY) 1938 1948 MIN 324 388 (WY) 1931 1932	DEC JAN 1845 2321 5971 7148 1949 1936 528 543 1932 1956	FEB 2615 5338 1960 517 1934	MAR 2949 5313 1936 1260 1940	APR 2831 4818 1951 815 1942	MAY 2042 4825 1958 827 1934	JUN 1592 3056 1950 653 1956	JUL 1388 5354 1949 442 1932	AUG 1630 10210 1940 314 1932	SEP 1307 3461 1945 284 1954
SUMMARY STATISTICS									
ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	1940 3424 915 98300 156 181 105000 a40.08 94 1.08 14.73 3590 1310	1 Aug 15 1 Sep 30 1 Aug 26 1 Aug 15 1 Aug 15 1 Jan 31 1	1949 1956 1940 1962 1932 1940 1940 1934						
STATISTICS OF MONTHLY MEAN	I DATA FOR WATER Y	EARS 1963 -	- 1998, BY			-		_	
OCT NOV MEAN 1167 1326 MAX 4811 6190 (WY) 1991 1986 MIN 189 396 (WY) 1964 1982	DEC JAN 1417 2176 3622 4643 1997 1978 351 620 1964 1965	FEB 2353 7119 1998 581 1981	MAR 2872 7795 1 1993 338 1981	APR 2547 0930 1987 604 1964	MAY 1951 4716 1978 484 1964	JUN 1545 5684 1972 220 1964	JUL 1103 3363 1972 504 1981	AUG 1037 3108 1985 311 1963	SEP 1228 5246 1987 439 1963
SUMMARY STATISTICS									1998
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	579961 1589 7910 759 775 .89 12.06 2870 1070	Jun 3 Sep 22 Sep 18		2239	Jan 28 Aug 28 Sep 6 Jan 28 Jan 28 CAug 3		1723 2903 645 46700 39 116 62100 34.45 13 .96 13.09 3440	Sep 8 Jul 10 Sep 8 Sep 8 Jan 30	1987 1981 1987 1966 1965 1987 1987

a From floodmarks.
b Result of regulation.
c Also Aug. 28, 30, 31, Sept. 27, 30, 1968.

02062500 ROANOKE (STAUNTON) RIVER AT BROOKNEAL, VA

LOCATION.--Lat 37°02'28", long 78°57'02", Campbell County, Hydrologic Unit 03010102, on left bank 1,600 ft upstream from bridge on U.S. Highway 501 at Brookneal, 2.9 mi upstream from Falling River, and at mile 255.9.

DRAINAGE AREA. -- 2,415 mi².

PERIOD OF RECORD. -- April 1923 to current year.

REVISED RECORDS.--WSP 892: 1928(M). WSP 972: 1928-34. WSP 1303: 1924-27(M), 1929(M), 1941(M). WSP 2104: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 351.96 ft above sea level. Apr. 30, 1923, to Aug. 29, 1929, nonrecording gage, Aug. 30, 1929, to Aug. 15, 1940, water-stage recorder, and Aug. 16 to Oct. 1, 1940, nonrecording gage at site 1,800 ft downstream at same datum. Oct. 2, 1940, to Sept. 30, 1941, nonrecording gage at site 1,600 ft downstream at same datum.

REMARKS.--Records good except for estimated discharge, which is fair. Flow regulated since 1962 by Leesville Lake (station 02059400) 40.1 mi upstream and since 1963 by Smith Mountain Lake (station 02057400) 58.1 mi upstream. U.S. Army Corps of Engineers satellite gage-height telemeter at station. Maximum discharge, $130,000~{\rm ft}^3/{\rm s}$, at present site, from gage-height relation curve, from rating curve extended above $55,000~{\rm ft}^3/{\rm s}$ on basis of slope-area measurement by Geological Survey, unit hydrograph and flood-routing studies by U.S. Army Corps of Engineers, and records for other stations in Roanoke River Basin. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 34,900 ft³/s, Jan. 28, gage height, 27.92 ft; minimum daily, 830 ft^3/s , Sept. 15.

		DIS	CHARGE, IN	CUBIC I	FEET E		OND, WATE		OCTO:	BER 1997	TO SEPT	EMBER 199	8	
DAY	OCT	NO	V DEC	J	AN	FEB	MAR	AP	R	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1070 1010 990 990 995	e128 e150 e175 e145 e130	0 1200 0 1160 0 1260	12: 12: 13:	30 90 90	10400 5620 6710 13000 27300	3840 3650 3630 3560 3490	317 336 306 399 649	0	3370 4760 5800 e4950 e5300	e2350 e2310 2060 2090 e2060	1500 1260 1200 1170 1300	1040 1040 1000 1010 966	875 856 881 922 912
6 7 8 9 10	981 974 972 995 1000	113 149 169 140 127	0 1180 0 1150 0 1140	170 e340 e720	00 00 00	19100 16600 11800 11000 8530	3380 2810 3410 7580 8310	485 377 331 297 400	0.0	e4700 e4150 8870 5060 4050	e2080 e2060 e1980 e1750 e1720	1350 1210 1200 1170 1210	964 967 978 2060 1510	888 841 861 841 836
11 12 13 14 15	978 968 962 976 1050	120 118 117 119 121	0 1220 0 1190 0 1170	e220 e250 e361	00 00 50	4190 5860 5810 4520 3800	6760 6420 5770 3300 3040	386 363 320 318 304	0	3520 5250 4640 3670 3450	e1770 e1990 e2520 e2400 e1870	1170 1100 1090 1110 1080	1230 1180 1100 1070 1090	855 876 854 842 830
16 17 18 19 20	1060 1080 1190 1120 1060	119 112 113 112 111	0 1130 0 1110 0 1110	e720 e420 e250	00 00 00	3250 11600 19300 15500 11800	2970 3080 3520 5420 9810	293 1020 1520 765 1750	0	3010 2920 2840 2730 2520	e1890 e1720 1780 e1850 e1830	1060 1090 1190 1110 1120	1130 1950 1360 1200 1090	833 845 860 897 946
21 22 23 24 25	1060 1030 1010 1000 1020	115 129 142 131 121	0 1150 0 1190 0 1230	e330 e920 804	00 00 40	7710 5480 6900 12700 6370	29200 20300 15600 8960 4520	1580 798 510 444 400	0	2420 2280 2260 2470 2740	e1800 e1700 e1600 1350 1330	1090 1070 1070 1090 1100	1040 1040 1010 981 996	935 989 994 893 878
26 27 28 29 30 31	1230 1440 1280 1210 1070 1060	118 117 116 114 116	0 1410 0 1520 0 1540 0 1490	390 2750 2810 1990	50 00 00 00	4210 4030 3910 	3950 4020 4010 3630 3270 3180	378 310 296 280 273	0 0 0	2600 2620 3520 3240 2490 2370	1290 1270 1530 1560 1630	1080 1070 1170 1130 1060 1030	2380 907 865 1460 1710 850	906 901 873 863 941
TOTAL MEAN MAX MIN (†) MEAN‡ CFSM‡ IN.‡	32831 1059 1440 962 -5409 885 .37 .42	3807 126 175 111 -138 122 .5	9 1242 0 1540 0 1110 0 -60 3 1240 1 .51	610 2810 123 +2283 683 2.3	01 00 30 30 37 83	267000 9536 27300 3250 -3250 9420 3.90 4.06	194390 6271 29200 2810 +1880 6331 2.62 3.02	16205 540 1750 273 +73 542 2.2	2 0 0 0 6	114570 3696 8870 2260 -1350 3652 1.51 1.74	55140 1838 2520 1270 +471 1854 .77 .86	35650 1150 1500 1030 -1790 1092 .45 .52	37174 1199 2380 850 -7160 968 .40 .46	26524 884 994 830 -10400 537 .22 .25
CAL YR WTR YR		TOTAL TOTAL	809732 1191039	MEAN MEAN	2218 3263	MAX MAX	10800 29200	MIN MIN	920 830		2160 3239	CFSM‡ CFSM‡ 1	.89 IN.;	

[†] Total change in contents, equivalent in cubic feet per second, per month, in Smith Mountain and Leesville Lakes; provided by Appalachian Power Company. ‡ Adjusted for monthly change in contents.

e Estimated.

02062500 ROANOKE (STAUNTON) RIVER AT BROOKNEAL, VA--Continued

STATIST		ONTHLY MEAN								_		
	OCT 1884 8561 1938 415 1931	NOV 1762 3861 1949 527 1932	DEC 2417 7776 1949 805 1932	JAN 3019 9381 1936 821 1956	FEB 3349 6272 1960 754 1934	MAR 3603 7071 1936 1666 1940	APR 3521 6407 1935 1083 1942	MAY 2512 5789 1958 1132 1956	JUN 1991 4320 1929 714 1926	JUL 1726 7125 1949 489 1930	AUG 2133 14270 1940 384 1932	SEP 1731 7430 1928 371 1930
SUMMARY	STATIST	ICS		WATER Y	EARS 1924	- 1962						
LOWEST A HIGHEST LOWEST I ANNUAL S INSTANTA INSTANTA ANNUAL I ANNUAL I 10 PERCE	ANNUAL M DAILY M DAILY M DAILY M SEVEN-DA ANEOUS P ANEOUS P ANEOUS L RUNOFF (ENT EXCE	EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE OW FLOW CFSM) INCHES) EDS EDS		2466 4386 1172 113000 e191 207 130000 46.5 (a) 1.0 13.8 4450 1720 744	Aug Sep Aug Aug 0 Aug	1949 1956 16 1940 2 1932 27 1932 15 1940 (b)						
STATIST	ICS OF M	ONTHLY MEAN	DATA	FOR WATER	YEARS 19	63 - 1998,	BY WATER	YEAR (WY)	[REGUI	LATED, UNADJ	USTED]	
	OCT	NOV	DEC	JAN	FEB	MAR			JUN	JUL	AUG	SEP
MEAN	1625	NOV 1847	2091	3110	3386	4123	3633	2729	2174	1519	1417	1722
MAX	6446	8961	5625	7695	9536	11760	14410	7039	7522	4775	4675	8822
(WY)	1991	1986	1997	1978	1998	1993	1987	1978	1995	1972	1985	1996
MIN	325	553	637	867	953	561	921	836	405	683	411	512
(WY)	1964	1982	1964	1981	1981	1981	1981	1964	1964	4775 1972 683 1963	1964	1965
SUMMARY	STATIST	ICS	FOI	R 1997 CAL	ENDAR YEA	R I	FOR 1998 WA	TER YEAR		WATER YEA	RS 1963	- 1998
ANNUAL 7	т∩тът.			809732			1191039					
ANNUAL N				2218			3263			2442		
	ANNUAL	MEAN		10800			3203			4440		1973
	ANNUAL M	EAN								0.5.2		1981
HIGHEST	DAILY M	EAN		10800	Mar	4	29200	Mar 21		65600	Sep	9 1987
	DAILY ME	AN		920	Sep	7	830	Sep 15		65600 140	Jul	25 1966
ANNUAL S	SEVEN-DA	Y MINIMUM		946		3	847	Sep 10		203	Sep	4 1965
INSTANTA	ANEOUS P	EAK FLOW			_		34900	Jan 28		85800	Sep	9 1987
INSTANTA	ANEOUS P	EAK STAGE					27.92	Jan 28		39.80	Sep	9 1987
INSTANTA	ANEOUS L	OW FLOW					807	Sep 9		c136	dJul	25 1966
ANNUAL F	RUNOFF (CFSM)			92		1.35 18.35			65600 140 203 85800 39.80 c136 1.01 13.74		
ANNUAL F	RUNOFF (INCHES)		12.	47		18.35			13.74		
10 PERCE	ENT EXCE	EDS		4180			7200			4770		
50 PERCE	ENT EXCE	CFSM) INCHES) EDS EDS EDS		1590	92 47		1490			1430		
90 PERCE	ENT EXCE	EDS		1000			970			544		

a Probably less than 191 ft³/s.
b Probably occurred Sept. 1, 2, 1932.
c Lowest recorded discharge; may have been lower during period of no gage-height record, July 25, 26, 1966.
d Also July 26, 1966.
e Estimated.

02066000 ROANOKE (STAUNTON) RIVER AT RANDOLPH, VA

LOCATION.--Lat 36°54'54", long 78°44'28", Halifax County, Hydrologic Unit 03010102, on right bank 6 ft downstream from bridge on State Highway 746, 2.8 mi northwest of Randolph, 3.6 mi upstream from Roanoke Creek, and at mile 227.3.

DRAINAGE AREA. -- 2,977 mi².

PERIOD OF RECORD.--August 1900 to September 1906, October 1927 to September 1930, October 1950 to current year.

Monthly discharge only for some periods, published in WSP 1303. Prior to October 1902, published as Staunton
River at Randolph. Gage heights collected since 1905 at this site or at former site are contained in reports
of the National Weather Service.

REVISED RECORDS.--WSP 1203: 1928-30. WSP 1303: 1901-6. WSP 2104: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 307.59 ft above sea level. Aug. 27, 1900, to Oct. 13, 1902, nonrecording gage at site 3.2 mi downstream at datum about 5.9 ft lower. Oct. 14, 1902, to Aug. 11, 1906, and Oct. 1, 1927, to Mar. 31, 1930, nonrecording gage at site of original gage at datum 3.93 ft lower than present datum.

REMARKS.--No estimated daily discharges. Records good. Flow regulated since 1962 by Leesville Lake (station 02059400) 68.7 mi upstream and since 1963 by Smith Mountain Lake (station 02057400) 86.7 mi upstream. U.S. Army Corps of Engineers satellite gage-height telemeter at station. Maximum discharge, 97,000 ft³/s, from graph based on gage readings, site and datum then in use. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Aug. 16, 1940, reached a stage of 41.6 ft, present site and datum, discharge, $150,000~\rm{ft}^3/s$, from information by U.S. Army Corps of Engineers.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 36,400 ${\rm ft}^3/{\rm s}$, Jan. 29, gage height, 27.17 ${\rm ft}$; minimum daily, 953 ${\rm ft}^3/{\rm s}$, Sept. 16.

DATLY MEAN VALUES DAY ОСТ NOV DEC JAN FEB MAR APR MAY TIIN TITT. AUG SEP 2.0 1730 1200 2.8 ---___ TOTAL MEAN MAX MIN -10400 -5409 -1380 -60 +22830 -3250 +1880 +730 -1350+471 -1790 -7160 MEAN‡ 2.78 2.26 CFSM‡ 4.07 1.65 TN ± 3 21 4 24 3 16 2 52 1 90 TOTAL CAL YR 1997 CFSM‡ IN. # 12.03 MEAN MAX MIN MEAN1 .89 TOTAL 1501069 CESMt 1 37 WTR YR 1998 MEAN MAX MTN MEAN± TN ± 18 65

† Total change in contents, equivalent in cubic feet per second, per month, in Smith Mountain and Leesville Lakes; provided by Appalachian Power Company.

[‡] Adjusted for monthly change in contents.

02066000 ROANOKE (STAUNTON) RIVER AT RANDOLPH, VA--Continued

		1EARS 1901-1906,	1928-1930, 1951-	L962, BY WATE	ER YEAR (WY)	[UNREGULATED]
OCT NOV	DEC JAN	FEB MAR		Z JUN		AUG SEP
MEAN 2434 2112	3590 3457	4788 5322				530 2181
MAX 6861 4104	9620 6419	11120 11010				185 8928
(WY) 1930 1958 MIN 782 844	1902 1902 1125 1026	1902 1903 2047 2633				901 1928 450 410
(WY) 1954 1954	1956 1956	1959 1956	1930 1950	5 1037 5 1956		930 1930
(11)	1950 1950	1939 1930	1930 1930	1,50	1750 1	150 1550
SUMMARY STATISTICS	WATER YE	ARS 1901 - 1906				
		1928 - 1930				
		1951 - 1962				
ANNUAL MEAN HIGHEST ANNUAL MEAN	3357 5727	1901				
LOWEST ANNUAL MEAN	1501	1901				
LOWEST DAILY MEAN	256	Sep 16 1954				
ANNUAL SEVEN-DAY MINIMUM	284	Sep 13 1954				
INSTANTANEOUS PEAK FLOW	97000	Dec 31 1901 Dec 31 1901				
INSTANTANEOUS PEAR STAGE INSTANTANEOUS I.OW FI.OW	256	Sep 16 1954				
HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS	1.13	DCP 10 1951				
ANNUAL RUNOFF (INCHES)	15.31					
10 PERCENT EXCEEDS	6030					
50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	2230 1040					
90 PERCENI EXCEEDS	1040					
STATISTICS OF MONTHLY MEA	N DATA FOR WATER	YEARS 1963 - 199	8, BY WATER YEAR	(WY) [REGUL	ATED, UNADJUS	TED]
OCT NOV	DEC JAN	FEB MAR				AUG SEP
MEAN 2065 2331	2608 3851	4202 5100				690 2147
MAX 7906 11230	6887 9532	12230 13970				988 11350
(WY) 1991 1986 MIN 428 789		1998 1975 1549 769				985 1996 493 662
(WY) 1964 1982	1054 1085 1966 1966	1549 769 1981 1981		3 491 1 1964		
(WI) 1964 1982	1966 1966	1981 1981				264 1062
			. 1701 170	1 1904	1964 1	964 1963
SUMMARY STATISTICS	FOR 1997 CALE	NDAR YEAR	FOR 1998 WATER Y		WATER YEARS	
		NDAR YEAR	FOR 1998 WATER Y			
ANNUAL TOTAL	984273	NDAR YEAR			WATER YEARS	
		NDAR YEAR	FOR 1998 WATER Y			
ANNUAL TOTAL ANNUAL MEAN	984273	NDAR YEAR	FOR 1998 WATER Y		WATER YEARS	1963 - 1998
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN	984273	NDAR YEAR Mar 4	FOR 1998 WATER YE		WATER YEARS 3022 5102	1963 - 1998
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN	984273 2697		FOR 1998 WATER YE	EAR	WATER YEARS 3022 5102 1151 78700	1963 - 1998 1987 1981
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN	984273 2697 13400 959	Mar 4	FOR 1998 WATER YE 1501069 4113 33500 Jan 953 Sep	EAR	WATER YEARS 3022 5102 1151 78700	1963 - 1998 1987 1981 Sep 8 1996
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN	984273 2697 13400 959	Mar 4 Sep 8	FOR 1998 WATER YE 1501069 4113 33500 Jan 953 Sep 972 Sep 36400 Jan	29 16 13 29	WATER YEARS 3022 5102 1151 78700 179	1963 - 1998 1987 1981 Sep 8 1996 aSep 8 1965
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM	984273 2697 13400 959	Mar 4 Sep 8	FOR 1998 WATER YE 1501069 4113 33500 Jan 953 Sep 972 Sep 972 Sep 36400 Jan 27.17 Jan	29 16 13 29	WATER YEARS 3022 5102 1151 78700 179 238	1963 - 1998 1987 1987 1981 Sep 8 1996 aSep 8 1965 Sep 5 1965
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS LOW FLOW	984273 2697 13400 959 1000	Mar 4 Sep 8 Sep 3	FOR 1998 WATER YE 1501069 4113 33500 Jan 953 Sep 972 Sep 36400 Jan 27.17 Jan 945 cSep	29 16 13 29 29	WATER YEARS 3022 5102 1151 78700 179 238 89300 34.94 176	1963 - 1998 1987 1981 Sep 8 1996 aSep 8 1965 Sep 5 1965 Sep 7 1996
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM)	984273 2697 13400 959 1000	Mar 4 Sep 8 Sep 3	FOR 1998 WATER YI 1501069 4113 33500 Jan 953 Sep 972 Sep 36400 Jan 27.17 Jan 945 cSep 1.38	29 16 13 29 29	WATER YEARS 3022 5102 1151 78700 179 238 89300 34.94 176 1.02	1963 - 1998 1987 1981 Sep 8 1996 aSep 8 1965 Sep 5 1965 Sep 7 1996 Sep 7 1996
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES)	984273 2697 13400 959 1000	Mar 4 Sep 8 Sep 3	FOR 1998 WATER YI 1501069 4113 33500 Jan 953 Sep 972 Sep 36400 Jan 27.17 Jan 945 cSep 1.38 18.76	29 16 13 29 29	3022 5102 1151 78700 179 238 89300 34.94 176 1.02 13.79	1963 - 1998 1987 1981 Sep 8 1996 aSep 8 1965 Sep 5 1965 Sep 7 1996 Sep 7 1996
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS	984273 2697 13400 959 1000	Mar 4 Sep 8 Sep 3	FOR 1998 WATER YE 1501069 4113 33500 Jan 953 Sep 972 Sep 36400 Jan 27.17 Jan 945 cSep 1.38 18.76 9420	29 16 13 29 29	WATER YEARS 3022 5102 1151 78700 179 238 89300 34.94 176 1.02 13.79 5800	1963 - 1998 1987 1981 Sep 8 1996 aSep 8 1965 Sep 5 1965 Sep 7 1996 Sep 7 1996
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES)	984273 2697 13400 959 1000	Mar 4 Sep 8 Sep 3	FOR 1998 WATER YI 1501069 4113 33500 Jan 953 Sep 972 Sep 36400 Jan 27.17 Jan 945 cSep 1.38 18.76	29 16 13 29 29	3022 5102 1151 78700 179 238 89300 34.94 176 1.02 13.79	1963 - 1998 1987 1981 Sep 8 1996 aSep 8 1965 Sep 5 1965 Sep 7 1996 Sep 7 1996

a Also July 7, 1970. b Also Sept. 9, 1965. c Also Sept. 16, 1998.

02071530 SMITH RIVER AT SMITH RIVER CHURCH NEAR WOOLWINE, VA

LOCATION.--Lat 36°46'42", long 80°14'58", Patrick County, Hydrologic Unit 03010103, on left bank 10 ft downstream from bridge on State Highway 708, 119 miles southeast of Woolwine, and 29 miles upstream from Philpott Dam.

DRAINAGE AREA. -- 26.7 mi².

PERIOD OF RECORD. -- October 1994 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 210 ft above sea level, from topographic map.

REMARKS.--Records good. Several observations of water temperature were made during the year.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,150 $\rm ft^3/s$, Aug. 17, gage height, 7.68 $\rm ft$; minimum, 8.8 $\rm ft^3/s$, Sept. 27-29, gage height, 2.42 $\rm ft$.

		DISCHAF	RGE, IN CU	BIC FEET		ND, WATER LY MEAN V		OBER 1997	TO SEPTEM	MBER 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	e15	25	16	18	64	77	59	75	45	29	17	17
2	e14	37	14	18	57	73	55	62	44	27	15	17
3	e15	22	14	21	68	69	54	60	43	26	14	17
4	e14	19	21	24	347	65	63	62	49	27	14	20
5	e14	17	16	23	197	63	55	60	47	27	13	16
6	e13	17	15	28	125	61	53	56	45	25	13	15
7	e13	16	14	92	100	60	51	67	43	24	13	14
8	e12	18	13	326	85	187	51	87	41	26	101	14
9	e13	17	14	142	75	272	81	66	43	25	46	14
10	e13	16	17	69	68	143	63	64	46	23	41	14
11	e14	16	16	52	87	112	59	89	43	22	37	14
12	e13	16	14	46	98	98	56	68	41	22	26	13
13	e14	21	14	44	81	89	54	63	39	22	23	12
14	e13	31	13	39	72	83	55	60	37	21	21	12
15	e13	22	13	80	66	78	52	57	39	20	21	12
16	13	19	14	74	89	76	53	54	39	23	53	12
17	14	17	13	55	383	74	175	52	37	29	172	11
18	15	16	13	47	193	77	93	50	34	20	45	12
19	17	16	13	44	136	111	173	48	36	19	35	13
20	15	15	12	40	117	157	154	47	33	18	30	13
21	14	17	12	37	101	135	107	47	32	22	27	15
22	14	25	28	42	91	105	91	45	31	24	25	16
23	14	18	21	130	169	93	82	56	30	21	23	13
24	16	16	25	80	123	85	75	71	33	20	22	13
25	23	15	37	62	103	80	69	51	32	19	21	13
26	32	15	20	53	92	75	65	48	29	18	20	12
27	27	15	30	85	89	73	63	85	27	19	20	11
28	17	14	25	237	82	72	61	59	27	19	19	10
29	16	15	23	125		67	59	52	41	17	18	10
30	16	18	20	92		60	58	49	31	16	18	12
31	16		16	75		56		47		18	17	
TOTAL	482	561	546	2300	3358	2926	2239	1857	1137	688	980	407
MEAN	15.5	18.7	17.6	74.2	120	94.4	74.6	59.9	37.9	22.2	31.6	13.6
MAX	32	37	37	326	383	272	175	89	49	29	172	20
MIN	12	14	12	18	57	56	51	45	27	16	13	10
CFSM	.58	.70	.66	2.78	4.49	3.54	2.80	2.24	1.42	.83	1.18	.51
IN.	.67	.78	.76	3.20	4.68	4.08	3.12	2.59	1.58	.96	1.37	.57

e Estimated.

02071530 SMITH RIVER AT SMITH RIVER CHURCH NEAR WOOLWINE, VA--Continued

STATISTICS	OF	MONTHLY	MEAN	DATA	FOR	WATER	YEARS	1995	_	1998.	BY	WATER	YEAR	(WY)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	28.7	35.1	45.7	74.3	75.1	72.8	56.3	50.6	40.5	23.2	29.7	28.5
MAX	49.8	54.3	95.2	86.9	120	94.4	74.6	59.9	50.8	24.5	55.1	70.0
(WY)	1997	1997	1997	1995	1998	1998	1998	1998	1996	1996	1996	1996
MIN	15.5	18.7	17.6	54.5	55.0	52.4	32.3	37.4	30.1	22.2	13.9	13.2
(WY)	1998	1998	1998	1997	1995	1995	1995	1995	1995	1998	1995	1995
SUMMARY	STATIST:	ICS	FOR :	1997 CALE	NDAR YEAR	F	OR 1998 W	ATER YEAR		WATER Y	EARS 1995	- 1998
ANNUAL	TOTAL			14616			17481					

ANNUAL TOTAL	14616		17481						
ANNUAL MEAN	40.0		47.9			46.6			
HIGHEST ANNUAL MEAN						52.5			1997
LOWEST ANNUAL MEAN						37.0			1995
HIGHEST DAILY MEAN	222	Apr 29	383	Feb	17	669	Dec	1	1996
LOWEST DAILY MEAN	12	Oct 8	10	Sep	28	8.1	Aug	25	1995
ANNUAL SEVEN-DAY MINIMUM	13	Dec 15	12	Sep	24	9.6	Aug	20	1995
INSTANTANEOUS PEAK FLOW			1150	Aug	17	1420	Aug	12	1996
INSTANTANEOUS PEAK STAGE			7.68	Aug	17	8.45	Aug	12	1996
INSTANTANEOUS LOW FLOW			8.8	aSep	27	4.6	Aug	22	1995
ANNUAL RUNOFF (CFSM)	1.50		1.79			1.74			
ANNUAL RUNOFF (INCHES)	20.36		24.36			23.70			
10 PERCENT EXCEEDS	73		92			81			
50 PERCENT EXCEEDS	31		31			38			
90 PERCENT EXCEEDS	14		13			15			

a Also Sept. 28, 29, 1998.

02072000 SMITH RIVER NEAR PHILPOTT, VA

LOCATION.--Lat 36°46'50", long 80°01'30", Franklin County, Hydrologic Unit 03010103, on left bank 900 ft down-stream from Philpott Dam, 1.3 mi southwest of Philpott (corrected), 11.6 mi upstream from Reed Creek, and at mile 44.1.

DRAINAGE AREA. -- 216 mi².

PERIOD OF RECORD. -- August 1946 to current year.

REVISED RECORDS.--WSP 1553: 1953(M), 1955-56(M). WSP 2104: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 804.27 ft above sea level (U.S. Army Corps of Engineers bench mark). Prior to Oct. 8, 1952, at site 1.9 mi downstream at different datum.

REMARKS.--No estimated daily discharges. Records good. Since August 1950, flow regulated by Philpott Lake (station 02071900) 0.2 mi upstream. Maximum discharge, 17,000 ft³/s, at site then in use, from rating curve extended above 9,700 ft³/s on basis of slope-area measurements at gage heights 18.2 ft and 20.3 ft. Minimum discharge observed, 2.3 ft³/s, result of repairs at dam, but may have been less during periods of estimated record. Minimum daily discharge, 20 ft³/s, caused by turbines being shut down for repair at Philpott Dam. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,420 ft^3/s , Oct. 2, gage height, 5.10 ft ; minimum daily, 45 ft^3/s , Jan. 10.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

		DISCHA	KGE, IN C	OBIC PEE	I PER		D, WAIER Y MEAN V		OBER	. 1997 10) SEPIE	MBEK 19	98		
DAY	OCT	NOV	DEC	JAN		FEB	MAR	APR		MAY	JUN	JU	L	AUG	SEP
1	218	55	165	165		52	52	312		555	454	35	7	58	267
2	218	55	164	165		666	756	351		54	455	35	8	58	280
3	225	227	165	53		616	756	352		55	455	20	6	317	283
4	53	226	165	53		617	759	53		568	456	5		317	213
5	53	226	165	213		611	759	53		806	456	5	7	318	57
6	217	226	53	160		756	762	453		807	53	36	7	318	57
7	219	225	53	172		756	53	453		812	53	36	0	318	266
8	218	55	165	173		756	53	453		905	203	36	3	59	268
9	53	55	165	179		757	304	453		1170	204	25	9	58	265
10	383	168	165	45		756	970	454		816	305	20	8	371	265
11	53	167	165	49		763	1290	53		60	294	5	7	369	265
12	53	168	165	220		761	1290	53		63	254	5	7	370	57
13	223	167	53	181		763	1200	402		63	53	26		266	57
14	222	168	53	189		52	52	403		64	53	25		214	260
15	328	55	166	182		53	52	404		167	254	36	2	58	253
16	57	55	165	179		360	394	403		55	254	36	2	61	254
17	274	168	165	52		360	150	405		55	254	31	4	368	254
18	53	166	165	52		945	150	693		558	254	5	8	367	255
19	53	168	166	234		1250	150	1250		558	255	5	8	368	50
20	222	167	53	190	:	1250	913	1250		556	53	26	1	264	50
21	222	167	53	196		669	62	1280		559	53	26	2	211	256
22	222	55	166	181		660	1260	1280		306	406	41		57	256
23	222	55	165	197		758	1040	1190		55	406	31		58	256
24	224	167	165	52		757	649	764		55	407	31		395	256
25	53	166	166	52		755	656	54		205	407	5	8	383	256
26	54	165	165	235		757	405	54		204	407	5		386	50
27	223	166	53	182		760	353	354		461	55	36		281	51
28	223	166	53	173		52	53	353		456	56	36		229	313
29	223	53	165	579			53	552		456	257	36		50	324
30	223	53	165	580			326	503		53	358	26		50	271
31	223		165	52			353			53		21	3	358	
TOTAL	5507	4180	4222	5385	18	8068	16075	15087	1	1610	7884	764		7355	6265
MEAN	178	139	136	174		645	519	503		375	263	24		237	209
MAX	383	227	166	580		1250	1290	1280		1170	456	41		395	324
MIN	53	53	53	45		52	52	53		53	53	5		50	50
MIN	53	53	53	45		52	52	53		53	53	5		50	50
(†)	-2687	-630	-343	+10386	+ :	2037	-176	-116		+630	-1124	-314		-862	-4089
MEAN‡	91	118	125	509		718	513	499		395	225	14		209	73
CFSM‡	. 42	. 55	.58	2.36		3.32	2.37	2.31		1.83	1.04	. 6		.97	.34
IN.‡	. 49	.61	.67	2.72		3.46	2.74	2.58		2.11	1.16	.7	/	1.12	.37
CAL YR	1997	TOTAL	104991	MEAN	288	MAX	676	MIN	46	MEAN‡	258	CFSM‡	1.19	IN.‡	16.23
WTR YR	1998	TOTAL	109282	MEAN	299	MAX	1290	MIN	45	MEAN‡	299	CFSM‡	1.38	IN.‡	18.80

[†] Total change in contents, equivalent in cubic feet per second, per month, in Philpott Lake; provided by U.S. Army Corps of Engineers.

tagineers.

 Adjusted for monthly change in contents.

02072000 SMITH RIVER NEAR PHILPOTT, VA--Continued

STATISTICS OF MONTHLY MEAN	DATA FOR WATER	YEARS 1947	- 1950,	BY WATER	YEAR (WY)	[UNREG	GULATED]		
OCT NOV MEAN 326 318 MAX 522 371 (WY) 1948 1948 MIN 183 202 (WY) 1949 1947	DEC JAN 292 324 507 403 1949 1949 166 238 1947 1948	FEB 339 406 1948 209 1947	MAR 397 474 1949 303 1950	APR 381 490 1948 244 1950	MAY 442 631 1949 195 1947	JUN 381 562 1949 284 1948	JUL 385 915 1949 158 1947	AUG 338 759 1949 141 1947	SEP 331 531 1949 166 1947
SUMMARY STATISTICS	WATER Y	EARS 1947 -	1950						
ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	354 517 237 44500 93 104 17000 20.3 21 1.6 22.3 560 274 148	May 31 Sep 5 Sep 3 Jun 29 0 Jun 29 Aug 15	1949 1947 1950 1947 1947 1949 1949						
STATISTICS OF MONTHLY MEAN					, ,		,		
OCT NOV MEAN 238 228 MAX 755 835 (WY) 1990 1986 MIN 96.1 70.5 (WY) 1952 1953	DEC JAN 250 277 586 526 1997 1991 88.0 71.1 1996 1953	FEB 273 718 1973 58.2 1953	MAR 342 946 1993 60.5 1953	APR 389 1194 1983 69.2 1969	MAY 313 796 1978 61.3 1964	JUN 283 827 1972 67.2 1964	JUL 243 646 1972 82.2 1964	AUG 256 479 1970 77.4 1964	SEP 261 724 1979 126 1956
SUMMARY STATISTICS	FOR 1997 CALE	NDAR YEAR	F	OR 1998 WA	ATER YEAR		WATER YEA	RS 1951	- 1998
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS	104991 288 676 46 133 18.0 651 226 52	May 7 cMar 16 Nov 29 3		109282 299 1290 45 75 1420 5.10 17 1.39 18.82 756 223 53	bMar 11 Jan 10 May 11 Oct 2 Oct 2 fSep 15		279 441 123 5710 d20 42 9500 15.00 g2.3 1.29 17.57 657 208	Apr 2 Mar 2 Mar Dec Dec Dec 1	1973 1953 4 1992 4 1984 2 1953 7 1950 7 1950 6 1985

- a No gage-height record; discharge computed on basis of records for stations at Bassett and at Martinsville. b Also Mar. 12, 1998.
 c Also May. 10, 11, 17, 25, and Sept. 20, 21, 1997.
 d Caused by turbines being shut down for repair at Philpott Dam.
 f Also Sept. 16, 17, 18, 21, 22, 23, 24, 25 and 28, 1998.
 g Result of repair at dam, but may have been less during periods of estimated record.

02072500 SMITH RIVER AT BASSETT, VA

LOCATION.--Lat 36°46'12", long 80°00'04", Henry County, Hydrologic Unit 03010103, on left bank 25 ft upstream from bridge on State Highway 666 at north edge of North Bassett, 1.0 mi northwest of Bassett, 3.0 mi downstream from Town Creek, 5.6 mi upstream from Reed Creek, 6.2 mi downstream from Philpott Dam, and at mile 38.1.

DRAINAGE AREA. -- 259 mi².

PERIOD OF RECORD. -- April 1939 to current year.

REVISED RECORDS. -- WSP 2104: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 753.09 ft above sea level (levels by U.S. Army Corps of Engineers).

REMARKS.--No estimated daily discharge. Records good. Since August 1950, flow regulated by Philpott Lake (station 02071900) 6.2 mi upstream. Diversion upstream from station by Henry County Public Service Authority, since 1985, has averaged less than 1.0 ft³/s. U.S. Army Corps of Engineers satellite gage-height telemeter at station. Minimum gage height, 1.06 ft, Sept. 18, 26, 1953. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of Oct. 19, 1937, reached a stage of about 22.9 ft, from information by local residents, discharge, $38,000 \text{ ft}^3/\text{s}$, from rating curve extended above 23,000 ft³/s on basis of backwater studies and records for station at Martinsville.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 3,340 $\rm ft^3/s$, Apr. 19, gage height, 6.11 ft; minimum, 55 $\rm ft^3/s$, Sept. 28; minimum daily, 58 $\rm ft^3/s$, Sept. 27.

		DI	SCHARGE, I	N CUBIC F	EET PER S	ECOND, WAT		OCTOB	ER 1997	TO SEP	TEMBER	1998		
DAY	OCT	NO	V DEC	JAN	FEB	MAR	APR		MAY	JUN	JU	L	AUG	SEP
1	251	9	0 200	205	104	109	508		716	e513	41	9	84	304
2	243	10	4 196	206	e670	881	430		e148	e537	41	7	78	315
3	260	26				884	429		e119	e533	25		357	318
4	76	25				884	136		684	e545	8		359	252
5	73	25		263		885	116		e948	e539	10		358	77
	, ,	23	5 200	200	01100	005	110		C5 10	6557		-	330	
6	248	25	4 77	209	e990	884	547		e940	e110	41	9	357	73
7	248	25	9 74	230	e940	104	545		e986	e97	42	3	358	298
8	246	8	7 194	509	e905	224	544	е	1000	263	42	5	130	301
9	72	7	8 197	271	e900	750	551		1490	265	31	5	98	300
10	411	19				1080	547		e975	e384	25		424	298
11	73	19	4 204	88	902	1520	104		e122	e361	8	6	424	299
12	70	19	4 201	271	947	1510	101		e116	324	8	3	421	73
13	239	19	6 82	231	910	1500	482		e114	100	30	5	307	69
14	245	20	8 82	234	123	141	488		e111	96	30	5	249	285
15	373	8				108	486		e254	316	41		81	278
16	82	7		302	454	498	487		e108	319	41	7	150	279
17	303	19	0 199	109	880	215	907		e108	321	41	0	527	277
18	79	19	3 198	95	1110	217	763		e636	313	8	3	436	284
19	76	19	5 198	293	1490	247	1830		e652	313	7	8	425	64
20	248	19				1070	1690		e650	95	29		309	63
21	250	19		244	893	272	1540		e649	90	29		251	278
22	250	9	0 215	230	785	1380	1520		e381	468	45	5	83	286
23	251	8	2 214	432	1050	1350	1500		e97	477	35	4	81	277
24	254	19	6 212	147	955	782	942		e97	476	34	9	446	274
25	88	19	5 227	119	914	783	122		e252	476	7	4	433	275
26	89	19	6 215	306	899	501	115		e251	475	7	1	438	64
27	269	19					444		e552	96	40		323	58
28	253	19					426		e533	85	40		265	322
29	253	7		781		109	659		e531	308	40		71	343
30	253	7				422	605		e94	419	30		69	302
31	256		- 208	122		358			e94		25	0	396	
TOTAL	6379	507		8854	23699	20217	19564		4408	9714	894	5	8788	6986
MEAN	206	16	9 174	286	846	652	652		465	324	28	9	283	233
MAX	411	26	5 227	966	1490	1520	1830		1490	545	45	5	527	343
MIN	70	7					101		94	85	7		69	58
(†)	-2687	-63					-116		+630	-1124	-314		-862	-4098
MEAN‡	119	14				646	648		485	286	18		256	96
CFSM‡	.46	.5					2.50		1.87	1.11	.7		.99	.37
IN.‡	.53	.6				2.88	2.30		2.16	1.23	. 8			.41
T1/ · †	.53	. 6	· ./2	2.76	3.70	∠.88	2.79		∠.⊥0	1.∠3	.8	ی	1.14	.41
CAL YR	1997	TOTAL	128629	MEAN	352 MAX	1100	MIN	63	MEAN‡	323	CFSM‡	1.25	IN.‡	16.93
WTR YR			138017	MEAN	378 MAX		MIN	58	MEAN‡	378		1.46	IN.‡	19.82
						-								- · · - -

[†] Total change in contents, equivalent in cubic feet per second, per month, in Philpott Lake; provided by U.S. Army Corps of Engineers.

[‡] Adjusted for monthly change in contents.

e Estimated.

02072500 SMITH RIVER AT BASSETT, VA--Continued

STATISTICS OF MONTHLY MEA	N DATA FOR WATER YEA	ARS 1940 - 1950,	BY WATER YEAR (WY)	[UNREGULATED]	
OCT NOV MEAN 283 280 MAX 616 474 (WY) 1948 1948 MIN 103 124 (WY) 1942 1942	DEC JAN 324 364 579 752 1949 1946 157 182 1940 1940	FEB MAR 397 415 599 566 1946 1944 223 201 1941 1940	APR MAY 394 423 593 764 1949 1949 183 171 1942 1941	JUN JUL 352 403 656 1071 1949 1949 160 183 1941 1944	AUG SEP 386 370 1262 970 1940 1945 129 133 1944 1939
SUMMARY STATISTICS	WATER YEARS	3 1940 - 1950			
ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS	371 604 270 11600 82 85 26600 18.28 58 1.43 19.47 601 264	1949 1944 Aug 14 1940 aSep 8 1944 Sep 5 1944 Aug 14 1940 Aug 14 1940 Jan 3 1940			
STATISTICS OF MONTHLY MEA			BY WATER YEAR (WY)	[REGULATED, UNAI	DJUSTED]
MEAN 281 272 MAX 944 996 (WY) 1990 1986 MIN 121 98.4 (WY) 1952 1953	724 655 1997 1991	345 421 846 1197 1998 1993	1474 902 1987 1978 98.6 86.7	JUN JUL 336 285 1005 759 1992 1972 84.4 138 1964 1981	AUG SEP 297 309 568 912 1994 1979 124 157 1953 1967
SUMMARY STATISTICS			OR 1998 WATER YEAR	WATER YI	EARS 1951 - 1998
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS	1100 63 161	Apr 29 Sep 21 Nov 15	138017 378 1830 Apr 19 58 Sep 27 133 May 11 3340 Apr 19 6.11 Apr 19 55 Sep 28 1.46 19.82 900 265 83	335 523 150 6080 44 67 17700 15.20 19 1.30 17.60	1987 1953 Apr 24 1992 Aug 23 1964 Oct 6 1980 Sep 7 1987 Jul 19 1956
50 PERCENT EXCEEDS	284		265	251 76	

a Also Sept. 9, 1944.

02075045 DAN RIVER AT SEWAGE TREATMENT PLANT, NEAR DANVILLE, VA

LOCATION.--Lat 36°33'45", long 79°22'12", Pittsylvania County, Hydrologic Unit 03010104, on right bank at footbridge at Danville sewage treatment plant, 0.1 mi downstream from Pumpkin Creek, and 0.6 mi southeast of

DRAINAGE AREA. -- 2,105 mi², approximately.

PERIOD OF RECORD. -- October 1995 to current year.

GAGE.--Water-stage recorder. Datum of gage is 365.19 ft above sea level.

REMARKS .-- No estimated daily discharges. Records good. Diurnal fluctuation caused by mills and hydroelectric generating facility at School-field Dam 5.2 mi upstream. Since August 1950, flow regulated by Philpott Lake (station 02071900) 76.6 mi upstream. U.S. Army Corps of Engineers satellite gage-height telemeter at station. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 28,200 ft³/s, Jan. 28, gage height, 21.91 ft; minimum, 175 ft³/s, Sept. 28.

		DISCH	ARGE, IN	CUBIC F	EET P		ND, WATER LY MEAN V		CTOBI	ER 1997 T	O SEPTE	MBER 19	98		
DAY	OCT	NOV	DEC	J	AN	FEB	MAR	AP	R	MAY	JUN	JU	L	AUG	SEP
1	933	1220	1300	14	40	2830	2460	225	0	2920	1940	166	0	1080	608
2	710	1160	1300	13	50	2450	2280	238	0	4140	1920	157	0	823	814
3	880	1210	1190	12	70	2840	2670	194	0	3080	2320	137	0	613	878
4	734	1390	1110			12000	2570	238		2810	2300	118		774	1100
5	640	1160	1290			19200	2370	225		3990	2760	121		956	1060
6	704	1030	1270	15	70	9340	2500	211	0	3460	2540	117	0	953	850
7	763	1090	1030	17	20	4830	2490	244	0	4820	2070	128	0	674	336
8	785	1280	887	48	20	3790	2910	223	0	25100	1910	161	0	1260	625
9	760	998	1020	70	50	3330	12600	251	0	10900	1900	171	0	1530	878
10	726	861	1050	32	80	3040	10400	307	0	5240	1900	160	0	2100	823
									_				_		
11	771	847				2860	5250	286		4570	1960	120		1850	802
12	728	1020	1170			4390	4090	209		4380	2060	118		1710	751
13	692	1050				4640	3670	191		3390	1990	117		1450	756
14	695	1220	905			3420	3420	205		2870	1870	110		1110	668
15	889	1440	803	49	80	2430	2400	220	0	2570	1560	118	U	1090	387
16	1090	1160	1020	145	00	2320	2250	217	0	2490	1740	109	0	1230	583
17	1040	1040	1010	60	90	12400	2300	1620	0	2330	1910	125	0	2140	700
18	989	1020	1010	31	40	16700	2210	2470	0	2460	1930	168	0	2510	895
19	1180	1020	1010	24	50	6770	3460	957	0	2460	1700	136	0	1770	1180
20	1290	1020	1000	25	30	4660	4680	1880	0	2380	1510	107	0	1570	440
21	1270	1080	610			4020	10900	1110		2340	1490	105	0	1100	579
22	1000	1570	1040	18	30	3210	5250	566	0	2200	1490	106	0	1060	483
23	899	1370	1380	51	70	3930	4530	497	0	2270	1550	106	0	1120	867
24	921	1200	1420	71	0.0	6300	3770	414	0	2530	1720	125	0	741	800
25	918	1210	1650	37	30	4240	3190	356	0	2620	1670	109	0	827	821
26	938	1030	1970	27	50	3480	3010	274	Ω	2420	1680	116	Λ	1190	586
27	1310	1060	2020			3240	2780	262		2650	1670	105		1090	748
28	1560	1080	2640			3150	2460	284		3120	1580	80		1110	453
29	1300	1050	2210				2070	255		2610	1500	113		876	408
30	1020	1000	1840				2050	278		2470	1190	115		755	510
31	1050		1680				2100			1880		111		608	
TOTAL	29185	33886	40145			155810	119090	14907	0	123470	55330	3855		37670	21389
MEAN	941	1130	1295			5565	3842	496		3983	1844	124		1215	713
MAX	1560	1570	2640	282	0.0	19200	12600	2470	0	25100	2760	171	0	2510	1180
MIN	640	847	610			2320	2050	191	0	1880	1190	80	6	608	336
(†)	-2687	-630	-343			+2037	-176	-11	6	+630	-1124	-314	6	-862	-4089
MEAN‡	855	1109	1284	52	59	5637	3836	496	5	4003	1807	114	2	1187	577
CFSM‡	.41	.53	.61	2.	50	2.68	1.82	2.3	6	1.90	.86	.5	4	.56	.27
IN.‡	.47	.59	.70	2.	88	2.79	2.10	2.6	3	2.19	.96	.6	3	.65	.31
CAL YR	1007	TOTAL	840429	MEAN	2303	MAX	26900	MIN	423	MEAN‡	2273	CFSM‡	1.08	IN.‡	14.78
WTR YR		TOTAL	956231	MEAN	2620	MAX	28200	MIN	336		2619	CFSM‡	1.24		16.89
WIK IK	エフフ℧	IUIAL	J30∠3⊥	MEAN	2020	AAM	∠0∠00	IAI T IA	330	MEANI	701A	CL DM+	1.24	TN. 1	10.09

[†] Total change in contents, equivalent in cubic feet per second, per month, in Philpott Lake; provided by U.S. Army Corps of Engineers.

‡ Adjusted for monthly change in contents.

02075045 DAN RIVER AT SEWAGE TREATMENT PLANT, NEAR DANVILLE, VA--Continued

STATISTICS	OF	MONTHLY	MEAN	DATA	FOR	WATER	YEARS	1996	_	1998.	BY	WATER	YEAR	(WY)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	1689	1726	2358	4101	4119	3788	3960	3170	2458	1357	1781	3304
MAX	2418	2120	4516	4924	5565	4776	4969	3983	3289	1437	3027	8158
(WY)	1997	1996	1997	1998	1998	1997	1998	1998	1996	1996	1996	1996
MIN	941	1130	1263	2870	3189	2746	2213	2635	1844	1244	1100	713
(WY)	1998	1998	1996	1997	1996	1996	1996	1997	1998	1998	1997	1998
SUMMARY	Y STATIST	ICS	FOR I	1997 CALEI	NDAR YEAR	F	FOR 1998 W	ATER YEAR		WATER Y	EARS 1994	- 1998
ANNUAL	TOTAL			840429			956231					
ANNUAL	MEAN			2303			2620			2808		
HIGHEST	r annual i	MEAN								3035		1996
LOWEST	ANNUAL MI	EAN								2620		1998
HIGHEST	r DAILY M	EAN		26900	Apr 29		28200	Jan 28		41500	Sep	7 1996
LOWEST	DAILY ME	AN		423	Sep 8		336	Sep 7		311	Oct	2 1995
ANNUAL	SEVEN-DAY	Y MINIMUM		702	Sep 3		618	Sep 24		618	Sep :	24 1998
INSTANT	CANEOUS PI	EAK FLOW					30500	Jan 28		47100	Sep	6 1996
INSTANT	TANEOUS PI	EAK STAGE					21.9	1 Jan 28		28.6	5 Sep	6 1996
INSTANT	CANEOUS LO	OW FLOW					175	Sep 28		70	Oct 1	18 1995
ANNUAL	RUNOFF (CFSM)		1.09	9		1.2	4		1.3	3	
ANNUAL	RUNOFF (INCHES)		14.8	5		16.9	0		18.1	2	
10 PERG	CENT EXCE	EDS		3840			4650			4530		
50 PERG	CENT EXCE	EDS		1800			1620			1970		
90 PERG	CENT EXCE	EDS		887			794			978		

02075500 DAN RIVER AT PACES, VA

LOCATION.--Lat 36°38'32", long 79°05'23", Halifax County, Hydrologic Unit 03010104, on right bank 100 ft upstream from bridge on State Highway 658, 0.5 mi southeast of Paces, 0.5 mi upstream from Big Toby Creek, 2.7 mi upstream from Birch Creek, and at mile 36.0.

DRAINAGE AREA. -- 2,550 mi², approximately.

PERIOD OF RECORD. -- November 1950 to current year.

GAGE.--Water-stage recorder. Datum of gage is 322.48 ft above sea level.

REMARKS.--Records fair. Diurnal fluctuation caused by mills 23 mi upstream at Danville. Since August 1950, flow regulated by Philpott Lake (station 02071900) 101.4 mi upstream. U.S. Army Corps of Engineers satellite gage-height telemeter at station. Maximum discharge, 64,800 ft³/s, from rating curve extended above 32,000 ft³/s. Minimum gage height, 1.71 ft, Sept. 4, 1956. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. Analytical results of water samples collected for the Albemarle-Pamlico Sound NAWQA are given in the section "Analyses of Samples Collected at Water-Quality Miscellaneous Sampling sites".

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Aug. 16, 1940, reached a stage of 32.3 ft, from floodmark.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 30,300 $\mathrm{ft^3/s}$, Jan. 29, gage height, 24.71 ft ; minimum, 507 $\mathrm{ft^3/s}$, Sept. 29, gage height, 2.21 ft ; minimum daily, 574 $\mathrm{ft^3/s}$, Sept. 21.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES

DAY	OCT	NO	V DEC	J	AN	FEB	MAR	API	Я.	MAY	JUN	JU	L	AUG	SEP
1	1350	159	0 1690	213	3.0	4680	3810	324)	3470	2350	164	0	1360	840
2	1360	166				3780	3250	336		4730	2400	232		1320	868
3	e1120	158				3680	3380	323		4640	2560	155		857	1290
4	1060	170				11500	3530	343		3540	2930	164		1030	1190
5	1080					20000				4880	3340			956	
5	1080	167	0 1/40	19.	30	20000	3400	358	J	4880	3340	151	U	956	1340
6	972	154				20300	3030	309		4780	3530	148	0	1220	1290
7	1000	153			0.0	8750	3280	308)	4820	3000	151	0	964	836
8	1130	156	0 1480	47	10	5730	4040	315)	18400	2440	159	0	1150	631
9	1110	159	0 1300	962	20	4900	11000	371)	23100	2360	208	0	1660	1050
10	1110	137	0 1590	59	70	4390	15900	448)	9340	2380	231	0	2300	1050
11	1070	112	0 e1620	392	2.0	4050	8330	410)	6060	2390	187	0	2130	1030
12	1190	139				5760	5880	345		6150	2480	151		2220	985
13	995	141				6910	5150	271		5100	2570	150		1810	944
14	986	171				5110	4780	265		4040	2390	134		1570	892
15	1200	204				4030	3940	300		3740	2100	144		1320	820
13	1200	204	0 1100	1/:	90	4030	3940	300	J	3/40	2100	111	U	1320	020
16	1330	182	0 1420	1540	0.0	3240	3050	294)	3300	1940	146	0	1330	650
17	1520	154	0 1440	1280	0.0	12000	2970	1140)	3190	2400	144	0	2130	820
18	1480	144	0 1440	589	90	21600	3410	2290)	3210	2340	161	0	3300	909
19	1530	142	0 1430	424	40	16900	9540	2270)	2940	2230	213	0	2330	1320
20	1840	141				7300	9400	1570		3220	1910	135		2110	1160
									-				-		
21	1830	143				5820	14800	1890)	3040	2110	132	0	1470	574
22	1570	223				4780	10600	e855		2960	1620	131		1350	845
23	1380	256	0 1680	583	10	4540	6920	687)	2860	1880	132	0	1300	1000
24	1200	195	0 1910	1080	0.0	7740	5750	587)	3080	2200	133	0	1290	1070
25	1400	172	0 2200	734	40	6260	4650	484)	3460	2070	151	0	819	1030
26	1160	162	0 2740	484	40	4960	4280	399)	3270	2020	150	0	1280	1010
27	1640	150	0 2960	503	30	4480	4030	338)	4180	2000	135	0	1380	646
28	2050	151	0 3940	2060	0.0	4300	3670	343)	4220	1970	134	0	1320	987
29	1750	150	0 3760	2940	0.0		3070	320		3750	1930	105		1300	637
30	1590	151					2870	320		3130	1480	153		952	684
31	1390						2860			3180		140		870	
TOTAL	41393	4862				217490	174570	18813		159780	69320	4824		46398	28398
MEAN	1335	162	1 1892	673	34	7768	5631	627	1	5154	2311	155	6	1497	947
MAX	2050	256	0 3940	2940	0.0	21600	15900	2290)	23100	3530	232	0	3300	1340
MIN	972	112	0 1180	183	10	3240	2860	265)	2860	1480	105	0	819	574
(†)	-2687	-63	0 -343	+1038	36	+2037	-176	-11	5	+630	-1124	-314	6	-862	-4089
MEAN‡	1249	160	0 1881	706	59	7840	5626	626	7	5175	2273	145	5	1469	810
CFSM‡	.49	.6		2.	77	3.07	2.21	2.4		2.03	.89	.5	7	.58	.32
IN.‡	.56	.7				3.20	2.54	2.7		2.34	.99	.6		.66	.35
			. 55		-										
CAL YR	1997	TOTAL	1102929	MEAN	3022	MAX	30000	MIN	736	MEAN‡	2992	CFSM‡	1.17	IN.‡	15.93
WTR YR		TOTAL		MEAN	3534	MAX	29400	MIN	574	MEAN‡	3533	CFSM‡	1.39		18.81
												T			

[†] Total change in contents, equivalent in cubic feet per second, per month, in Philpott Lake; provided by U.S. Army Corps of Engineers.

‡ Adjusted for monthly change in contents.

e Estimated.

02075500 DAN RIVER AT PACES, VA--Continued

STATIST	rics of M	MONTHLY MEAN	DATA	FOR WATER	YEARS 1951	- 1998,	BY WATER	YEAR (WY)	[REGUL	ATED, UNAD	JUSTED]	
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	2050	2088	2689	3484	3977	4574	4089	2881	2415	1882	1776	1891
MAX	7253	6184	5734	8407	9141	11190	11500	6505	8987	5091	4833	10200
(WY)	1960	1958	1997	1978	1960	1975	1987	1978	1972	1975	1985	1996
MIN	616	778	1083	1015	1756	1580	1318	1184	860	788	647	452
(WY)	1954	1954	1981	1981	1977	1981	1967	1986	1986	1977	1977	1954
SUMMAR	Y STATIS	rics	FOF	R 1997 CALI	ENDAR YEAR	F	OR 1998 W	ATER YEAR		WATER YE	ARS 1951	- 1998
ANNUAL	TOTAL			1102929			1289759					
ANNUAL	MEAN			3022			3534			2810		
HIGHEST	r annual	MEAN								4050		1979
LOWEST	ANNUAL I	MEAN								1310		1981
HIGHEST	r DAILY 1	MEAN		30000	Apr 30		29400	Jan 29		63400	Jun	23 1972
LOWEST	DAILY M	EAN		736	Sep 8		574	Sep 21		244	Sep	4 1956
ANNUAL	SEVEN-DA	AY MINIMUM		1010	Sep 3		860	Sep 12		311	Oct	8 1954
INSTANT	TANEOUS I	PEAK FLOW			_		30300	Jan 29		64800	Jun	23 1972
INSTAN	TANEOUS I	PEAK STAGE					24.7	1 Jan 29		33.15	Jun	23 1972
INSTANT	raneous 1	LOW FLOW					507	Sep 29		193	Sep	4 1956
ANNUAL	RUNOFF	(CFSM)		1.3	18		1.39	9		1.10	_	
ANNUAL	RUNOFF	(INCHES)		16.0	09		18.83	2		14.97		
10 PERG	CENT EXC	EEDS		5100			6610			5030		
50 PERG	CENT EXC	EEDS		2280			2110			1910		
90 PERG	CENT EXC	EEDS		1210			1070			924		

02077000 BANISTER RIVER AT HALIFAX, VA

LOCATION.--Lat 36°46'35", long 78°54'58", Halifax County, Hydrologic Unit 03010105, on left bank 10 ft downstream from bridge on State Highway 360, 1,700 ft downstream from Terrible Creek, 1 mi northeast of Halifax, and 10 mi upstream from mouth

DRAINAGE AREA. -- 547 mi².

PERIOD OF RECORD.--September 1904 to December 1905, October 1928 to current year. Monthly discharge only for some periods, published in WSP 1303.

REVISED RECORDS.--WSP 892: 1929-30, 1932-35. WSP 972: 1938(M), 1940. WSP 1112: 1943(M). WSP 2104: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 318.54 ft above sea level (levels by U.S. Army Corps of Engineers). Sept. 28, 1904, to Dec. 31, 1905, nonrecording gage at site 400 ft upstream at different datum. Dec. 9, 1928, to Sept. 20, 1950, water-stage recorder at site 400 ft upstream at present datum.

REMARKS.--Records fair except for periods of doubtful or no gage-height record, Nov. 2-6, 9-14, Dec. 6-9 Jan. 9-13, 23-26, Feb. 7-11, Mar. 20-24, which are poor. Flow regulated by a reservoir and hydroelectric generating facility 0.5 mi upstream from station. Maximum discharge, 50,000 ft³/s, from rating curve extended above 13,000 ft³/s on basis of slope-area measurement of peak flow and velocity-area study. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 9,900 ${\rm ft}^3/{\rm s}$, Jan. 29, gage height, 23.11 ft; minimum daily, 89 ${\rm ft}^3/{\rm s}$, Aug. 7.

		22001		00210 122	Di	AILY MEAN	VALUES	100011 177	. 10 02111		,	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	201	276	388	393	977	583	552	498	345	223	144	107
2	169	e350	403	344	832	587	552	655	341	219	108	100
3	153	e385	306	335	670	628	535	872	324	193	127	101
4	155	e310	296	358	2060	532	694	682	305	207	112	103
5	149	e260	405	353	5920	482	807	943	316	240	107	111
6	140	e240	e305	366	4540	458	736	885	330	250	133	105
7	144	387	e260	421	e3300	446	616	832	313	212	89	117
8	136	408	e240	1040	e2250	677	522	4820	300	189	140	101
9	153	e295	e235	e1940	e1350	2420	526	6640	286	220	139	100
10	131	e260	255	e1150	e720	2880	572	4060	312	218	221	100
11	143	e240	275	e600	e650	1660	517	1370	349	228	295	98
12	140	e235	270	e480	981	877	481	926	317	199	241	97
13	147	e260	256	e460	1590	702	453	850	328	189	189	96
14	122	e320	240	443	1070	644	461	733	313	178	148	96
15	204	346	233	795	757	570	466	653	285	188	146	96
16	176	300	225	2500	664	492	464	551	290	162	154	95
17	187	275	223	2790	2530	492	2670	516	274	176	198	95
18	384	241	223	1460	6170	589	4730	476	293	158	322	95
19	325	227	219	878	3860	3340	2670	442	246	138	220	94
20	310	225	217	740	1450	e4400	2020	421	289	151	166	94
21	307	234	219	619	969	e6000	2400	402	240	153	155	94
22	230	405	238	519	822	e5100	1270	379	243	153	138	101
23	189	443	292	e2500	745	e2200	890	399	301	129	174	101
24	188	343	338	e2000	1200	e1200	881	462	268	160	96	100
25	194	292	387	e1300	1280	902	736	461	277	152	121	99
26	219	263	470	e1250	901	812	657	436	244	135	119	98
27	308	234	500	1060	687	742	550	548	188	144	106	98
28	324	237	681	4930	603	700	505	432	211	164	127	98
29	248	231	722	9350		658	499	440	220	153	101	97
30	222	245	518	6180		589	480	396	224	140	108	97
31	208		455	1910		554		362		119	100	
TOTAL	6306	8767	10294	49464	49548	42916	29912	32542	8572	5540	4744	2984
MEAN	203	292	332	1596	1770	1384	997	1050	286	179	153	99.5
MAX	384	443	722	9350	6170	6000	4730	6640	349	250	322	117
MIN	122	225	217	335	603	446	453	362	188	119	89	94
CFSM	.37	.53	.61	2.92	3.24	2.53	1.82	1.92	.52	.33	.28	.18
IN.	.43	.60	.70	3.36	3.37	2.92	2.03	2.21	.58	.38	.32	.20

e Estimated

02077000 BANISTER RIVER AT HALIFAX, VA--Continued

STATIST	rics of M	ONTHLY MEAN	DATA I	FOR WATER	YEARS 1905	- 1906,	1929 - 19	98, BY W.	ATER YEA	R (WY)		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	360	398	504	690	772	851	731	488	387	305	329	377
MAX	1691	1431	1211	2125	1857	2738	2121	1374	1588	1065	2898	3717
(WY)	1938	1973	1949	1937	1979	1975	1983	1978	1972	1938	1940	1944
MIN	34.9	86.1	163	170	185	270	196	178	94.0	80.1	48.8	29.4
(WY)	1931	1932	1966	1981	1934	1981	1967	1981	1970	1986	1977	1954
SUMMARY	Y STATIST	TCS	FOR	1997 CAL	ENDAR YEAR	म	OR 1998 WA	TER YEAR		WATER YE	ARS 1905	- 1906
						_						- 1998
ANNUAL	TOTAL			158760			251589					
ANNUAL	MEAN			435			689			516		
HIGHEST	r annual i	MEAN								814		1973
LOWEST	ANNUAL M	EAN								225		1981
HIGHEST	r DAILY M	EAN		4940	Apr 29		9350	Jan 29		44700	Sep	20 1944
LOWEST	DAILY ME.	AN		116	Aug 19		89	Aug 7		6.0	Aug	30 1932
ANNUAL	SEVEN-DA	Y MINIMUM		122	Sep 3		95	Sep 15		18	Oct	8 1930
INSTAN	TANEOUS P	EAK FLOW					9900	Jan 29		50000	Sep	20 1944
INSTANT	TANEOUS P	EAK STAGE					23.11	Jan 29		a40.80	Sep	20 1944
INSTANT	TANEOUS L	OW FLOW					89	Aug 7		6.0	bAug	19 1932
ANNUAL	RUNOFF (CFSM)		. 8	30		1.26	5		.94		
ANNUAL	RUNOFF (INCHES)		10.8	30		17.11	L		12.82		
10 PERG	CENT EXCE	EDS		780			1400			955		
50 PERG	CENT EXCE	EDS		300			316			307		
90 PERG	CENT EXCE	EDS		140			110			113		

a From floodmarks.
b Many days in August and September 1932.

ROANOKE RIVER BASIN

02077500 HYCO RIVER NEAR DENNISTON, VA

LOCATION.--Lat 36°35'16", long 78°53'56", Halifax County, Hydrologic Unit 03010104, on left bank 60 ft upstream from bridge on U.S. Highway 501, 0.8 mi upstream from Mayo Creek, 2.5 mi northeast of Denniston, and 7.3 mi south of South Boston.

DRAINAGE AREA. -- 289 mi².

PERIOD OF RECORD. --October 1928 to September 1934, October 1950 to current year. Monthly discharge only for some periods, published in WSP 1303.

REVISED RECORDS.--WSP 1383: Drainage area, 1930. WSP 1503: 1930(M). WSP 1723: 1930(M). WDR VA-75-1: 1974.

GAGE.--Water-stage recorder. Datum of gage is 315.24 ft above sea level. July 10, 1929, to Mar. 14, 1934, nonrecording gage at same site and datum.

REMARKS.--Records good. Small diurnal fluctuation at low flow in some years caused by mill upstream from station. Since September 1964, flow regulated by Hyco Lake 15.7 mi upstream, capacity 75,480 acre-ft, and since Apr. 26, 1974, by Roxboro Steam-Electric Generating Plant Afterbay Reservoir, capacity 12,000 acre-ft. Maximum discharge, 10,800 ft³/s, from rating curve extended above 8,200 ft³/s. Minimum gage height, 3.58 ft, Sept. 14, 1932. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES OUTSIDE PERIOD OF RECORD.--Floods in August 1928 and September 1945 reached stages of 26.4 ft and 25.6 ft, respectively, from floodmarks.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 8,850 ft³/s, Mar. 21, gage height, 20.66 ft; minimum, 6.4 ft³/s, Sept. 28, 29, gage height, 4.28 ft.

		DISCHAF	RGE, IN C	UBIC FEET		ND, WATER	YEAR OCT	OBER 1997	TO SEPTEM	MBER 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	36	33	53	51	1450	199	204	158	137	51	12	7.9
2	34	35	44	40	1410	194	201	165	132	45	11	8.4
3	34	21	29	36	1280	195	190	153	129	41	9.6	8.9
4	33	19	26	33	1530	185	297	153	134	40	10	40
5	32	22	25	33	2730	179	275	160	133	42	10	39
6	31	18	21	31	3870	174	224	150	128	46	9.5	14
7	31	19	18	32	2620	172	206	151	126	44	9.5	10
8	31	26	17	308	1530	524	195	493	71	44	9.5	9.9
9	30	21	17	343	424	1650	322	570	55	58	14	17
10	30	18	19	122	271	1910	632	222	58	65	22	13
11	30	17	27	161	243	1720	561	190	57	51	20	10
12	29	17	22	148	575	1530	500	179	55	45	15	9.7
13	28	18	19	142	590	402	236	171	53	43	11	9.4
14	29	56	18	139	655	210	197	164	50	43	9.8	8.4
15	34	58	16	472	935	190	195	157	49	34	9.5	8.1
16	41	30	16	1450	893	178	184	153	54	28	10	8.5
17	31	23	16	1590	1640	173	932	148	56	28	93	8.2
18	32	21	16	1630	4430	388	1660	146	50	27	50	8.2
19	34	21	15	1270	4650	3290	1840	143	48	24	25	7.9
20	45	20	16	943	2750	6840	1930	141	47	24	18	7.8
21	34	21	14	817	1710	8370	1690	139	46	24	15	7.7
22	31	269	15	353	449	6270	1460	137	45	18	13	8.0
23	30	119	28	963	305	3180	1230	142	47	12	11	11
24	29	48	24	1660	323	1550	261	171	48	12	9.5	8.2
25	29	33	42	1810	260	1130	200	148	46	11	9.2	8.0
26	30	27	51	1970	232	345	183	150	44	61	9.2	7.8
27	44	23	58	1540	217	275	172	511	42	47	8.9	7.6
28	35	19	164	2750	208	250	168	947	41	22	8.8	7.1
29	30	16	81	4860		231	162	215	42	18	8.8	6.6
30	29	19	67	4700		218	157	158	44	15	8.5	7.3
31	29		69	2510		209		145		13	8.1	
TOTAL	1005	1107	1063	32907	38180	42331	16664	6830	2067	1076	488.4	333.6
MEAN	32.4	36.9	34.3	1062	1364	1366	555	220	68.9	34.7	15.8	11.1
MAX	45	269	164	4860	4650	8370	1930	947	137	65	93	40
MIN	28	16	14	31	208	172	157	137	41	11	8.1	6.6
CFSM	.11	.13	.12	3.67	4.72	4.72	1.92	.76	.24	.12	.05	.04
IN.	.13	.14	.14	4.24	4.91	5.45	2.14	.88	.27	.14	.06	.04

02077500 HYCO RIVER NEAR DENNISTON, VA--Continued

STATIST	CICS OF MO	NTHLY MEAI	N DATA FO	R WATER	YEARS 1929	- 1934,	1951 - 19	64, BY WAT	ER YEAR	(WY) [UNF	REGULATED]	
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	131	182	268	383	537	532	456	216	134	81.7	133	103
MAX	882	758	847	1113	1363	1000	800	767	360	226	600	890
(WY) MIN	1930 3.67	1963 8.29	1933	1113 1962 34.2	1960 59.6	1963 119	1934 106	1958 45 3	1934 33 8	1930 14 5	1931 5.65	1934 .71
(WY)	1934	1954	847 1933 28.6 1934	1934	1934	1930	1963	1964	1963	226 1930 14.5 1932	1953	1954
SUMMARY	STATISTI	CS	WA	TER YEAR:	S 1929 - 1	934						
7 NTNTT 7 T	MEAN			262	1951 - 1 Oct 3 1 aAug 29 1 Oct 3 1 Oct 3 1 Oct 3 1 Sep 14 1	964						
HIGHEST	MEAN 'ANNIIAI, M	EAN		202 390	1	960						
LOWEST	ANNUAL ME	AN		160	ī	954						
HIGHEST	DAILY ME	AN	7	490	Oct 3 1	929						
LOWEST	DAILY MEA	N		.10	aAug 29 1	932						
ANNUAL	SEVEN-DAY	MINIMUM	7	.10	0ct 3 1	932						
INSTANT	'ANEOUS PE	AK STAGE	,	21.88	Oct 3 1	929						
INSTANT	ANEOUS LO	W FLOW		.004	Sep 14 1	932						
ANNUAL	RUNOFF (C	FSM)		b.93								
ANNUAL	RUNOFF (I	NCHES)	1-	b12.65								
50 PERC	ENT EXCEE	DS DS	ď	748 b89								
90 PERC	ENT EXCEE	DS		b14								
STATIST	CICS OF MO	NTHLY MEAI	N DATA FO	R WATER	YEARS 1965	- 1998,	BY WATER	YEAR (WY)	[REGULA	ATED, UNADJ	JUSTED]	
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	OCT 118		DEC 207	JAN 485		MAR 612	APR 373	MAY 219	JUN 114	JUL 134	AUG 106	SEP 150
MEAN MAX	118	128										
	118	128 786	207	485	520	612	373	219	114 647	134 1492	106	150
MAX	118 805 1972	128 786	207 815	485 1692	520 1364	612 1683	373 1048	219 1332 1978 26.2	114 647 1982	134 1492 1975	106 420 1995 13.1	150 1341
MAX (WY)	118 805 1972	128 786 1973	207 815 1973	485 1692 1978	520 1364 1998	612 1683 1993	373 1048 1983	219 1332 1978	114 647 1982 17.2	134 1492 1975	106 420 1995 13.1	150 1341 1996
MAX (WY) MIN	118 805 1972 11.7	128 786 1973 14.8	207 815 1973 21.1	485 1692 1978 28.5	520 1364 1998 62.1	612 1683 1993 44.6	373 1048 1983 38.7	219 1332 1978 26.2	114 647 1982	134 1492 1975	106 420 1995 13.1	150 1341 1996 11.1
MAX (WY) MIN (WY)	118 805 1972 11.7 1969	128 786 1973 14.8 1968	207 815 1973 21.1 1966	485 1692 1978 28.5 1966	520 1364 1998 62.1 1991	612 1683 1993 44.6 1981	373 1048 1983 38.7 1981	219 1332 1978 26.2	114 647 1982 17.2 1986	134 1492 1975	106 420 1995 13.1 1977	150 1341 1996 11.1 1998
MAX (WY) MIN (WY)	118 805 1972 11.7 1969	128 786 1973 14.8 1968	207 815 1973 21.1 1966	485 1692 1978 28.5 1966	520 1364 1998 62.1 1991	612 1683 1993 44.6 1981	373 1048 1983 38.7 1981	219 1332 1978 26.2 1986	114 647 1982 17.2 1986	134 1492 1975 15.8 1966	106 420 1995 13.1 1977	150 1341 1996 11.1 1998
MAX (WY) MIN (WY)	118 805 1972 11.7 1969	128 786 1973 14.8 1968	207 815 1973 21.1 1966	485 1692 1978 28.5 1966	520 1364 1998 62.1 1991	612 1683 1993 44.6 1981	373 1048 1983 38.7 1981	219 1332 1978 26.2 1986	114 647 1982 17.2 1986	134 1492 1975 15.8 1966	106 420 1995 13.1 1977	150 1341 1996 11.1 1998
MAX (WY) MIN (WY) SUMMARY ANNUAL	118 805 1972 11.7 1969	128 786 1973 14.8 1968	207 815 1973 21.1 1966	485 1692 1978 28.5 1966 997 CALE	520 1364 1998 62.1 1991	612 1683 1993 44.6 1981	373 1048 1983 38.7 1981 OR 1998 WA	219 1332 1978 26.2 1986	114 647 1982 17.2 1986	134 1492 1975 15.8 1966	106 420 1995 13.1 1977	150 1341 1996 11.1 1998
MAX (WY) MIN (WY) SUMMARY ANNUAL ANNUAL HIGHEST	118 805 1972 11.7 1969 STATISTI	128 786 1973 14.8 1968	207 815 1973 21.1 1966 FOR 1	485 1692 1978 28.5 1966 997 CALEI 92750 254	520 1364 1998 62.1 1991 NDAR YEAR	612 1683 1993 44.6 1981	373 1048 1983 38.7 1981 OR 1998 WA 144052.0 395	219 1332 1978 26.2 1986 TER YEAR	114 647 1982 17.2 1986	134 1492 1975 15.8 1966 WATER YEA 263 536 37.1	106 420 1995 13.1 1977	150 1341 1996 11.1 1998
MAX (WY) MIN (WY) SUMMARY ANNUAL ANNUAL HIGHEST LOWEST	118 805 1972 11.7 1969 STATISTI TOTAL MEAN ANNUAL MEAN ANNUAL MEAN DAILY ME	128 786 1973 14.8 1968 CS	207 815 1973 21.1 1966 FOR 1	485 1692 1978 28.5 1966 997 CALEI 92750 254	520 1364 1998 62.1 1991 NDAR YEAR	612 1683 1993 44.6 1981	373 1048 1983 38.7 1981 OR 1998 WA 144052.0 395	219 1332 1978 26.2 1986 TER YEAR	114 647 1982 17.2 1986	134 1492 1975 15.8 1966 WATER YEA 263 536 37.1 10300	106 420 1995 13.1 1977 ARS 1965 -	150 1341 1996 11.1 1998 1998
MAX (WY) MIN (WY) SUMMARY ANNUAL ANNUAL HIGHEST LOWEST	118 805 1972 11.7 1969 STATISTI TOTAL MEAN ANNUAL MEAN ANNUAL MEAN DAILY ME	128 786 1973 14.8 1968 CS	207 815 1973 21.1 1966 FOR 1	485 1692 1978 28.5 1966 997 CALEI 92750 254	520 1364 1998 62.1 1991 NDAR YEAR	612 1683 1993 44.6 1981	373 1048 1983 38.7 1981 OR 1998 WA 144052.0 395 8370 6.6	219 1332 1978 26.2 1986 TER YEAR	114 647 1982 17.2 1986	134 1492 1975 15.8 1966 WATER YEA 263 536 37.1 10300	106 420 1995 13.1 1977 ARS 1965 -	150 1341 1996 11.1 1998 1998
MAX (WY) MIN (WY) SUMMARY ANNUAL ANNUAL HIGHEST LOWEST HIGHEST LOWEST ANNUAL	118 805 1972 11.7 1969 CSTATISTI TOTAL MEAN ANNUAL MANNUAL MANNUAL ME DAILY ME DAILY MEA SEVEN-DAY	128 786 1973 14.8 1968 CS	207 815 1973 21.1 1966 FOR 1	485 1692 1978 28.5 1966 997 CALEI 92750 254	520 1364 1998 62.1 1991 NDAR YEAR	612 1683 1993 44.6 1981	373 1048 1983 38.7 1981 OR 1998 WA 144052.0 395 8370 6.6 7.5	219 1332 1978 26.2 1986 TER YEAR	114 647 1982 17.2 1986	134 1492 1975 15.8 1966 WATER YEA 263 536 37.1 10300	106 420 1995 13.1 1977 ARS 1965 - Jul 15 Aug 10 Aug 31	150 1341 1996 11.1 1998 1998 1975 1981 1975 1977
MAX (WY) MIN (WY) SUMMARY ANNUAL HIGHEST LOWEST HIGHEST LOWEST ANNUAL INSTANT	118 805 1972 11.7 1969 STATISTI TOTAL MEAN ANNUAL ME ANNUAL ME DAILY MEA DAILY MEA DAILY MEA CANEOUS PE	128 786 1973 14.8 1968 CS EAN AN AN N MINIMUM AK FLOW	207 815 1973 21.1 1966 FOR 1	485 1692 1978 28.5 1966 997 CALEI 92750 254	520 1364 1998 62.1 1991 NDAR YEAR	612 1683 1993 44.6 1981	373 1048 1983 38.7 1981 OR 1998 WA 144052.0 395 8370 6.6 7.5 8850	219 1332 1978 26.2 1986 TER YEAR Mar 21 Sep 29 Sep 24 Mar 21	114 647 1982 17.2 1986	134 1492 1975 15.8 1966 WATER YEA 263 536 37.1 10300 3.3 5.0 10800	106 420 1995 13.1 1977 ARS 1965 - Jul 15 Aug 10 Aug 31 Jul 15	150 1341 1996 11.1 1998 1998 1975 1981 1975 1977 1977
MAX (WY) MIN (WY) SUMMARY ANNUAL HIGHEST LOWEST HIGHEST ANNUAL INSTANT INSTANT	118 805 1972 11.7 1969 STATISTI TOTAL MEAN ANNUAL ME ANUAL ME DAILY ME DAILY MEA SEVEN-DAY 'ANEOUS PE 'ANEOUS PE	128 786 1973 14.8 1968 CS EAN AN N MINIMUM AK FLOW AK STAGE	207 815 1973 21.1 1966 FOR 1	485 1692 1978 28.5 1966 997 CALEI 92750 254 5440 14 15	520 1364 1998 62.1 1991 NDAR YEAR Apr 30 Dec 21 Dec 16	612 1683 1993 44.6 1981	373 1048 1983 38.7 1981 OR 1998 WA 144052.0 395 8370 6.6 7.5 8850	219 1332 1978 26.2 1986 TER YEAR Mar 21 Sep 29 Sep 24 Mar 21	114 647 1982 17.2 1986	134 1492 1975 15.8 1966 WATER YEA 263 536 37.1 10300 3.3 5.0 10800 24.27	106 420 1995 13.1 1977 ARS 1965 - Jul 15 Aug 10 Aug 31 Jul 15 Jul 15	150 1341 1996 11.1 1998 1998 1975 1981 1975 1977 1977 1975 1975
MAX (WY) MIN (WY) SUMMARY ANNUAL HIGHEST LOWEST HIGHEST ANNUAL INSTANT INSTANT	118 805 1972 11.7 1969 STATISTI TOTAL MEAN ANNUAL ME ANUAL ME DAILY ME DAILY MEA SEVEN-DAY 'ANEOUS PE 'ANEOUS PE	128 786 1973 14.8 1968 CS EAN AN N MINIMUM AK FLOW AK STAGE	207 815 1973 21.1 1966 FOR 1	485 1692 1978 28.5 1966 997 CALEI 92750 254 5440 14 15	520 1364 1998 62.1 1991 NDAR YEAR Apr 30 Dec 21 Dec 16	612 1683 1993 44.6 1981	373 1048 1983 38.7 1981 OR 1998 WA 144052.0 395 8370 6.6 7.5 8850 20.66 6.4	219 1332 1978 26.2 1986 TER YEAR Mar 21 Sep 29 Sep 24 Mar 21 cSep 28	114 647 1982 17.2 1986	134 1492 1975 15.8 1966 WATER YEA 263 536 37.1 10300 3.3 5.0 10800 24.27 3.1	106 420 1995 13.1 1977 ARS 1965 - Jul 15 Aug 10 Aug 31 Jul 15 Jul 15	150 1341 1996 11.1 1998 1998 1975 1981 1975 1977 1977 1975 1975
MAX (WY) MIN (WY) SUMMARY ANNUAL HIGHEST LOWEST HIGHEST ANNUAL INSTANT INSTANT	118 805 1972 11.7 1969 STATISTI TOTAL MEAN ANNUAL ME ANUAL ME DAILY ME DAILY MEA SEVEN-DAY 'ANEOUS PE 'ANEOUS PE	128 786 1973 14.8 1968 CS EAN AN N MINIMUM AK FLOW AK STAGE	207 815 1973 21.1 1966 FOR 1	485 1692 1978 28.5 1966 997 CALEI 92750 254 5440 14 15	520 1364 1998 62.1 1991 NDAR YEAR Apr 30 Dec 21 Dec 16	612 1683 1993 44.6 1981	373 1048 1983 38.7 1981 OR 1998 WA 144052.0 395 8370 6.6 7.5 8850 20.66 6.4 1.37	219 1332 1978 26.2 1986 TER YEAR Mar 21 Sep 29 Sep 24 Mar 21 Mar 21 cSep 28	114 647 1982 17.2 1986	134 1492 1975 15.8 1966 WATER YEA 263 536 37.1 10300 3.3 5.0 10800 24.27 3.1 .91	106 420 1995 13.1 1977 ARS 1965 - Jul 15 Aug 10 Aug 31 Jul 15 Jul 15	150 1341 1996 11.1 1998 1998 1975 1981 1975 1977 1977 1975 1975
MAX (WY) MIN (WY) SUMMARY ANNUAL HIGHEST LOWEST HIGHEST ANNUAL INSTANT INSTANT	118 805 1972 11.7 1969 STATISTI TOTAL MEAN ANNUAL ME ANUAL ME DAILY ME DAILY MEA SEVEN-DAY 'ANEOUS PE 'ANEOUS PE	128 786 1973 14.8 1968 CS EAN AN N MINIMUM AK FLOW AK STAGE	207 815 1973 21.1 1966 FOR 1	485 1692 1978 28.5 1966 997 CALEI 92750 254 5440 14 15	520 1364 1998 62.1 1991 NDAR YEAR Apr 30 Dec 21 Dec 16	612 1683 1993 44.6 1981	373 1048 1983 38.7 1981 OR 1998 WA 144052.0 395 8370 6.6 7.5 8850 20.66 6.4 1.37 18.54	219 1332 1978 26.2 1986 TER YEAR Mar 21 Sep 29 Sep 24 Mar 21 Mar 21 cSep 28	114 647 1982 17.2 1986	134 1492 1975 15.8 1966 WATER YEA 263 536 37.1 10300 3.3 5.0 10800 24.27 3.1 .91 12.35	106 420 1995 13.1 1977 ARS 1965 - Jul 15 Aug 10 Aug 31 Jul 15 Jul 15	150 1341 1996 11.1 1998 1998 1975 1981 1975 1977 1977 1975 1975
MAX (WY) MIN (WY) SUMMARY ANNUAL HIGHEST LOWEST HIGHEST LOWEST HIGHEST ANNUAL INSTANT INSTANT INSTANT ANNUAL ANNUAL 10 PERCO	118 805 1972 11.7 1969 STATISTI TOTAL MEAN ANNUAL ME ANNUAL ME DAILY MEA DAILY MEA CANEOUS PE CANEOUS PE CANEOUS PE CANEOUS PE CANEOUS FE CANE	128 786 1973 14.8 1968 CS EAN AN AN N MINIMUM AK FLOW AK STAGE W FLOW FSM) NCHES) DS	207 815 1973 21.1 1966 FOR 1	485 1692 1978 28.5 1966 997 CALEI 92750 254 5440 14 15	520 1364 1998 62.1 1991 NDAR YEAR Apr 30 Dec 21 Dec 16	612 1683 1993 44.6 1981	373 1048 1983 38.7 1981 OR 1998 WA 144052.0 395 8370 6.6 7.5 8850 20.66 6.4 1.37 18.54 1450	219 1332 1978 26.2 1986 TER YEAR Mar 21 Sep 29 Sep 24 Mar 21 Mar 21 cSep 28	114 647 1982 17.2 1986	134 1492 1975 15.8 1966 WATER YEA 263 536 37.1 10300 3.3 5.0 10800 24.27 3.1 .91 12.35 624	106 420 1995 13.1 1977 ARS 1965 - Jul 15 Aug 10 Aug 31 Jul 15 Jul 15	150 1341 1996 11.1 1998 1998 1975 1981 1975 1977 1977 1975 1975
MAX (WY) MIN (WY) SUMMARY ANNUAL ANNUAL HIGHEST LOWEST ANNUAL INSTANT INSTANT INSTANT INSTANT ANNUAL ANNUAL ANNUAL 50 PERC	118 805 1972 11.7 1969 STATISTI TOTAL MEAN ANNUAL ME ANUAL ME DAILY ME DAILY MEA SEVEN-DAY 'ANEOUS PE 'ANEOUS PE	128 786 1973 14.8 1968 CS EAN AN AN MINIMUM AK FLOW AK STAGE W FLOW FSM) NCHES) DS DS	207 815 1973 21.1 1966 FOR 1	485 1692 1978 28.5 1966 997 CALEI 92750 254 5440 14 15	520 1364 1998 62.1 1991 NDAR YEAR Apr 30 Dec 21 Dec 16	612 1683 1993 44.6 1981	373 1048 1983 38.7 1981 OR 1998 WA 144052.0 395 8370 6.6 7.5 8850 20.66 6.4 1.37 18.54	219 1332 1978 26.2 1986 TER YEAR Mar 21 Sep 29 Sep 24 Mar 21 Mar 21 cSep 28	114 647 1982 17.2 1986	134 1492 1975 15.8 1966 WATER YEA 263 536 37.1 10300 3.3 5.0 10800 24.27 3.1 .91 12.35	106 420 1995 13.1 1977 ARS 1965 - Jul 15 Aug 10 Aug 31 Jul 15 Jul 15	150 1341 1996 11.1 1998 1998 1975 1981 1975 1977 1977 1975 1975

a Also Aug. 30 to Sept. 25, 1932. b For water years 1951 to 1964 only. c Also Sept. 29, 1998.

KANAWHA RIVER BASIN

03164000 NEW RIVER NEAR GALAX, VA

LOCATION.--Lat 36°38'50", long 80°58'45", Grayson County, Hydrologic Unit 05050001, on left bank at upstream side of bridge on State Highway 94, 500 ft downstream from Meadow Creek, 1.2 mi southwest of Old Town, 3.1 mi southwest of Galax, and 3.6 mi downstream from Elk Creek.

DRAINAGE AREA. -- 1,131 mi².

PERIOD OF RECORD. --October 1929 to current year. Monthly discharge only for some periods, published in WSP 1305.

REVISED RECORDS.--WSP 758: Drainage area, 1933(M). WSP 893: 1930(M), 1935(M).

GAGE.--Water-stage recorder. Datum of gage is 2,208.04 ft above sea level.

REMARKS.--No estimated daily values. Records good. American Electric Power gage-height transmitter at station, recorder at Roanoke. National Weather Service gage-height telemeter at station. U.S. Army Corps of Engineers satellite precipitation and gage-height telemeter at station. Maximum discharge, 141,000 ft³/s, from rating curve extended above 32,000 ft³/s on basis of computation of peak flow over dam at Fries 6 mi downstream and slope-area measurement of peak flow. Minimum discharge, 193 ft³/s, Jan. 9, 1956, gage height, 0.52 ft, result of freezeup. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 9,000 ${\rm ft}^3/{\rm s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 8	1400	*25,600	*7.55	Apr. 17	2000	9,810	4.13
Feb. 4	2300	14,600	5.24	Apr. 20	0200	23,900	7.21
Feb. 18	0230	21,900	6.81	May 11	0330	13,100	4.92
Mar. 20	2300	17.700	5.91	Aug. 16	1300	9.220	3.98

Minimum discharge, 519 ft^3/s , Oct. 11, gage height, 0.81 ft.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	828	688	750	781	2280	3570	2590	3240	2910	1880	981	729
2	700	860	876	809	2130	3330	2630	3980	2480	1920	1040	713
3	656	1040	867	937	2290	3060	2380	3600	2290	1590	928	707
4	628	945	843	1020	9050	2820	2580	4530	2980	1440	855	708
5	617	816	877	1090	11200	2590	3320	5560	3760	1390	829	708
6	609	747	834	1210	6440	2420	2900	4500	3980	1370	813	696
7	592	718	771	1580	4780	2290	2560	4000	2910	1320	799	679
8	580	710	687	16100	3970	2800	2380	5300	2450	1290	815	673
9	575	700	719	11500	3710	5950	2980	6180	2270	1300	819	781
10	575	697	787	4940	3630	6820	3550	7060	3790	1330	865	776
11	563	685	877	3160	3610	4830	3100	11900	6810	1220	974	739
12	575	671	864	2410	4880	3840	2870	8030	5080	1150	948	682
13	580	680	809	2130	5080	3250	2650	5970	4060	1210	999	658
14	572	736	761	1890	4120	2990	2500	4800	3510	1190	917	633
15	576	829	724	2140	3420	2770	2420	4050	3080	1090	944	611
16	575	812	707	4850	3320	2580	2370	3490	2840	1050	4900	607
17	572	743	696	3840	12000	2560	6070	3120	2370	1020	3440	604
18	575	706	688	2870	18100	2540	7690	2810	2090	995	1880	612
19	602	680	697	2390	9380	4190	8750	2560	1950	961	1330	624
20	670	674	708	2060	6760	8870	18300	2390	2130	940	1090	622
21	759	691	677	1810	5600	14100	8930	2760	1820	918	967	633
22	698	774	718	1650	4720	7890	6240	3130	1720	901	915	701
23	617	854	864	2370	4810	5440	5130	2890	1850	909	889	745
24	598	789	902	3310	5360	4420	4350	3730	2400	886	890	718
25	631	733	1230	3180	4430	3790	3780	3440	1950	954	867	662
26	717	701	1480	2640	3730	3420	3390	3320	1880	1130	851	625
27	956	684	1260	2380	3490	3110	3180	4780	1640	1070	862	619
28	1100	672	1230	2540	3560	2910	3230	6240	1540	1160	804	600
29	851	664	1150	2590		2760	2960	4290	1470	1030	768	587
30	722	680	1030	2530		2640	2770	3280	1480	920	752	624
31	673		946	2500		2510		3490		928	743	
TOTAL	20542	22379	27029	95207	155850	127060	128550	138420	81490	36462	35474	20076
MEAN	663	746	872	3071	5566	4099	4285	4465	2716	1176	1144	669
MAX	1100	1040	1480	16100	18100	14100	18300	11900	6810	1920	4900	781
MIN	563	664	677	781	2130	2290	2370	2390	1470	886	743	587
CFSM	.59	.66	.77	2.72	4.92	3.62	3.79	3.95	2.40	1.04	1.01	.59
IN.	.68	.74	.89	3.13	5.13	4.18	4.23	4.55	2.68	1.20	1.17	.66

03164000 NEW RIVER NEAR GALAX, VA--Continued

STATIST	CICS OF	MONTHLY	MEAN DATA	A FOR WATE	R YEARS	1930	- 1998,	BY WATE	R YEAR (W	Υ)			
	OCT	NOV	DE	JAN	FE	В	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	1408	1643	183	2250	262	9	2931	2659	2164	1719	1381	1383	1244
MAX	3625	7189	400	5 5744	556	6	5827	6345	4469	5280	4017	8148	4827
(WY)	1977	1978	196:	1995	199	8	1993	1987	1973	1992	1949	1940	1989
MIN	435	504	59:	568	63	1	958	1017	811	614	426	453	381
(WY)	1954	1954	195	1956	193	4	1988	1942	1941	1988	1930	1988	1954
SUMMARY	STATIS	STICS	F	OR 1997 CA	LENDAR Y	EAR	F	OR 1998	WATER YEAR	R	WATER	YEARS 1930) - 1998
ANNUAL	TOTAL			646187				888539					
ANNUAL	MEAN			1770				2434			1933		
HIGHEST	ANNUA	L MEAN									2807		1958
LOWEST	ANNUAL	MEAN									1034		1988
HIGHEST	DAILY	MEAN		8060	Mar	4		18300	Apr 2	0	86200	Aug	14 1940
LOWEST	DAILY N	MEAN		484	Sep	8		563	Oct 1	1	265	Sep	19 1954
ANNUAL	SEVEN-I	DAY MINIM	UM	524	Sep	4		573	Oct 1	1	304	Sep	13 1954
INSTANT	CANEOUS	PEAK FLO	W					25600	Jan	8	141000	Aug	14 1940
INSTANT	CANEOUS	PEAK STA	GE					7.	55 Jan	8	a25.	.7 Aug	14 1940
INSTANT	CANEOUS	LOW FLOW						519	Oct 1	1	b193	Jan	9 1956
ANNUAL	RUNOFF	(CFSM)		1	.57			2.	15		1.	.71	
ANNUAL	RUNOFF	(INCHES)		21	.25			29.	23		23.	.22	
10 PERC	CENT EXC	CEEDS		3420				4920			3480		
50 PERC	CENT EXC	CEEDS		1400				1440			1470		
90 PERC	CENT EXC	CEEDS		609				668			676		

a From floodmark.
b Result of freezeup.

03165000 CHESTNUT CREEK AT GALAX, VA

LOCATION.--Lat 36°38'45", long 80°55'10", Galax City, Hydrologic Unit 05050001, on right bank 200 ft upstream from bridge on State Highway 89 and 1.7 mi downstream from Wards Mill Branch.

DRAINAGE AREA. -- 39.4 mi².

PERIOD OF RECORD. -- September 1944 to current year.

REVISED RECORDS.--WSP 1385: 1953.

GAGE.--Water-stage recorder. Concrete control since Aug. 30, 1979. Datum of gage is 2,344.17 ft above sea level. Prior to June 25, 1948, nonrecording gage, and June 25, 1948, to May 28, 1953, water-stage recorder, at site 200 ft upstream at datum 0.86 ft higher.

REMARKS.--Records good except for period with ice effect, Jan. 1-3, which is fair. Maximum discharge, 6,980 ${\rm ft}^3/{\rm s}$, from rating curve extended above 2,200 ${\rm ft}^3/{\rm s}$ on basis of two slope-area and one contracted-opening measurements at gage heights 9.5 ft, 14.4 ft, and 17.4 ft, respectively, site and datum then in use. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Aug. 14, 1940, reached a stage of 17.4 ft, at site and datum used 1944-53, discharge, $11,000 \text{ ft}^3/\text{s}$, by contracted-opening measurement.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 850 ft^3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 8	0500	*2,870	*7.32	Mar. 20	1515	1,540	4.70
Feb. 4	1445	938	3.40	Apr. 19	1900	1,000	3.53
Feb. 17	1430	1.240	4.03				

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Minimum discharge, 20 ft^3/s , Dec. 18, 19, gage height, 1.27 ft.

	DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1	23	32	33	e34	68	80	104	117	67	55	40	35	
2	23	56	29	e35	63	77	91	99	64	50	35	35	
3	23	36	28	e41	104	74	88	84	67	48	33	34	
4	23	30	33	44	637	72	103	128	153	47	32	36	
5	23	28	30	47	245	70	89	108	108	47	31	34	
6	23	28	27	53	147	68	84	87	87	45	30	33	
7	23	27	26	244	126	68	82	101	77	46	29	33	
8	22	27	26	1290	118	159	81	172	71	52	57	35	
9	22	27	28	169	112	315	141	106	73	51	58	34	
10	22	26	29	92	101	140	100	197	134	45	52	33	
11	22	26	29	71	107	103	90	199	132	43	45	33	
12	22	26	27	65	120	90	84	122	112	42	40	35	
13	23	28	27	62	98	85	81	100	88	46	88	35	
14	23	36	26	53	86	83	83	91	77	42	51	36	
15	23	30	26	138	77	78	81	86	81	41	51	37	
16	22	27	29	115	180	78	85	81	72	39	219	38	
17	23	26	28	76	800	78	271	77	68	42	122	38	
18	25	26	26	63	296	87	126	73	64	38	64	40	
19	25	26	25	59	154	154	380	71	65	38	50	42	
20	25	26	25	56	130	629	208	69	63	36	44	43	
21	23	29	25	51	110	243	114	79	59	35	41	49	
22	23	38	37	53	98	154	95	75	59	35	41	60	
23	23	31	35	136	176	130	88	106	59	34	40	53	
24	24	28	36	92	122	118	84	118	56	34	52	48	
25	32	27	60	74	101	113	76	85	55	41	42	47	
26	39	27	38	63	92	108	73	80	54	40	39	48	
27	41	27	43	60	90	104	75	138	52	39	37	45	
28	28	26	42	96	86	100	75	93	51	39	37	44	
29	26	26	37	91		97	69	80	50	35	36	42	
30	25	29	36	86		94	71	74	54	35	36	63	
31	25		35	77		93		74		46	36		
TOTAL	769	882	981	3686	4644	3942	3272	3170	2272	1306	1608	1218	
MEAN	24.8	29.4	31.6	119	166	127	109	102	75.7	42.1	51.9	40.6	
MAX	41	56	60	1290	800	629	380	199	153	55	219	63	
MIN	22	26	25	34	63	68	69	69	50	34	29	33	
CFSM	.63	.75	.80	3.02	4.21	3.23	2.77	2.60	1.92	1.07	1.32	1.03	
IN.	.73	.83	.93	3.48	4.38	3.72	3.09	2.99	2.15	1.23	1.52	1.15	

e Estimated.

03165000 CHESTNUT CREEK AT GALAX, VA--Continued

STATISTICS OF MOD	NTHLY MEAN	DATA F	FOR WATER	YEARS	1945 -	1998.	BY WA	TER YEAR	(WY)

MEAN 59.2 63.5 65.3 72.1 83.0 95.4 91.6 76.3 67.7 52.4 49.9 MAX 197 157 112 161 166 301 233 160 172 150 150 150	254 1989 18.6
	18.6
(WY) 1948 1980 1958 1995 1998 1993 1983 1973 1992 1989 1949 MIN 19.8 27.3 25.8 23.9 35.9 38.1 37.4 34.2 25.5 20.7 15.0	1954
(WY) 1964 1982 1964 1956 1989 1988 1989 1956 1988 1986 1988	
SUMMARY STATISTICS FOR 1997 CALENDAR YEAR FOR 1998 WATER YEAR WATER YEARS 1	45 - 1998
ANNUAL TOTAL 18370 27750	
ANNUAL MEAN 50.3 76.0 69.1	
HIGHEST ANNUAL MEAN 107	1993
LOWEST ANNUAL MEAN 37.3	1981
HIGHEST DAILY MEAN 358 Mar 14 1290 Jan 8 2050 Ap	r 21 1992
LOWEST DAILY MEAN 18 Sep 8 22 aOct 8 12 A	g 26 1981
ANNUAL SEVEN-DAY MINIMUM 19 Sep 3 22 Oct 6 13 A	g 23 1981
INSTANTANEOUS PEAK FLOW 2870 Jan 8 6980 O	t 17 1947
INSTANTANEOUS PEAK STAGE 7.32 Jan 8 bl4.40 00	t 17 1947
INSTANTANEOUS LOW FLOW 20 cDec 18 12 dAy	g 25 1981
ANNUAL RUNOFF (CFSM) 1.28 1.93 1.75	
ANNUAL RUNOFF (INCHES) 17.34 26.20 23.82	
10 PERCENT EXCEEDS 82 126 110	
50 PERCENT EXCEEDS 42 53 52	
90 PERCENT EXCEEDS 23 26 28	

a Also Oct. 9-12, 16, 1997.
b From floodmark, site and datum then in use.
c Also Dec. 19, 1997.
d Also part or all of each day Aug. 26-30, 1981.

03165500 NEW RIVER AT IVANHOE, VA

LOCATION.--Lat 36°50'05", long 80°57'10", Wythe County, Hydrologic Unit 05050001, on left bank at Ivanhoe, 2.1 mi downstream from Big Branch, and 2.3 mi upstream from Cripple Creek.

DRAINAGE AREA. -- 1,340 mi².

PERIOD OF RECORD.--August to December 1927, October 1929 to September 1978, October 1978 to September 1982 (annual maximum only), February 1996 to present. Monthly discharge only for some periods, published in WSP 1305. Gageheight records collected in vicinity, October 1916 to July 1943, are contained in reports of the National Weather Service.

REVISED RECORDS. -- WSP 783: Drainage area, 1933(M).

GAGE.--Water-stage recorder. Datum of gage is 1,943.09 ft above sea level.

REMARKS.--Records good except those for periods of no gage-height record May 4 to June 3, June 12-14, June 25 to Aug. 7, and Aug. 18-26, which are fair. Large diurnal fluctuation and some regulation caused by powerplants at Buck 2.8 mi upstream and at Byllesby 5.5 mi upstream. Maximum discharge, 155,000 ft³/s, from rating curve extended above 32,000 ft³/s on basis of flood records for other stations on New River. Minimum gage height, 0.59 ft, Oct. 11, 1965. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in July 1916 reached a stage of 34.8 ft, from floodmark, discharge, 132,000 ft³/s, from rating curve extended as explained above. Flood in September 1878 was about 5 ft lower than flood in July 1916 and was the highest known from 1840 to 1916.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 13,500 ft³/s and maximum (*):

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 8	1345	*27,600	*13.73	Mar. 21	0045	20,200	11.28
Feb. 5	0115	17,200	10.09	Apr. 20	0515	24,900	12.94
Feb. 18	0715	23,200	12.40				

Minimum discharge, 389 ft³/s, Sept. 9, gage height, 1.46 ft.

						DAILY MEA	N VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1020	999	868	867	2380	3790	2740	3620	e3450	e2100	e1200	860
2	863	1030	955	844	2270	3600	2890	4380	e3060	e2300	e1260	807
3	745	1210	1070	955	2350	3330	2720	4300	e2870	e2100	e1150	812
3 4 5	757	1230	1030	1200	9150	3150	2780	e4760	3580	e1900	e1050	795
5	751	1040	1020	1250	13900	2830	3210	e5840	3770	e1750	e960	811
6	743	934	1020	1320	7540	2710	3050	e4720	3880	e1700	e920	784
7	761	875	936	1700	5240	2650	2750	e4200	3170	e1650	e1300	794
8	648	829	862	17500	4210	2970	2600	e5560	2770	e1620	1240	790
9	686	821	818	14600	3970	5740	2820	e6610	2630	e1600	1040	755
10	685	806	913	5730	3820	8130	3750	e7770	3160	e1650	1060	890
11	680	813	996	3560	3900	5530	3240	e14000	6180	e1550	1260	822
12	670	786	1080	2800	4860	4090	2980	e8990	e5330	e1400	1180	798
13	705	798	953	2460	5500	3620	2770	e6580	e4260	e1500	1510	738
14	712	854	922	2220	4420	3300	2710	e5290	e3690	e1500	1350	717
15	688	933	836	2380	3770	2950	2640	e4520	3190	e1400	1140	674
16	697	963	791	4420	3480	2790	2500	e4010	3020	e1320	3930	686
17	692	889	798	4420	12600	2730	5430	e3660	2870	e1450	4150	677
18	684	838	816	3250	20200	2770	9480	e3360	2470	e1350	e1800	697
19	700	794	844	2650	11200	4090	8640	e3120	2330	e1260	e1500	687
20	739	770	821	2300	7800	9400	20800	e2960	2280	e1200	e1220	714
21	853	782	829	2080	6050	16700	11200	e3310	2290	e1170	e1100	706
22	893	888	889	1970	5080	9270	7240	e3660	2100	e1150	e1050	816
23	753	998	992	2470	4890	6510	5660	e3430	2140	e1120	e1070	868
24	729	958	1130	3460	5840	4890	4980	e4220	2580	e1100	e1100	813
25	747	935	1280	3430	4850	4110	4290	e3960	e2700	e1150	e1130	765
26	848	822	1770	2470	4080	3720	3880	e3850	e2300	e1400	e1050	720
27	1030	815	1480	2340	3890	3460	3700	e5190	e2100	e1350	1010	712
28	1310	798	1360	2570	3740	3200	3600	e6570	e2000	e1450	942	681
29	1140	791	1300	2850		3020	3570	e4740	e1900	e1300	904	684
30	864	808	1210	2600		2860	3440	e3810	e1800	e1180	873	697
31	1360		1040	2530		2720		e4000		e1160	838	
TOTAL	25153	26807	31629	105196	170980	140630	142060	154990	89870	45830	41287	22770
MEAN	811	894	1020	3393	6106	4536	4735	5000	2996	1478	1332	759
MAX	1360	1230	1770	17500	20200	16700	20800	14000	6180	2300	4150	890
MIN	648	770	791	844	2270	2650	2500	2960	1800	1100	838	674
CFSM	.61	.67	.76	2.53	4.56	3.39	3.53	3.73	2.24	1.10	.99	.57
IN.	.70	.74	.88	2.92	4.75	3.90	3.94	4.30	2.49	1.27	1.15	.63

e Estimated.

03165500 NEW RIVER AT IVANHOE, VA--Continued

STATISTICS C	JF.	MONTHI.Y	MEAN	$D\Delta T\Delta$	FOR	WATER	VEARS	1930-1978	1996**	1997-1998	BY MATER	VEVE	(WV)

STATIST	rics of	MONTHLY MEAN	DATA	FOR WATER	YEARS 1	930-19	978,	1996**, 19	97-1998	3, BY	WATER	YEAR (WY)		
	OCT	NOV	DEC	JAN	FEB	3	MAR	APR	MA	Z	JUN	JUL	AUG	SEP
MEAN	1644	1817	2052	2503	2961	. 3	3231	2936	2399	9	1911	1554	1613	1369
MAX	4200	7149	4248	5052	6106	6	5266	5993	5000)	4511	4440	8953	4499
(WY)	1930	1978	1962	1937	1998	1	L975	1960	1998	3	1976	1949	1940	1945
MIN	491	578	703	678	693	1	L450	1289	991	L	817	485	606	433
(WY)	1931	1932	1940	1940	1934	. 1	1931	1942	194	L	1930	1930	1956	1954
SUMMARY	Y STATIS	TICS	FOF	R 1997 CALI	ENDAR YE	AR		FOR 1998 W.	ATER Y	EAR		WATER Y	EARS 1930	- 1978
													1996*	*
													1997	- 1998
ANNUAL	TOTAT			718637				997202						
ANNUAL				1969				2732				2156		
	r ANNUAL	MEAN		1000				2752				3188		1978
	ANNUAL											1285		1934
	r DAILY			9660	Mar	4		20800	Apr	20		87600	Aug 1	4 1940
LOWEST	DAILY M	EAN		590	Sep	9		648	Oct	8		184		8 1930
ANNUAL	SEVEN-D	AY MINIMUM		665	Sep	3		684	Oct	8		343	Aug 2	6 1932
INSTANT	TANEOUS	PEAK FLOW			-			27600	Jan	8		155000	Aug 1	4 1940
INSTANT	TANEOUS	PEAK STAGE						13.7	3 Jan	8		a38.1	Aug 1	4 1940
INSTANT	TANEOUS	LOW FLOW						389	Sep	9		44	Oct 1	1 1965
ANNUAL	RUNOFF	(CFSM)		1.4	47			2.0	4			1.6	1	
ANNUAL	RUNOFF	(INCHES)		19.9	95			27.6	8			21.8	6	
10 PERG	CENT EXC	EEDS		3650				5370				3830		
50 PERG	CENT EXC	EEDS		1600				1750				1710		
90 PERG	CENT EXC	EEDS		746				763				748		

^{**} Partial water year. a From floodmark.

03168000 NEW RIVER AT ALLISONIA, VA

LOCATION.--Lat 36°56'15", long 80°44'45", Pulaski County, Hydrologic Unit 05050001, on left bank on State Highway 653, 0.2 mi downstream from Big Reed Island Creek, and 0.5 mi upstream from Allisonia.

DRAINAGE AREA. -- 2,202 mi².

PERIOD OF RECORD. -- September 1929 to current year.

REVISED RECORDS.--WSP 783: Drainage area. WSP 823: 1936. WSP 1305: 1933(M).

GAGE.--Water-stage recorder. Datum of gage is 1,848.36 ft above sea level.

REMARKS.--Records good except those for period of doubtful gage-height record, June 14-17, and period of no gage-height record, Aug. 4-5, which are fair. Large diurnal fluctuation and some regulation by powerplant 25 mi upstream from station. U.S. Army Corps of Engineers satellite gage-height telemeter at station. American Electric Power gage-height transmitter at station. Maximum discharge, 185,000 ft³/s, from rating curve extended above 52,000 ft³/s on basis of flood records for other stations on New River. Minimum gage height, 0.47 ft, Sept. 7, 1930. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 8	1645	38,200	8.72	Mar. 21	0330	32,500	7.88
Feb. 5	0400	26,000	6.88	Apr. 20	0600	*38,900	*8.82
Feb. 18	0845	32,700	7.92	May 11	1300	19,400	5.86

Minimum discharge, 739 ft^3/s , Oct. 8, gage height, 1.03 ft .

	DAILY MEAN VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1350	1690	1150	1110	4080	5460	4300	4590	4850	2560	1540	1120
2	1130	1460	1230	1040	3710	5180	4290	6600	4390	2980	1590	1090
3	1020	1730	1390	1270	3710	4710	4070	6280	4370	2670	1580	1060
4	976	1600	1350	1530	12200	4460	4100	8330	4470	2300	e1380	1060
5	952	1410	1340	1670	21900	4190	4530	10300	5560	2280	e1300	1060
6	934	1210	1320	1970	12400	3870	4490	8250	5490	2180	1230	1040
7	1010	1160	1200	2510	8820	3780	4100	6770	4650	2130	1180	1050
8	823	1130	1130	26700	7100	3940	3860	7710	4350	2110	1730	1030
9	898	1100	1080	21000	6530	7490	4260	9550	4250	2150	1660	1010
10	901	1080	1150	8350	6420	11000	5480	9310	4490	2190	1470	1110
11	902	1080	1260	5210	6280	8080	4900	16900	8060	1970	1740	1060
12	896	1050	1350	4070	7740	5970	4440	13600	7380	1870	1700	1040
13	897	1060	1260	3490	8740	5040	4240	9780	5740	1860	1810	989
14	897	1130	1190	3110	7080	4570	4050	7720	e5000	1940	1990	945
15	891	1200	1080	3310	5750	4340	3870	6580	e4500	1840	1590	922
16	892	1260	1010	6380	5110	4260	3720	5770	e4200	1710	4290	934
17	906	1180	999	6510	14900	4000	7380	5210	e4000	1940	6620	879
18	925	1110	1050	4710	29500	4020	13200	4670	3450	1760	3760	983
19	938	1070	1060	3870	16400	6690	12700	4410	3200	1640	2300	1010
20	967	1060	1070	3410	11400	14700	32900	4390	3120	1570	1860	971
21	1020	1040	1090	3030	9250	26800	16500	4280	3030	1490	1610	993
22	1130	1200	1140	2720	7760	14500	10800	4740	2860	1500	1460	1100
23	1050	1320	1330	3620	7250	10100	8420	4760	2760	1450	1380	1150
24	957	1310	1460	5190	8560	7620	7090	6350	3200	1460	1420	1120
25	995	1230	1640	5120	7440	6390	6030	6390	3100	1470	1460	1030
26	1100	1120	2220	4170	6220	5680	5440	5510	2930	1710	1340	992
27	1370	1070	2030	3120	5700	5080	4950	6930	2620	1840	1270	962
28	1640	1060	1870	4050	5510	4780	4840	9330	2510	1700	1270	941
29	1520	1050	1750	4740		4510	4660	7290	2410	1830	1200	924
30	1170	1070	1600	4540		4390	4480	5690	2360	1520	1150	951
31	1210		1460	4330		4370		5020		1490	1110	
TOTAL	32267	36240	41259	155850	257460	209970	208090	223010	123300	59110	56990	30526
MEAN	1041	1208	1331	5027	9195	6773	6936	7194	4110	1907	1838	1018
MAX	1640	1730	2220	26700	29500	26800	32900	16900	8060	2980	6620	1150
MIN	823	1040	999	1040	3710	3780	3720	4280	2360	1450	1110	879
CFSM	. 47	.55	.60	2.28	4.18	3.08	3.15	3.27	1.87	.87	.83	.46
IN.	.55	.61	.70	2.63	4.35	3.55	3.52	3.77	2.08	1.00	.96	.52

e Estimated.

03168000 NEW RIVER AT ALLISONIA, VA--Continued

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 19	1930 -	- 1998,	BY	WATER	YEAR	(WY)
--	--------	---------	----	-------	------	------

F MONIALI	MEAN DAIA	FOR WAILE	I CARS I	930 - 19	70, DI WAI	ER IE.	HIC (WI	. /			
T NOV	DEC	JAN	FEB	MA	R APR		MAY	JUN	JUL	AUG	SEP
5 2621	3014	3820	4518	508	4603		3755	2891	2275	2213	2010
1 9597	6125	8600	9195	1087	11880		7736	8552	6230	11570	8448
0 1978	1962	1995	1998	199	3 1987		1973	1992	1949	1940	1989
6 853	1007	1018	1041	155	1685		1406	1067	744	850	743
1 1932	1966	1956	1934	198	3 1942		1941	1988	1930	1988	1930
ISTICS	FOR	1997 CAL	ENDAR YE	AR	FOR 1998	WATE	R YEAR	!	WATER	YEARS 1930	0 - 1998
ı		1039484			1434072						
		2848			3929				3252		
AL MEAN									4761		1978
L MEAN									1681		1988
Y MEAN		16000	Mar	4	32900		Apr 20	1	95000	Aug	14 1940
MEAN		823	Oct	8	823		Oct 8	1.	453	Sep	6 1930
MINIM YAC-I	JM	888	Oct	8	888		Oct 8	:	555	Sep	3 1930
S PEAK FLOW	V				38900		Apr 20	1	185000	Aug	14 1940
S PEAK STAC	ΞE				8	.82	Apr 20	1	23.	.42 Aug	14 1940
S LOW FLOW					739		Oct 8	:	412	Sep	7 1930
F (CFSM)		1.3	29		1	.78			1.	.48	
F (INCHES)		17.	56		24	.23			20.	.07	
XCEEDS		5530			7880				5860		
XCEEDS		2140			2300				2440		
XCEEDS		993			1020				1110		
	25 2621 26 29597 20 1978 26 853 21 1932 21STICS 21AL MEAN 31 MEAN 32 MEAN 33 MEAN 34 MEAN 35 MEAN 36 MEAN 37 MEAN 38 M	ET NOV DEC 15 2621 3014 11 9597 6125 10 1978 1962 16 853 1007 11 1932 1966 EISTICS FOR WAL MEAN LL MEAN LL MEAN LL MEAN LY MEAN THEAN T	T NOV DEC JAN 15 2621 3014 3820 161 9597 6125 8600 10 1978 1962 1995 166 853 1007 1018 161 1932 1966 1956 TISTICS FOR 1997 CALI 1039484 2848 VAL MEAN 1 MEAN 1 MEAN 1 MEAN 1 MEAN 1 MEAN 1 DAY MINIMUM 1S PEAK FLOW IS PEAK STAGE IS LOW FLOW 1 (CFSM) 1 (1) 1	T NOV DEC JAN FEB 15 2621 3014 3820 4518 16 9597 6125 8600 9195 10 1978 1962 1995 1998 16 853 1007 1018 1041 11 1932 1966 1956 1934 TISTICS FOR 1997 CALENDAR YE 1039484 2848 VAL MEAN LI MEAN LY MEAN 16000 Mar T MEAN 823 Oct 1-DAY MINIMUM 888 Oct IS PEAK FLOW IS PEAK STAGE IS LOW FLOW IF (CPSM) 1.29 17.56 1XCEEDS 5530 1XCEEDS 5530 1XCEEDS 5530 12140	TO NOV DEC JAN FEB MAI 15 2621 3014 3820 4518 5086 16 9597 6125 8600 9195 10876 10 1978 1962 1995 1998 1998 16 853 1007 1018 1041 1556 11 1932 1966 1956 1934 1988 TISTICS FOR 1997 CALENDAR YEAR 1039484 2848 VAL MEAN 11 MEAN 12 MEAN 13 MEAN 14 MEAN 15 MEAN 16 MEAN 16 MEAN 17 MEAN 18 B88 Oct 8 18 PEAK FLOW 18 PEAK FLOW 18 PEAK STAGE 18 LOW FLOW 17 (FFM) 1 1.29 17 1.56 18 MEEDS 15 5530 18 MEEDS 15 140	TO NOV DEC JAN FEB MAR APR 15 2621 3014 3820 4518 5080 4603 161 9597 6125 8600 9195 10870 11880 17 10 1978 1962 1995 1998 1993 1987 186 853 1007 1018 1041 1554 1685 181 1932 1966 1956 1934 1988 1942 TISTICS FOR 1997 CALENDAR YEAR FOR 1998 10 1039484 1434072 2848 3929 TAL MEAN 11 MEAN 12 MEAN 13 MEAN 14 MEAN 15 MEAN 823 Oct 8 823 15 DAY MINIMUM 888 Oct 8 888 15 PEAK FLOW 15 PEAK STAGE 885 1085 1295 17.56 15 LOW FLOW 16 (CFSM) 1.29 17.56 17 T.56 24 17 T.56 226 18 SECEEDS 5530 7880 18 SECEEDS 5530 7880	TO NOV DEC JAN FEB MAR APR 15 2621 3014 3820 4518 5080 4603 161 9597 6125 8600 9195 10870 11880 17 10 1978 1962 1995 1998 1993 1987 186 853 1007 1018 1041 1554 1685 181 1932 1966 1956 1934 1988 1942 TISTICS FOR 1997 CALENDAR YEAR FOR 1998 WATE 10 10 10 10 10 10 10 10 10 10 10 10 10 1	TO NOV DEC JAN FEB MAR APR MAY 15 2621 3014 3820 4518 5080 4603 3755 16 9597 6125 8600 9195 10870 11880 7736 10 1978 1962 1995 1998 1993 1987 1973 16 853 1007 1018 1041 1554 1685 1406 11 1932 1966 1956 1934 1988 1942 1941 TISTICS FOR 1997 CALENDAR YEAR FOR 1998 WATER YEAR 1039484 1434072 2848 3929 VAL MEAN LI MEAN LY MEAN 16000 Mar 4 32900 Apr 20 T MEAN 823 Oct 8 823 Oct 8 T DAY MINIMUM 888 Oct 8 888 Oct 8 IS PEAK FLOW IS PEAK STAGE IS LOW FLOW 739 Oct 8 IS LOW FLOW 739 Oct 8 T (F) (INCHES) 17.56 24.23 EXCEEDS 5530 7880 EXCEEDS 5530 7880 EXCEEDS 5530 7880 EXCEEDS 5530 7880	S	TO NOV DEC JAN FEB MAR APR MAY JUN JUL 15 2621 3014 3820 4518 5080 4603 3755 2891 2275 161 9597 6125 8600 9195 10870 11880 7736 8552 6230 10 1978 1962 1995 1998 1993 1987 1973 1992 1949 166 853 1007 1018 1041 1554 1685 1406 1067 744 11 1932 1966 1956 1934 1988 1942 1941 1988 1930 1930 1932 1966 1956 1934 1988 1942 1941 1988 1930 1930 1930 1930 1930 1930 1930 1930	TO NOV DEC JAN FEB MAR APR MAY JUN JUL AUG 15 2621 3014 3820 4518 5080 4603 3755 2891 2275 2213 10 9597 6125 8600 9195 10870 11880 7736 8552 6230 11570 10 1978 1962 1995 1998 1993 1987 1973 1992 1949 1940 16 853 1007 1018 1041 1554 1685 1406 1067 744 850 11 1932 1966 1956 1934 1988 1942 1941 1988 1930 1988 TISTICS FOR 1997 CALENDAR YEAR FOR 1998 WATER YEAR WATER YEARS 1930 AL MEAN 1039484 1434072 2848 3929 3252 VAL MEAN 4761 LL MEAN 1681 LY MEAN 16000 Mar 4 32900 Apr 20 95000 Aug MEAN 823 Oct 8 823 Oct 8 453 Sep I-DAY MINIMUM 888 Oct 8 888 Oct 8 555 Sep SEPEAK FLOW 38900 Apr 20 185000 Aug SES PEAK FLOW 38900 Apr 20 185000 Aug SES PEAK STAGE 882 Apr 20 23.42 Aug SES PEAK STAGE 882 Apr 20 23.42 Aug SES LOW FLOW 739 Oct 8 412 Sep FF (INCHES) 17.56 24.23 20.07 EXCEEDS 5530 7880 5860 EXCEEDS 5530 7880 5860 EXCEEDS 5530 7880 5860 EXCEEDS 5530 7880 5860

03170000 LITTLE RIVER AT GRAYSONTOWN, VA

LOCATION.--Lat 37°02'15", long 80°33'25", Pulaski County, Hydrologic Unit 05050001, on left bank at upstream side of bridge on State Highway 693 at Snowville, 0.5 mi southeast of Graysontown, 7 mi south of Radford, and at mile 8.6.

DRAINAGE AREA. -- 300 mi².

PERIOD OF RECORD. --October 1928 to current year. Published as "at Graysonton" prior to October 1990.

REVISED RECORDS.--WSP 823: 1929-36. WSP 1143: 1945. WSP 1305: 1929(M). WSP 1555: Drainage area (at site used 1928-41). WSP 1625: 1951(M). WSP 1725: 1936(M).

GAGE.--Water-stage recorder. Datum of gage is 1,816.04 ft above sea level. Prior to Nov. 20, 1931, nonrecording gage at bridge 1.0 mi downstream at datum 17.99 ft lower. Nov. 20, 1931, to Nov. 12, 1941, water-stage recorder 1.2 mi downstream at datum 20.58 ft lower.

REMARKS.--Records good except for period with ice effect, Dec. 31 to Jan. 1, which is fair. U.S. Army Corps of Engineers satellite gage-height telemeter at station. Maximum discharge, 22,800 ft³/s, from rating curve extended above 16,000 ft³/s on basis of slope-area measurements at gage heights 12.76 ft and 13.40 ft. Minimum discharge, 21 ft³/s, result of freezeup. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 3,000 ${\rm ft}^3/{\rm s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 8	0600	*6,880	*6.42	Mar. 21	0130	6,100	5.99
Feb. 4	2200	4,820	5.25	Apr. 20	0330	3,990	4.74
Feb. 18	0.030	4.130	4.83	=			

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
DAILY MEAN VALUES

Minimum discharge, 70 ft^3/s , Dec. 16, gage height, 0.77 ft .

					DA	ALLY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	132	142	147	e100	520	546	467	471	384	251	159	134
2	117	226	144	144	470	513	478	616	345	241	156	131
3	114	315	136	185	455	486	444	528	356	236	137	130
4	116	189	143	203	2110	458	510	619	430	227	126	130
5	114	158	151	219	2920	438	665	719	432	231	120	138
6	109	145	144	308	1550	422	536	625	412	247	117	129
				384								
7	107	142	128		1230	408	480	541	364	220	113	123
8	105	146	120	3670	974	433	455	585	327	225	517	120
9	105	149	139	1260	902	781	492	583	310	261	792	112
10	105	149	150	610	822	889	598	514	354	234	294	109
11	105	140	162	412	793	591	509	809	450	213	308	110
12	105	136	158	345	1090	505	464	871	600	198	230	110
13	106	136	143	354	1080	471	432	655	492	197	182	108
14	106	148	136	339	834	464	414	563	378	196	167	104
15	110	171	115	429	686	449	409	510	361	190	164	101
16	110	163	106	1040	604	424	405	468	371	180	215	100
17	114	143	121	671	1760	420	736	459	395	199	553	108
18	123	133	143	503	2580	426	984	426	347	221	363	114
19	132	129	141	416	1250	802	1240	385	314	176	252	111
20	127	136	140	377	961	1740	2730	364	325	165	216	115
20	127	150	110	5,,,	201	1710	2750	501	323	103	210	115
21	123	143	142	334	832	3760	1210	360	290	160	192	122
22	115	177	150	303	699	1510	864	362	278	223	183	163
23	113	208	196	372	765	1010	720	394	270	200	175	182
24	113	165	187	636	1030	797	645	598	263	177	169	132
25	123	146	206	561	781	682	578	605	287	164	163	121
26	146	139	243	459	666	617	526	503	270	163	160	119
27	178	138	195	408	607	579	499	551	249	163	153	118
28	178	136	192	436	578	547	480	777	237	164	148	113
29	136	135	144	745		521	457	559	255	162	146	108
30	127	140	108	690		498	442	463	274	145	140	112
31	124		e105	596		479		412		141	136	
TOTAL	3738	4723	4635	17509	29549	22666	19869	16895	10420	6170	6946	3627
MEAN	121	157	150	565	1055	731	662	545	347	199	224	121
MAX	178	315	243	3670	2920	3760	2730	871	600	261	792	182
MIN	105	129	105	100	455	408	405	360	237	141	113	100
CFSM	.40	.52	.50	1.88	3.52	2.44	2.21	1.82	1.16	.66	.75	.40
IN.	.46	.59	.57	2.17	3.66	2.81	2.46	2.09	1.29	.77	.86	.45

e Estimated.

KANAWHA RIVER BASIN

03170000 LITTLE RIVER AT GRAYSONTOWN, VA--Continued

STATISTICS	OF	MONTHI.V	ME AN	בדבת	FOR	WATER	VEARS	1929	- 1998	BY WATER	VEAR	(WV)

	OCT	NOV	DEC	JAN	FEB	i	MAR	APR		MAY	JUN	JUL	AUG	SEP
MEAN	299	302	336	409	483		549	510		412	337	268	256	251
MAX	1458	916	860	1050	1055		1213	1445		810	942	945	1584	988
(WY)	1930	1986	1949	1937	1998		1993	1987		1958	1972	1949	1940	1989
MIN	86.7	107	115	108	113		220	146		168	137	108	88.3	76.9
(WY)	1954	1932	1966	1966	1934		1940	1942		1941	1964	1930	1981	1932
SUMMARY	STATIST	ICS	FOR I	1997 CALEN	IDAR YE	AR		FOR 1998	WATI	ER YEAR		WATER Y	EARS 1929	- 1998
ANNUAL T	TOTAL			119933				146747						
ANNUAL M	/IEAN			329				402				367		
HIGHEST	ANNUAL I	MEAN										631		1949
LOWEST A	ANNUAL MI	EAN										191		1981
HIGHEST	DAILY M	EAN		1710	Mar	4		3760		Mar 21		13200	Oct	2 1929
LOWEST I	DAILY ME	AN		95	Sep	8		100	ä	aJan 1		50	Sep	21 1932
ANNUAL S	SEVEN-DA	Y MINIMUM		103	Sep	3		105		Oct 8		57	Jul	23 1966
INSTANTA	ANEOUS PI	EAK FLOW						6880		Jan 8		22800	Jun	21 1972
INSTANTA	ANEOUS PI	EAK STAGE						6	.42	Jan 8		13.4	0 Jun	21 1972
INSTANTA	ANEOUS LO	OW FLOW						70		Dec 16		b21	Feb	22 1942
ANNUAL F	RUNOFF (CFSM)		1.10)			1	.34			1.2	2	
ANNUAL F	RUNOFF (INCHES)		14.87	7			18	.20			16.6	1	
10 PERCE	ENT EXCE	EDS		609				781				622		
50 PERCE	ENT EXCE	EDS		261				252				270		
90 PERCE	ENT EXCE	EDS		116				115				128		

a Also Sept. 16, 1998. b Result of freezeup.

03170000 LITTLE RIVER AT GRAYSONTOWN, VA

LOCATION.--Lat 37°02′15", long 80°33′25", Pulaski County, Hydrologic Unit 05050001, on left bank at upstream side of bridge on State Highway 693 at Snowville, 0.5 mi southeast of Graysontown, 7 mi south of Radford, and at mile 8.6.

DRAINAGE AREA.-- 300 mi².

PERIOD OF RECORD.--October 1996 to September 1998, discontinued.

			DIS-	ann.	PH			BARO-		OXYGEN,
			CHARGE, INST.	SPE- CIFIC	WATER WHOLE			METRIC PRES-		DIS- SOLVED
			CUBIC	CON-	FIELD	TEMPER-	TEMPER-	SURE	OXYGEN,	(PER-
		GAGE	FEET	DUCT-	(STAND-	ATURE	ATURE	(MM	DIS-	CENT
DATE	TIME	HEIGHT	PER	ANCE	ARD	AIR	WATER	OF	SOLVED	SATUR-
		(FEET)	SECOND	(µS/CM)	UNITS)	(DEG C)	(DEG C)	HG)	(MG/L)	ATION)
		(00065)	(00061)	(00095)	(00400)	(00020)	(00010)	(00025)	(00300)	(00301)
OCT 1997										
09	0905	.91	106	87	7.4	13.5	16.3	719	8.8	95
NOV										
05	0830	1.08	160	85	7.3	-1.0	5.8	720	11.5	98
DEC										
11	0845	1.09	163	75	7.2	2.5	3.2	708	9.8	79
JAN 1998										
08	1345	5.38	5050	64	6.8	18.0	11.8	E714	8.3	
13	1000	1.47	342	77	7.4	12.0	5.2	713	10.8	91
16	0825	2.56	1170	74	7.2	6.8	3.8	700	12.4	102
FEB	1000	4 0 4	0040				2 1	600	10 5	100
05	1000	4.04	2940	58 72	6.9	6.0 1.5	3.1	699	12.7	103
10 MAR	0945	2.17	829	12	7.2	1.5	3.9	715	12.7	103
10	0900	2.28	922	65	7.8	-1.0	7.3	700	10.8	97
APR	0900	2.20	922	0.5	7.0	-1.0	7.3	700	10.0	91
14	0910	1.59	415	70	7.5	13.0	12.3	709	9.6	97
MAY	0,010	1.35	113	70	,.5	13.0	12.5	705	5.0	,
05	0915	2.02	711	63	7.5	15.5	12.9	708	9.0	92
JUN										
02	0915	1.48	348	79	7.4	23.0	20.9	700	8.1	99
JUL										
17	0845	1.13	179	85	7.4	23.0	24.6	711	7.5	97
AUG										
04	0830	.97	123	87	7.4	15.5	20.0	717	8.9	104
SEP										
04	0845	.98	126	91	7.5	20.0	20.4	708	8.4	100

03170000 LITTLE RIVER AT GRAYSONTOWN, VA--Continued

DATE	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	E. COLI WATER WHOLE TOTAL UREASE (COL / 100 ML) (31633)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	HARD- NESS NONCARB DISSOLV FLD. AS CACO3 (MG/L) (00904)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM PERCENT (00932)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
OCT 1997 09	62	60	38		7.7	4.4	3.0	14	. 2	1.8
NOV 05	160	140	32		6.9	3.6	2.9	15	. 2	2.9
DEC 11 JAN 1998	120	88	31		7.0	3.3	2.9	16	.2	1.3
08			19	2	4.3	1.9	3.0	22	.3	3.4
13	150	230	29 25	7 3	6.4 5.5	3.3	3.0	17 24	.2	1.7
16 FEB	3200	3000		3			3.9			2.2
05 10	2300 120	3400 100	18 25		4.1 5.6	2.0	2.7	22 19	.3	1.9 1.6
MAR										
10 APR	>6000	5700	24	7	5.4	2.5	2.8	19	. 2	1.7
14 MAY	44	46	28	3	6.1	3.0	2.7	17	. 2	1.2
05 JUN	930	580	31	9	9.3	1.8	1.0	7	.1	1.1
02	150	150	31	1	6.9	3.4	2.9	16	.2	1.5
JUL 17	150	120	34	3	7.3	3.8	3.0	15	. 2	1.6
AUG 04	110	100	34	2	7.4	3.8	2.9	15	. 2	1.2
SEP 04	67	53	38	5	8.0	4.4	3.0	14	.2	1.6
DATE	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
OCT 1997	BONATE WATER DIS IT FIELD MG/L AS HCO3	BONATE WATER DIS IT FIELD MG/L AS CO3	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3	DIS- SOLVED (MG/L AS SO4) (00945)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	DIS- SOLVED (TONS PER AC-FT) (70303)
OCT 1997 09 NOV	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	BONATE WATER DIS IT FIELD MG/L AS CO3	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	DIS- SOLVED (MG/L AS SO4) (00945)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	DIS- SOLVED (TONS PER AC-FT) (70303)
OCT 1997 09 NOV 05 DEC	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	BONATE WATER DIS IT FIELD MG/L AS CO3	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	DIS- SOLVED (MG/L AS SO4) (00945)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	DIS- SOLVED (TONS PER AC-FT) (70303)
OCT 1997 09 NOV 05 DEC 11	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	BONATE WATER DIS IT FIELD MG/L AS CO3	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	DIS- SOLVED (MG/L AS SO4) (00945)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	DIS- SOLVED (TONS PER AC-FT) (70303)
OCT 1997 09 NOV 05 DEC 11 JAN 1998 08	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) < < < < < < < <	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	DIS- SOLVED (MG/L AS SO4) (00945) 2.6 3.3 2.9	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 4.1 5.0 3.9 5.5	RIDE, DIS- SOLVED (MG/L AS F) (00950) <.10 <.10	DIS- SOLVED (MG/L AS SIO2) (00955) 8.9 10 11	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 56 64 55	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 56 56 52	DIS- SOLVED (TONS PER AC-FT) (70303) .08 .09 .07
OCT 1997 09 NOV 05 DEC 11 JAN 1998 08 13	BONATE WATER DIS IT FIELD MG/L AS HC03 (00453)	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) < < < < < < < <	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 16 22	DIS- SOLVED (MG/L AS SO4) (00945) 2.6 3.3 2.9 5.0 4.1	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 4.1 5.0 3.9 5.5 5.2	RIDE, DIS- SOLVED (MG/L AS F) (00950) <.10 <.10 <.10	DIS- SOLVED (MG/L AS SIO2) (00955) 8.9 10 11 6.9	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 56 64 55 52 63	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 56 56 52 43 52	DIS- SOLVED (TONS PER AC-FT) (70303) .08 .09 .07
OCT 1997 09 NOV 05 DEC 11 JAN 1998 08	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) < < < < < < < <	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	DIS- SOLVED (MG/L AS SO4) (00945) 2.6 3.3 2.9	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 4.1 5.0 3.9 5.5	RIDE, DIS- SOLVED (MG/L AS F) (00950) <.10 <.10	DIS- SOLVED (MG/L AS SIO2) (00955) 8.9 10 11	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 56 64 55	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 56 56 52	DIS- SOLVED (TONS PER AC-FT) (70303) .08 .09 .07
OCT 1997 09 NOV 05 DEC 11 JAN 1998 08 13 16 FEB	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 20 27 27 24	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) <1 <1 <1 <1	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 16 22 22 20	DIS- SOLVED (MG/L AS SO4) (00945) 2.6 3.3 2.9 5.0 4.1 4.5	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 4.1 5.0 3.9 5.5 5.2 6.9	RIDE, DIS- SOLVED (MG/L AS F) (00950) <.10 <.10 <.10 <.10 <.10	DIS- SOLVED (MG/L AS SIO2) (00955) 8.9 10 11 6.9 12 10	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 56 64 55 52 63 39 45	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 56 56 52 43 52 52 52	DIS- SOLVED (TONS PER AC-FT) (70303) .08 .09 .07 .07 .09 .05
OCT 1997 09 NOV 05 DEC 11 JAN 1998 08 13 16 FEB 05	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 20 27 27	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) <1 <1 <1 <1	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 16 22 22	DIS- SOLVED (MG/L AS SO4) (00945) 2.6 3.3 2.9 5.0 4.1 4.5	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 4.1 5.0 3.9 5.5 5.2 6.9	RIDE, DIS- SOLVED (MG/L AS F) (00950) <.10 <.10 <.10 <.10 <.10	DIS- SOLVED (MG/L AS SIO2) (00955) 8.9 10 11 6.9 12	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 56 64 55 52 63 39	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 56 56 52 43 52 52	DIS- SOLVED (TONS PER AC-FT) (70303) .08 .09 .07
OCT 1997 09 NOV 05 DEC 11 JAN 1998 08 13 16 FEB 05 10	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 20 27 27 24	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) <1 <1 <1 <1	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 16 22 22 20	DIS- SOLVED (MG/L AS SO4) (00945) 2.6 3.3 2.9 5.0 4.1 4.5	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 4.1 5.0 3.9 5.5 5.2 6.9	RIDE, DIS- SOLVED (MG/L AS F) (00950) <.10 <.10 <.10 <.10 <.10	DIS- SOLVED (MG/L AS SIO2) (00955) 8.9 10 11 6.9 12 10	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 56 64 55 52 63 39 45	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 56 56 52 43 52 52 52	DIS- SOLVED (TONS PER AC-FT) (70303) .08 .09 .07 .07 .09 .05
OCT 1997 09 NOV 05 DEC 111 JAN 1998 08 13 16 FEB 05 10 MAR 10	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 20 27 27 24 35	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) < < < < < < < <	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 16 22 22 20 29	DIS- SOLVED (MG/L AS SO4) (00945) 2.6 3.3 2.9 5.0 4.1 4.5 5.2 4.9	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 4.1 5.0 3.9 5.5 5.2 6.9 4.8 5.1	RIDE, DIS- SOLVED (MG/L AS F) (00950) <.10 <.10 <.10 <.10 <.10	DIS- SOLVED (MG/L AS SIO2) (00955) 8.9 10 11 6.9 12 10 5.9 9.7	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 56 64 55 52 63 39 45 47	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 56 56 52 43 52 52 52 41 53	DIS- SOLVED (TONS PER AC-FT) (70303) .08 .09 .07 .07 .09 .05
OCT 1997 09 NOV 05 DEC 11 JAN 1998 08 13 16 FEB 05 10 MAR 10 APR 14 MAY 05	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 20 27 27 24 35	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) <1 <1 <1 <1 <1 <1	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 16 22 22 20 29 17	DIS- SOLVED (MG/L AS SO4) (00945) 2.6 3.3 2.9 5.0 4.1 4.5 5.2 4.9	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 4.1 5.0 3.9 5.5 5.2 6.9 4.8 5.1	RIDE, DIS- SOLVED (MG/L AS F) (00950) <.10 <.10 <.10 <.10 <.10 <.10 <.10 <.10	DIS- SOLVED (MG/L AS SIO2) (00955) 8.9 10 11 6.9 12 10 5.9 9.7	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 56 64 55 52 63 39 45 47	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 56 56 52 43 52 52 52 41 53	DIS- SOLVED (TONS PER AC-FT) (70303) .08 .09 .07 .07 .09 .05 .06 .06
OCT 1997 09 NOV 05 DEC 11 JAN 1998 08 13 16 FEB 05 10 MAR 10 APR 14	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 20 27 27 24 35 21 30	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) < < < < < < < <	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 16 22 22 20 29 17 24	DIS- SOLVED (MG/L AS SO4) (00945) 2.6 3.3 2.9 5.0 4.1 4.5 5.2 4.9 3.5 3.1	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 4.1 5.0 3.9 5.5 5.2 6.9 4.8 5.1 4.4	RIDE, DIS- SOLVED (MG/L AS F) (00950) <.10 <.10 <.10 <.10 <.10 <.10 <.10	DIS- SOLVED (MG/L AS SIO2) (00955) 8.9 10 11 6.9 12 10 5.9 9.7 8.6 8.4	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 56 64 55 52 63 39 45 47 48 50	SUM OF CONSTITUENTS, DIS- SOLVED (MG/L) (70301) 56 56 52 43 52 52 52 41 53 42	DIS- SOLVED (TONS PER AC-FT) (70303) .08 .09 .07 .07 .09 .05 .06 .06
OCT 1997 09 NOV 05 DEC 11 JAN 1998 08 13 16 FEB 05 10 MAR 10 APR 14 MAY 05 JUN 02 JUL 17	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 20 27 27 24 35 21 30 27	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) <1 <1 <1 <1 <1 <1 <1 <1 <1	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 16 22 22 20 29 17 24 22	DIS- SOLVED (MG/L AS SO4) (00945) 2.6 3.3 2.9 5.0 4.1 4.5 5.2 4.9 3.5 3.1 5.2	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 4.1 5.0 3.9 5.5 5.2 6.9 4.8 5.1 4.4 3.9	RIDE, DIS- SOLVED (MG/L AS F) (00950) <.10 <.10 <.10 <.10 <.10 <.10 <.10 <.10	DIS- SOLVED (MG/L AS SIO2) (00955) 8.9 10 11 6.9 12 10 5.9 9.7 8.6 8.4 5.3	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 56 64 55 52 63 39 45 47 48 50	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 56 56 52 43 52 52 52 41 53 42 44	DIS- SOLVED (TONS PER AC-FT) (70303) .08 .09 .07 .07 .09 .05 .06 .06
OCT 1997 09 NOV 05 DEC 11 JAN 1998 08 13 16 FEB 05 10 MAR 10 APR 14 MAY 05 JUN 02 JUL	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) < < < < < < < <	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 16 22 22 20 29 17 24 22 31	DIS- SOLVED (MG/L AS SO4) (00945) 2.6 3.3 2.9 5.0 4.1 4.5 5.2 4.9 3.5 3.1 5.2	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 4.1 5.0 3.9 5.5 5.2 6.9 4.8 5.1 4.4 3.9	RIDE, DIS- SOLVED (MG/L AS F) (00950) <.10 <.10 <.10 <.10 <.10 <.10 <.10 <.10	DIS- SOLVED (MG/L AS SIO2) (00955) 8.9 10 11 6.9 12 10 5.9 9.7 8.6 8.4 5.3	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 56 64 55 52 63 39 45 47 48 50 49	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 56 56 52 43 52 52 52 41 53 42 44 40	DIS- SOLVED (TONS PER AC-FT) (70303) .08 .09 .07 .07 .09 .05 .06 .06 .07 .07

03170000 LITTLE RIVER AT GRAYSONTOWN, VA--Continued

		NITRO-	NITRO-	NITRO-	NITRO-	NITRO-				
	SOLIDS,	GEN,	GEN,	GEN,	GEN,AM-	GEN, AM-		NITRO-		PHOS-
	DIS-	NITRITE	NO2+NO3	AMMONIA	MONIA +	MONIA +	NITRO-	GEN	PHOS-	PHORUS
	SOLVED	DIS-	DIS-	DIS-	ORGANIC	ORGANIC	GEN,	DIS-	PHORUS	DIS-
	(TONS	SOLVED	SOLVED	SOLVED	TOTAL	DIS.	TOTAL	SOLVED	TOTAL	SOLVED
DATE	PER	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L
	DAY)	AS N)	AS N)	AS N)	AS N)	AS N)	AS N)	AS N)	AS P)	AS P)
	(70302)	(00613)	(00631)	(00608)	(00625)	(00623)	(00600)	(00602)	(00665)	(00666)
OGT 1005										
OCT 1997 09	16.1	<.010	.095	<.015	<.20	<.20			<.050	<.050
NOV	10.1	<.010	.095	<.015	<.20	<.20			<.050	<.050
	27.6	0.07	252	- 000	20	. 23	10	. 49	п 022	. 050
05 DEC	27.6	.027	.253	<.020	.20	. 43	.46	. 49	E.033	<.050
11	24.3	<.010	.309	<.020	<.10	<.10			<.050	<.050
JAN 1998	24.3	<.010	.309	<.020	<.10	<.10			<.050	<.050
	700	- 010	620	110	0 3	F1	0 0	1 1	1 (5	. 050
08	709	<.010	.628	.110 <.020	9.3	.51	9.9	1.1	1.65 <.050	<.050
13 16	58.2 124	<.010 <.010	.668 .622	<.020	.14 .91	<.10 .19	.81 1.5	.81	.186	<.050 <.050
	124	<.010	.022	<.020	.91	.19	1.5	.81	.186	<.050
FEB 05	357	<.010	.517	.069	1.6	. 25	2.1	.76	.414	<.050
10	105	<.010	.682	<.020	.12	.13	.80	.76	<.050	<.050
MAR	105	<.010	.002	<.020	.12	.13	.00	.01	<.050	<.050
MAR 10	120	<.010	. 463	.044	.49	.31	.96	.77	.084	<.050
APR	120	<.010	.403	.044	.49	. 31	.96	. / /	.084	<.050
14	56.1	.011	.236	.030	<.10	<.10			<.050	<.050
MAY	30.1	.011	.230	.030	<.10	<.10			<.050	<.050
05	94.0	<.010	.353	.027	<.10	<.10			<.050	<.050
JUN	94.0	<.010	. 3 3 3	.027	<.10	<.±0			<.030	<.030
02	55.4	.018	.407	.022	.17	.11	.57	.51	<.050	<.050
JUL	55.4	.010	.407	.022	. 1 /	. 11	.57	.51	<.050	<.050
17	26.5	<.010	.182	.024	.18	.15	.36	.33	<.050	<.050
AUG	20.5	<.010	.102	.024	.10	.15	. 30	. 33	<.050	<.050
04	18.9	.012	.244	<.020	.15	.10	.40	.35	<.050	<.050
SEP	10.9	.012	.477	\. ∪∠∪	.13	. 10	.40	. 33	·.030	~.050
04	21.4	.013	.097	.077	.19	<.10	. 28		<.050	<.050
04	21.4	.013	. 0 2 /	.077	. 1 2	×.±0	. 40		×.050	×.030

03170000 LITTLE RIVER AT GRAYSONTOWN, VA--Continued

DATE	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	ORGANIC DIS- SOLVED (MG/L AS C)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)	ANCE DATA INDICA- TOR
OCT 1997										
09 NOV	<.010	13	95	7.4	1.7	.50	5	1.4	65	1
05 DEC	.012	14	120	3.5	2.7	.20	5	2.2	92	1
11	.012	<5.0	82	5.9	1.3	.20	1	.44	14	10
JAN 1998										
08	.021	100	320	11	6.3	>17	6	82	79	1
13	<.010	14	58	<4.0	2.6	.30	1	.92	43	1
16 FEB	.016	25	91	4.4	2.6	1.0	125	396	83	1
05	.025	54	120	10	3.5	4.7	191	1520	73	10
10	.019	15	52	4.6	1.9	<.20	9	20	69	1
MAR										
10	.024	68	140	<4.0	3.3	3.8	106	264	90	1
APR	010	1.0		4 0	1 0	0.0	2	2.4	0.0	
14	<.010	10	63	<4.0	1.2	.20	3	3.4	82	1
MAY 05	<.010	18	48	7.6	1.7	.30	13	25	83	1
JUN	<.010	18	48	7.0	1./	.30	1.3	25	83	Τ.
02	.016	18	110	11	1.5	.40	12	11	97	10
JUL	.010	10	110	11	1.5	.40	12	11	91	10
17	<.010	17	110	7.7	1.5	.40	5	2.4	86	1
AUG		± '	110		2.5		3	2.1	0.0	-
04	.013	13	110	6.6	1.5	.40	5	1.7	79	1
SEP										
04	.013	16	110	7.7	1.6	.30	2	.68	72	30

^{*} The values listed under parameter code 99111 indicate the type of quality-assurance sample associated with each environmental sample, where 1 denotes none, 10 denotes a blank sample, and 30 denotes a replicate sample.

03171000 NEW RIVER AT RADFORD, VA

LOCATION.--Lat 37°08'30", long 80°34'10", Pulaski County, Hydrologic Unit 05050001, on left bank 2,000 ft downstream from bridge on U.S. Highway 11 at Radford, 5 mi downstream from Little River, and 5.5 mi downstream from Claytor Dam.

DRAINAGE AREA. -- 2,748 mi².

PERIOD OF RECORD.--October 1907 to September 1915, August 1939 to current year. Records for August 1898 to September 1907, published in WSP 27, 36, 48, 65, 83, 98, 128, 169, 205, 243, and 536, are unreliable and should not be used. Gage-height records collected at same site since 1895 are contained in reports of the National Weather Service.

REVISED RECORDS.--WSP 873: Drainage area. WSP 953: 1940-41. WSP 1305: 1908-12. See also PERIOD OF RECORD.

GAGE.--Water-stage recorder. Datum of gage is 1,712.16 ft above sea level. Prior to Aug. 30, 1939, nonrecording gage at highway bridge 2,000 ft upstream at datum 0.85 ft lower.

REMARKS.--Records good except for period of no gage-height record, Jan. 19-21, which is fair. Flow regulated since 1939 by Claytor Reservoir (station 03169000). Some additional regulation at low flow by dam and powerplant on Little River. U.S. Army Corps of Engineers satellite precipitation and gage-height telemeter at station. National Weather Service gage-height telemeter at station. Maximum discharge, 218,000 ft³/s, from rating curve extended above 76,000 ft³/s on basis of records for other stations on New River and flow over Claytor Dam, computed by Appalachian Power Company. Minimum gage height, 1.08 ft, Aug. 25, 27, 1944. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of July 16, 1916, reached a stage of 35.7 ft, discharge, $200,000 \text{ ft}^3/\text{s}$, at site and datum used by Geological Survey 1907-15, from reports of the National Weather Service.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 43,400 ft³/s, Apr. 20, gage height, 12.89 ft; minimum, 730 ft³/s, Jan. 2, gage height, 1.77 ft; minimum daily, 845 ft³/s, Dec. 7.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES DAY FEB OCT NOV DEC JAN MAR APR MAY JUN JUL AUG SEP 7 e5000 e3500 2.3 2.8 TOTAL MEAN MAX MIN -1613-11495+11999 -1109 -50+706 +302+1109 +151-302-151+454MEAN ‡ CFSM‡ .48 .55 .58 2.11 3.85 2.86 2.87 2.98 1.90 . 93 . 91 .47 TN. ± . 55 .62 . 67 2.43 4.01 3.29 3.20 3.44 2.12 1.07 1.04 . 52 CAL YR 1997 TOTAL MEAN MAX MTN MEAN± CFSM‡ 1.30 TN. ± 17.64

† Total change in contents, equivalent in cubic feet per second, per month, in Claytor Reservoir; provided by American Electric Power.

MIN

MEAN‡ 4651

CFSM‡ 1.69

IN. \$ 22.98

TOTAL

1697693 MEAN

MAX

WTR YR 1998

[‡] Adjusted for monthly change in contents.

e Estimated

03171000 NEW RIVER AT RADFORD, VA--Continued

STATISTI	ICS OF MO	NTHLY MEAN	DATA	FOR WATE	R YEARS 190	8 - 1915,	BY WATER	YEAR (WY)	[UNRE	GULATED]		
MEAN MAX (WY) MIN (WY)	OCT 2778 5958 1909 1666 1913	2549	DEC 4070 8505 1915 1801 1913	JAN 5088 8679 1915 2826 1912	5655	MAR 6047 9332 1913 3442 1910	APR 5261 7463 1911 2774 1910	MAY 4676 8512 1909 2544 1914	JUN 3964 6834 1910 1557 1914	JUL 2774 4479 1908 1618 1911	AUG 2334 4446 1908 1480 1914	SEP 2550 4571 1915 1327 1914
					YEARS 1908							
ANNUAL M HIGHEST LOWEST I HIGHEST LOWEST I ANNUAL S INSTANTA INSTANTA ANNUAL F ANNUAL F 10 PERCE 50 PERCE 90 PERCE	MEAN ANNUAL MANNUAL ME DAILY ME DAILY ME DAILY ME ANEOUS PE ANEOUS PE ANEOUS LC RUNOFF (C RUNOFF (C RUNOFF (C ENT EXCEE ENT EXCEE	MEAN AN AN AN MINIMUM AK FLOW AK STAGE W FLOW FFSM) NCHES) EDS EDS		3971 5522 2913 38400 550 729 a46200 a15. (c) 1. 19. 7360 2930 1500	Jan 1 Aug 2 Aug 2 bMay 2 0 bMay 2 45	1908 1914 2 1908 2 1911 0 1911 1 1909 1 1909						
STATISTI	ICS OF MO	NTHLY MEAN	DATA	FOR WATE	R YEARS 194	0 - 1998,	BY WATER	YEAR (WY)	[REGU	LATED, UNA	DJUSTED]	
MEAN MAX (WY) MIN (WY)	OCT 2708 7619 1990	NOV 3077 10300 1978 1156	DEC 3642 7426 1962 1144 1940	JAN 4431 9459 1995 1064 1940	FEB 5474 10590 1998 2437	MAR 6126 13130 1993	APR 5567 14490 1987 2203 1942	MAY 4559 8875 1973 1721 1941	JUN 3642	JUL 2789	AUG 2709 14170 1940 1081 1956	SEP 2484 9855 1989 1126 1968
MEAN MAX (WY) MIN (WY)	OCT 2708 7619 1990 1068 1989	NOV 3077 10300 1978 1156 1940	DEC 3642 7426 1962 1144 1940	JAN 4431 9459 1995 1064	FEB 5474 10590 1998 2437 1941	MAR 6126 13130 1993 2016 1988	APR 5567 14490 1987 2203 1942	MAY 4559 8875 1973 1721 1941	JUN 3642 9627 1992 1244 1941	JUL 2789 7545 1949 1208	AUG 2709 14170 1940 1081	2484 9855 1989 1126 1968
MEAN MAX (WY) MIN (WY) SUMMARY ANNUAL TANNUAL MIGHEST	OCT 2708 7619 1990 1068 1989 STATISTI FOTAL MEAN ANNUAL M	NOV 3077 10300 1978 1156 1940	DEC 3642 7426 1962 1144 1940 FOF	JAN 4431 9459 1995 1064 1940 1997 CA	FEB 5474 10590 1998 2437 1941 LENDAR YEAR	MAR 6126 13130 1993 2016 1988	APR 5567 14490 1987 2203 1942 FOR 1998 WA 1697693 4651	MAY 4559 8875 1973 1721 1941 TER YEAR	JUN 3642 9627 1992 1244 1941	JUL 2789 7545 1949 1208 1988 WATER Y	AUG 2709 14170 1940 1081 1956 EARS 1940 -	2484 9855 1989 1126 1968 1998
MEAN MAX (WY) MIN (WY) SUMMARY ANNUAL TANNUAL MIGHEST	OCT 2708 7619 1990 1068 1989 STATISTI FOTAL MEAN ANNUAL M	NOV 3077 10300 1978 1156 1940	DEC 3642 7426 1962 1144 1940 FOF	JAN 4431 9459 1995 1064 1940 1997 CA	FEB 5474 10590 1998 2437 1941 LENDAR YEAR	MAR 6126 13130 1993 2016 1988	APR 5567 14490 1987 2203 1942 FOR 1998 WA 1697693 4651	MAY 4559 8875 1973 1721 1941 TER YEAR	JUN 3642 9627 1992 1244 1941	JUL 2789 7545 1949 1208 1988 WATER Y 3925 5471 2151 105000	AUG 2709 14170 1940 1081 1956 EARS 1940 -	2484 9855 1989 1126 1968 1998
MEAN MAX (WY) MIN (WY) SUMMARY ANNUAL TANNUAL MIGHEST	OCT 2708 7619 1990 1068 1989 STATISTI FOTAL MEAN ANNUAL M	NOV 3077 10300 1978 1156 1940	DEC 3642 7426 1962 1144 1940 FOF	JAN 4431 9459 1995 1064 1940 1997 CA	FEB 5474 10590 1998 2437 1941 LENDAR YEAR	MAR 6126 13130 1993 2016 1988	APR 5567 14490 1987 2203 1942 OR 1998 WA 1697693 4651 37300 845	MAY 4559 8875 1973 1721 1941 TER YEAR	JUN 3642 9627 1992 1244 1941	JUL 2789 7545 1949 1208 1988 WATER Y 3925 5471 2151 105000	AUG 2709 14170 1940 1081 1956 EARS 1940 -	2484 9855 1989 1126 1968 1998 1978 1988 1940 1967
MEAN MAX (WY) MIN (WY) SUMMARY ANNUAL TANNUAL MIGHEST LOWEST AHIGHEST LOWEST IANNUAL S	OCT 2708 7619 1990 1068 1989 STATISTI FOTAL MEAN ANNUAL MEANUAL MEA	NOV 3077 10300 1978 1156 1940 CCS	DEC 3642 7426 1962 1144 1940 FOF	JAN 4431 9459 1995 1064 1940 1997 CA	FEB 5474 10590 1998 2437 1941 LENDAR YEAR	MAR 6126 13130 1993 2016 1988	APR 5567 14490 1987 2203 1942 FOR 1998 WA 1697693 4651 37300 845 926	MAY 4559 8875 1973 1721 1941 TER YEAR Apr 20 Dec 7 Dec 16	JUN 3642 9627 1992 1244 1941	JUL 2789 7545 1949 1208 1988 WATER Y 3925 5471 2151 105000 627 813	AUG 2709 14170 1940 1081 1956 EARS 1940 -	2484 9855 1989 1126 1968 1998 1978 1988 1940 1967 1988
MEAN MAX (WY) MIN (WY) SUMMARY ANNUAL T ANNUAL M HIGHEST LOWEST A HIGHEST LOWEST LOWES	OCT 2708 7619 1990 1068 1989 STATISTI FOTAL MEAN ANNUAL MEAN ANNUAL MEAN DAILY MEA DAILY MEA SEVEN-DAY	NOV 3077 10300 1978 1156 1940	DEC 3642 7426 1962 1144 1940 FOF	JAN 4431 9459 1995 1064 1940 1997 CA	FEB 5474 10590 1998 2437 1941 LENDAR YEAR	MAR 6126 13130 1993 2016 1988	APR 5567 14490 1987 2203 1942 FOR 1998 WA 1697693 4651 37300 845 926	MAY 4559 8875 1973 1721 1941 TER YEAR Apr 20 Dec 7 Dec 16	JUN 3642 9627 1992 1244 1941	JUL 2789 7545 1949 1208 1988 WATER Y 3925 5471 2151 105000 627 813	AUG 2709 14170 1940 1081 1956 EARS 1940 -	2484 9855 1989 1126 1968 1998 1978 1988 1940 1967 1988 1940
MEAN MAX (WY) MIN (WY) SUMMARY ANNUAL T ANNUAL M HIGHEST LOWEST A HIGHEST LOWEST I ANNUAL S INSTANTA	OCT 2708 7619 1990 1068 1989 STATISTI FOTAL MEAN ANNUAL MEAN ANNUAL MEAN DAILY MEA SEVEN-DAY ANEOUS PEANEOUS PE	NOV 3077 10300 1978 1156 1940 CCS	DEC 3642 7426 1962 1144 1940 FOF	JAN 4431 9459 1995 1064 1940 1303147 3570 13600 845 926	FEB 5474 10590 1998 2437 1941 LENDAR YEAR Mar 4 Dec 7 Dec 16	MAR 6126 13130 1993 2016 1988	APR 5567 14490 1987 2203 1942 FOR 1998 WA 1697693 4651 37300 845 926 43400 12.89 730	MAY 4559 8875 1973 1721 1941 TER YEAR Apr 20 Dec 7 Dec 16 Apr 20 Apr 20 Apr 20 Jan 2	JUN 3642 9627 1992 1244 1941	JUL 2789 7545 1949 1208 1988 WATER Y 3925 5471 2151 105000	AUG 2709 14170 1940 1081 1956 EARS 1940 -	2484 9855 1989 1126 1968 1998 1978 1988 1940 1967 1988 1940
MEAN MAX (WY) MIN (WY) SUMMARY ANNUAL T ANNUAL M HIGHEST LOWEST A HIGHEST LOWEST I ANNUAL S INSTANTA	OCT 2708 7619 1990 1068 1989 STATISTI FOTAL MEAN ANNUAL MEAN ANNUAL MEAN DAILY MEA SEVEN-DAY ANEOUS PEANEOUS PE	NOV 3077 10300 1978 1156 1940 CCS	DEC 3642 7426 1962 1144 1940 FOF	JAN 4431 9459 1995 1064 1940 1303147 3570 13600 845 926	FEB 5474 10590 1998 2437 1941 LENDAR YEAR Mar 4 Dec 7 Dec 16	MAR 6126 13130 1993 2016 1988	APR 5567 14490 1987 2203 1942 OR 1998 WA 1697693 4651 37300 845 926 43400 12.89 730 1.69	MAY 4559 8875 1973 1721 1941 TER YEAR Apr 20 Dec 7 Dec 16 Apr 20 Apr 20 Jan 2	JUN 3642 9627 1992 1244 1941	JUL 2789 7545 1949 1208 1988 WATER Y 3925 5471 2151 105000 627 813 218000 35.9 165 1.4	AUG 2709 14170 1940 1081 1956 EARS 1940 - Aug 14 Nov 19 Jul 6 Aug 14 Aug 25 3	2484 9855 1989 1126 1968 1998 1978 1988 1940 1967 1988 1940
MEAN MAX (WY) MIN (WY) SUMMARY ANNUAL T ANNUAL M HIGHEST LOWEST A HIGHEST LOWEST I ANNUAL S INSTANTA	OCT 2708 7619 1990 1068 1989 STATISTI FOTAL MEAN ANNUAL MEAN ANNUAL MEAN DAILY MEA SEVEN-DAY ANEOUS PEANEOUS PE	NOV 3077 10300 1978 1156 1940 CCS	DEC 3642 7426 1962 1144 1940 FOF	JAN 4431 9459 1995 1064 1940 1303147 3570 13600 845 926	FEB 5474 10590 1998 2437 1941 LENDAR YEAR Mar 4 Dec 7 Dec 16	MAR 6126 13130 1993 2016 1988	APR 5567 14490 1987 2203 1942 OR 1998 WA 1697693 4651 37300 845 926 43400 12.89 730 1.69 22.98	MAY 4559 8875 1973 1721 1941 TER YEAR Apr 20 Dec 7 Dec 16 Apr 20 Apr 20 Jan 2	JUN 3642 9627 1992 1244 1941	JUL 2789 7545 1949 1208 1988 WATER Y 3925 5471 2151 105000 627 813 218000 35.9 165 1.4 19.4	AUG 2709 14170 1940 1081 1956 EARS 1940 - Aug 14 Nov 19 Jul 6 Aug 14 Aug 25 3	2484 9855 1989 1126 1968 1998 1978 1988 1940 1967 1988 1940
MEAN MAX (WY) MIN (WY) SUMMARY ANNUAL T ANNUAL M HIGHEST LOWEST A HIGHEST LOWEST I ANNUAL S INSTANTA	OCT 2708 7619 1990 1068 1989 STATISTI FOTAL MEAN ANNUAL MEAN ANNUAL MEAN DAILY MEA SEVEN-DAY ANEOUS PEANEOUS PE	NOV 3077 10300 1978 1156 1940 CCS MEAN CAN CAN CAN CAN CAN CAN CAN CAN CAN C	DEC 3642 7426 1962 1144 1940 FOF	JAN 4431 9459 1995 1064 1940 1303147 3570 13600 845 926	FEB 5474 10590 1998 2437 1941 LENDAR YEAR Mar 4 Dec 7 Dec 16	MAR 6126 13130 1993 2016 1988	APR 5567 14490 1987 2203 1942 OR 1998 WA 1697693 4651 37300 845 926 43400 12.89 730 1.69	MAY 4559 8875 1973 1721 1941 TER YEAR Apr 20 Dec 7 Dec 16 Apr 20 Apr 20 Jan 2	JUN 3642 9627 1992 1244 1941	JUL 2789 7545 1949 1208 1988 WATER Y 3925 5471 2151 105000 627 813 218000 35.9 165 1.4	AUG 2709 14170 1940 1081 1956 EARS 1940 - Aug 14 Nov 19 Jul 6 Aug 14 Aug 25 3	2484 9855 1989 1126 1968 1998 1978 1988 1940 1967 1988 1940

a Site and datum then in use.
b Also Mar. 27, 1913.
c Not determined.

1070

90 PERCENT EXCEEDS

1030

1180

03173000 WALKER CREEK AT BANE, VA

LOCATION.--Lat $37^{\circ}16^{\circ}05^{\circ}$, long $80^{\circ}42^{\circ}35^{\circ}$, Giles County, Hydrologic Unit 05050002, on left bank at Bane, 0.2 mi downstream from bridge on State Highway 100, 0.2 mi downstream from Sugar Run, and at mile 7.9.

DRAINAGE AREA. -- 305 mi².

PERIOD OF RECORD. -- March 1938 to current year.

REVISED RECORDS.--WSP 1143: 1939(M), 1940, 1944, 1946. WSP 1305: 1938(M).

GAGE.--Water-stage recorder. Datum of gage is 1,665.92 ft above sea level. Prior to Aug. 1, 1938, nonrecording gage at same site and datum.

REMARKS.--Records good except for period with ice effect Dec. 30 to Jan. 1, which is fair. U.S. Army Corps of Engineers satellite gage-height telemeter at station. Maximum discharge, 25,000 ft³/s, from rating curve extended above 7,200 ft³/s on basis of slope-area measurements at gage heights 16.50 ft and 19.28 ft. Minimum discharge, 15 ft³/s, Dec. 21, 1958, gage height, 2.42 ft, result of freezeup. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES OUTSIDE PERIOD OF RECORD.—Flood in September 1878 reached a stage of about 23.5 ft, discharge, 40,400 ft³/s, from rating curve extended as explained above.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 4,000 ft³/s and maximum (*):

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Feb. 5	0100	4,010	9.13	Apr. 17	1630	4,190	9.27
Feb. 18	0400	4,670	9.63	Apr. 20	0130	*7,570	*11.59
Mar. 21	0230	5.470	10.22				

Minimum discharge, 31 ft³/s, Oct. 16, gage height, 2.79 ft.

					Di	AILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	42	49	50	e59	576	630	311	391	463	116	57	42
2	38	53	51	57	489	551	295	1250	381	115	58	42
3	36	54	55	64	502	468	265	922	322	104	56	41
4	36	58	57	71	2430	404	314	1170	305	98	53	41
5	36	59	54	92	2980	351	358	1390	324	97	51	40
6	36	55	52	141	1650	310	330	1030	301	91	51	40
7	35	52	51	195	1160	278	314	837	262	90	50	40
8	35	51	50	2100	985	313	295	977	229	92	80	40
9	35	50	49	1090	973	838	583	1120	212	88	70	39
10	34	50	50	561	983	1140	1350	946	241	97	76	38
11	33	50	52	366	987	827	905	1030	326	89	81	38
12	33	49	55	278	1140	652	690	968	284	83	86	38
13	32	48	58	254	1220	524	562	820	253	80	70	38
14	33	52	55	231	955	465	479	686	228	77	61	37
15	32	53	51	231	752	406	424	579	246	75	60	37
16	32	54	49	527	644	354	374	488	345	75	70	37
17	33	55	47	651	1110	319	1960	423	267	72	75	37
18	35	52	48	471	3380	314	1790	363	229	69	80	37
19	36	50	48	363	1730	1570	2660	317	208	67	78	37
20	36	48	48	308	1260	2110	4810	283	218	65	64	37
21	36	51	47	260	1030	3610	1970	273	199	63	58	41
22	36	61	54	230	846	1710	1260	280	177	62	54	64
23	36	67	60	391	772	1130	962	319	165	65	52	65
24	37	65	76	801	881	866	788	1100	151	66	51	62
25	45	59	87	669	814	700	647	1200	141	66	49	50
26	49	53	102	504	716	589	544	813	131	67	48	46
27	63	50	97	427	669	507	471	1090	122	65	47	44
28	57	49	87	739	653	448	419	1350	115	64	46	43
29	56	48	80	961		403	368	851	111	61	44	42
30	51	49	e70	894		361	334	639	109	59	43	46
31	47		e62	732		327		560		58	40	
TOTAL	1211	1594	1852	14718	32287	23475	26832	24465	7065	2436	1859	1279
MEAN	39.1	53.1	59.7	475	1153	757	894	789	236	78.6	60.0	42.6
MAX	63	67	102	2100	3380	3610	4810	1390	463	116	86	65
MIN	32	48	47	57	489	278	265	273	109	58	40	37
CFSM	.13	.17	.20	1.56	3.78	2.48	2.93	2.59	. 77	. 26	.20	.14
IN.	.15	.19	. 23	1.80	3.94	2.86	3.27	2.98	.86	.30	.23	.16

e Estimated.

03173000 WALKER CREEK AT BANE, VA--Continued

STATISTICS OF MON	THLY MEAN	DATA FO	OR WATER	YEARS	1938 -	1998.	BY V	JATER	YEAR	(WY)

38

						,		(,				
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	129	186	318	450	607	702	550	421	242	141	129	98.8
MAX	721	737	941	1191	1577	1800	1806	1044	1125	735	759	639
(WY)	1990	1980	1973	1996	1957	1955	1987	1971	1992	1938	1949	1989
MIN	34.7	43.2	44.9	44.8	95.6	108	126	115	60.6	41.6	33.7	35.6
(WY)	1964	1956	1956	1956	1942	1988	1986	1941	1988	1988	1988	1955
SUMMARY	7 STATIST	rics	FOR	1997 CALE	NDAR YEAR	F	OR 1998	WATER YEAR		WATER YE	ARS 1938	- 1998
ANNUAL	TOTAL			86785			139073					
ANNUAL	MEAN			238			381			329		
HIGHEST	C ANNUAL	MEAN								553		1949
LOWEST	ANNUAL N	/IEAN								135		1988
HIGHEST	DAILY N	1EAN		4060	Mar 4		4810	Apr 20		14100	Jun	5 1992
LOWEST	DAILY ME	EAN		29	Sep 23		32	a0ct 13		24	bSep 2	7 1964
ANNUAL	SEVEN-DA	MUMINIM YA		33	Oct 11		33	Oct 11		28	Sep 2	2 1964
INSTANT	CANEOUS E	PEAK FLOW					7570	Apr 20		25000	Jun	5 1992
INSTANT	TANEOUS E	PEAK STAGE					11.	.59 Apr 20		19.28	Jun	5 1992
INSTANT	CANEOUS I	LOW FLOW					31	Oct 16		c15	Dec 2	1 1958
ANNUAL	RUNOFF ((CFSM)		.7	8		1.	. 25		1.08		
ANNUAL	RUNOFF ((INCHES)		10.5	8		16.	. 96		14.65		
10 PERC	CENT EXC	EEDS		585			1000			737		
50 PERC	CENT EXCE	EEDS		113			97			163		

40

49

90 PERCENT EXCEEDS

a Also Oct. 15, 16, 1997.
b Also Sept. 28, 1964.
c Result of freezeup.

03175500 WOLF CREEK NEAR NARROWS, VA

LOCATION.--Lat 37°18'20", long 80°51'00", Giles County, Hydrologic Unit 05050002, on right bank at downstream side of bridge on State Highway 724, 2.8 mi southwest of Narrows, and at mile 3.5.

DRAINAGE AREA. -- 223 mi².

PERIOD OF RECORD.--July 1908 to September 1916, March 1938 to September 1995 (discontinued as a continuous-record station; converted to a crest-stage partial-record station), 1997.

REVISED RECORDS.--WSP 973: 1940-41(M). WSP 1235: 1912-13, 1915-16. WSP 1505: 1940, monthly and yearly runoff. WSP 1725: 1913(M), 1915-16(M), 1941 calendar year runoff.

GAGE.--Water-stage recorder. Datum of gage is 1,583.83 ft above sea level. July 22, 1908, to Sept. 30, 1916, and Mar. 31 to Nov. 7, 1938, nonrecording gage at same site and datum.

REMARKS.--Records good except those for period with ice effect Dec. 31, and period of no gage-height record, Sept. 4-10, which are fair. U.S. Army Corps of Engineers satellite gage-height telemeter at station. Maximum discharge, 12,900 ft³/s, from rating curve extended above 5,700 ft³/s on basis of contracted-opening measurement of peak flow. Minimum discharge, 8.8 ft³/s, result of freezeup. Minimum gage height, 2.19 ft, Dec. 24, 1943. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 2,200 ${\rm ft}^3/{\rm s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 8	1000	3,230	7.64	Mar. 21	1030	3,330	7.73
Feb. 4	2000	2,370	6.84	Apr. 17	1300	3,570	7.93
Feb. 18	0530	*4,070	*8.34	Apr. 20	0030	2,780	7.23

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Minimum discharge, 24 ft³/s, Oct. 8-16, gage height, 2.48 ft.

			·		Di	AILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	30	35	39	49	341	844	321	305	442	143	63	36
2	28	37	45	47	317	677	322	536	361	117	68	35
3	27	42	49	56	425	563	284	502	307	101	60	34
4	26	48	48	63	1780	470	340	532	322	91	54	33
5	26	48	47	88	1690	400	418	632	355	87	51	e33
6	26	44	46	174	1030	355	424	542	336	84	48	e33
7	25	41	43	237	772	320	399	479	289	78	46	e32
8	25	40	38	1810	666	447	369	554	255	77	57	e34
9	24	38	40	985	709	1140	918	709	236	104	99	e40
10	24	38	41	569	810	1150	1560	655	366	97	123	45
11	24	38	45	387	893	827	1150	747	566	79	207	47
12	25	38	55	295	1240	650	868	712	490	71	128	45
13	24	38	54	274	1270	536	689	613	438	67	86	44
14	24	39	49	240	970	471	585	516	378	66	69	43
15	24	40	43	226	754	409	509	438	389	63	64	38
16	25	43	36	425	655	363	449	371	358	59	83	37
17	25	43	37	449	1360	333	2190	324	293	57	133	37
18	25	40	38	371	3410	328	1730	280	255	57	141	37
19	26	37	37	308	2030	1290	1490	245	312	55	113	41
20	26	36	36	275	1520	1510	2280	215	342	56	91	50
21	26	39	36	229	1240	2970	1390	233	268	55	79	49
22	26	43	46	199	1010	1800	1000	246	236	57	70	56
23	26	48	66	287	923	1130	785	444	220	60	63	67
24	27	48	70	473	998	847	637	1190	204	68	58	61
25	30	46	70	442	851	670	526	1090	172	69	54	56
26	36	40	76	362	778	570	450	812	149	66	50	52
27	46	38	76	318	783	498	395	1020	133	62	47	49
28	48	38	72	397	904	452	351	1050	121	60	42	47
29	42	37	64	416		404	310	754	114	58	40	43
30	37	37	53	431		368	286	589	112	56	38	52
31	35		e50	390		335		584		58	36	
TOTAL	888	1217	1545	11272	30129	23127	23425	17919	8819	2278	2361	1306
MEAN	28.6	40.6	49.8	364	1076	746	781	578	294	73.5	76.2	43.5
MAX	48	48	76	1810	3410	2970	2280	1190	566	143	207	67
MIN	24	35	36	47	317	320	284	215	112	55	36	32
CFSM	.13	.18	.22	1.63	4.83	3.35	3.50	2.59	1.32	.33	.34	.20
IN.	.15	.20	.26	1.88	5.03	3.86	3.91	2.99	1.47	.38	.39	.22

e Estimated.

03175500 WOLF CREEK NEAR NARROWS, VA--Continued

	STATISTICS OF MONTHLY	MEAN DATA FOR	WATER YEARS	1908-1916, 1938-1995	. 1997-1998.	BY WATER YEAR	(WY)
--	-----------------------	---------------	-------------	----------------------	--------------	---------------	------

								•	-	-		
	OCT	NOV	DEC	JAN	FEB	MA	R APR	MA	Y JUN	JUL	AUG	SEP
MEAN	111	164	309	440	561	65	5 490	37	2 209	136	113	78.2
MAX	621	754	850	1128	1469	178	1728	105	9 748	964	512	576
(WY)	1990	1978	1973	1957	1957	195	1987	197	1 1992	1916	1916	1989
MIN	21.4	28.6	31.1	50.0	122	11	3 120	99.	4 49.3	32.9	26.8	27.4
(WY)	1964	1940	1940	1940	1942	198	1995	194	1 1914	1988	1988	1964
SUMMARY	STATIST:	ICS	FOR 1	L997 CALE	NDAR YE	AR	FOR 1998	WATER Y	EAR	WATER Y	EARS 1908	
												- 1995
											1997	- 1998
ANNUAL	TOTAL			81800			124286					
ANNUAL	MEAN			224			341			301		
HIGHEST	C ANNUAL N	MEAN								475		1972
LOWEST	ANNUAL M	EAN								126		1988
HIGHEST	DAILY M	EAN		2950	Mar	4	3410	Feb	18	8380	Apr	5 1977
LOWEST	DAILY MEA	AN		20	aSep	6	24	b0ct	9	14	cAug :	25 1995
ANNUAL	SEVEN-DAY	Y MINIMUM		21	Sep	3	24	Oct	9	17	Sep :	13 1964
INSTANT	CANEOUS PI	EAK FLOW					4070	Feb	18	12900	Jan :	29 1957
INSTANT	TANEOUS PI	EAK STAGE					8	.34 Feb	18	d12.5	5 Jan :	29 1957
INSTANT	CANEOUS LO	OW FLOW					24	fOct	. 8	g8.8	Dec :	25 1953
ANNUAL	RUNOFF (CFSM)		1.0	0		1	.53		1.3	5	
ANNUAL	RUNOFF (INCHES)		13.6	5		20	.73		18.3	6	
10 PERC	CENT EXCE	EDS		507			910			689		
50 PERC	CENT EXCE	EDS		129			113			155		
90 PERC	CENT EXCE	EDS		26			36			39		

a Also Sept. 7, 8, 1997.
b Also Oct. 10, 11, 13-15, 1997.
c Also Aug. 26, 1995.
d From floodmark in well; floodmark on downstream side of bridge was 13.8 ft. f Also Oct. 9-16, 1997.
g Result of freezeup.

03176500 NEW RIVER AT GLEN LYN, VA

LOCATION.--Lat 37°22'22", long 80°51'39", Giles County, Hydrologic Unit 05050002, on right bank 90 ft upstream from bridge on U.S. Highway 460 at Glen Lyn, 0.3 mi upstream from East River, and 6.3 mi downstream from Wolf Creek.

DRAINAGE AREA. -- 3,768 mi².

PERIOD OF RECORD. -- August 1927 to current year.

REVISED RECORDS.--WSP 758: Drainage area. WSP 1305: 1928(M), 1930(M).

GAGE.--Water-stage recorder. Datum of gage is 1,490.11 ft above sea level. Aug. 11, 1927, to Oct. 16, 1934, on left bank opposite present site at same datum, and Oct. 17, 1934, to June 16, 1939, on left bank at site 200 ft upstream at same datum.

REMARKS.--No estimated daily discharges. Records good. Flow regulated since 1939 by Claytor Reservoir (station 03169000) 55 mi upstream from station. Water withdrawn by American Electric Power at gage. U.S. Army Corps of Engineers satellite gage-height telemeter at station. Maximum discharge, 226,000 $\rm ft^3/s$, from rating curve extended above 89,000 $\rm ft^3/s$ on basis of slope-area measurement of peak flow. Minimum gage height, 2.10 ft, Sept. 8, 1930. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, $56,700 \text{ ft}^3/\text{s}$, Apr. 20, gage height, 12.93 ft; minimum, $789 \text{ ft}^3/\text{s}$, Sept. 16, gage height, 2.49 ft; minimum daily, $868 \text{ ft}^3/\text{s}$, Sept. 16.

		DIS	CHARGE, CU	BIC FEET	PER S		WATER Y MEAN			R 1997 TO	SEPTEMI	BER 1998		
DAY	OCT	NOV	7 DEC	JA	N	FEB	MAR	i	APR	MAY	JUN	JUL	AUG	SEP
1 2 3	1800 1910 1890	2900 1440	1120	114	0	6920 9110 1400	7850 8090 8810	6	390 540 460	8300 9210 9570	7720 6640 7120	3320 3530 5080	2150 2060 2100	962 1000 1160
4 5	1550 1200	1280 2730 2670	1070	119	0 1	5200 5400	7220 7030	83	350 550	12600 15000	6820 9870	3560 2510	2030 1790	1670 1380
6 7 8	1290 1350 1270	2670 5390 5150	1020	321	0 1	4100 8300 5800	7250 6090 7420	8:	350 220 990	15300 13100 12500	8920 4220 6030	3070 3070 2930	1670 1550 1740	1310 961 943
9 10	1320 1300	1730 1530	1050	3510	0 1	4800 2500	7460 15900	7	440 000	15400 13800	6040 5960	2930 2930 2890	4990 3320	870 918
11 12 13	1280 1180 1230	1580 1500 1850	1150	674	0 1	4300 3100 2600	14800 9410 9910	10	380 500 060	15800 18700 16100	10700 10700 9430	2850 2670 2380	3020 2670 2580	1190 1430 950
14 15	1330 1480	1530 1640	1110	666	0 1	3300 4200	8790 5310	78	310 080	15100 15100 12500	6870 6120	2540 2530	2180 2530	956 942
16 17 18	1210 1110 1100	1860 5620 2930	1030	866	0 1	0900 4200 2800	4180 6950 7310	119	220 900 300	8720 7330 7770	7720 6890 6280	2500 2320 2520	2630 9520 6620	868 884 905
19 20	1120 1150	1660 1430	1010	445	0 3	0200 9900	13200 19200	20:	300 700	6330 6030	5530 5580	2480 2170	4160 2760	1590 1520
21 22 23	1240 1600 1180	1450 1670 1880	1090	448	0 1	7200 6100 5700	43300 30000 19400	19!	900 500 500	5760 5750 7030	5230 4920 4480	1930 1870 2100	2360 2070 1810	930 1030 1610
24 25	1610 1260	1850 1260	1160	499	0 1	4000 2300	16400 12700	124	400 500	10100 13500	3250 3820	2000 2050	1970 1940	1730 1130
26 27 28	1170 1950 1790	1100 1060 990	1780	901	0	0500 9910 9950	10900 9700 8630	70	500 060 710	10700 10600 15500	4390 4400 3620	2280 1960 2440	2800 1700 1580	1150 1090 941
29 30 31	2250 1980 1860	1070 1050 	2380 2760	935 898	0	 	7810 5860 8540	7 (6 !	900 	13100 9340 7300	3550 3270 	2500 2400 2260	1530 1530 1010 916	870 934
TOTAL MEAN	44960 1450	62470 2082	1305	793	8 1	4690 5520	355420 11470		590	347840 11220	186090 6203	81640 2634	81756 2637	33824 1127
MAX MIN (†)	2250 1100 -1613	5620 990 -11495	962 +11999	114 -110	0 9	2800 6920 -50	43300 4180 +706	4:	700 350 302	18700 5750 +1109	10700 3250 +151	5080 1870 -302	9520 916 -151	1730 868 +454
(‡) MEAN≠ CFSM≠ IN.≠	13593 1837 .49 .56	10043 2034 .54 .60	1 2125 .56		7 1 L 4	9022 5845 1.21 1.38	13522 11924 3.16 3.65	120	312 031 19 56	12950 11674 3.10 3.57	12976 6641 1.76 1.97	16585 3159 .84 .97	16745 3173 .84 .97	16042 1677 .45 .50
CAL YR WTR YR	1997	TOTAL TOTAL	1521313 2263032	MEAN	4168 6200	MAX MAX	25800 48700	MIN MIN	885 868	3.57 MEAN≠ MEAN≠	4584	.97 CFSM≠ 1.22 CFSM≠ 1.76	IN.≠	16.52 23.93

[†] Total change in contents, equivalent in cubic feet per second, per month, in Claytor Reservoir; provided by American Electric Power

American Electric Power.

‡ Total water withdrawal, equivalent in cubic feet per second, per month, by power plant; provided by American Electric Power.

 $[\]neq$ Adjusted for monthly change in contents and water withdrawal.

03176500 NEW RIVER AT GLEN LYN, VA--Continued

	002/0000 1		0.		, ,,,,,				
STATISTICS OF MONTHLY MEA	N DATA FOR WATER	YEARS 1928	- 1938,	BY WATER	YEAR (WY)	[UNREGU	JLATED]		
OCT NOV	DEC JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN 4319 4112	4543 6919	6141	7665	7007	5225	3920	3322	3436	3343
MAX 11250 9016	7798 13770	10980	13050	11390	7093	8351	7956	8211	10840
MEAN 4319 4112 MAX 11250 9016 (WY) 1938 1930 MIN 1094 1249 (WY) 1931 1932	1928 1937 1685 1795 1934 1934	1936 1494	1936 3307	7007 11390 1936 3899 1930	5225 7093 1933 2491 1934	1929	1938	1928	1928
MIN 1094 1249	1685 1795		3307	3899	2491	1908	1206	1330	1145
(WY) 1931 1932	1934 1934	1934	1931	1930	1934	1930	1930	1930	1932
SUMMARY STATISTICS	WATER	YEARS 1928 -	1938						
ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS	4992 6859 3208 57600 820 914 99000 16. 770 1. 17. 9340 3800 1520	Oct 3 Sep 8 Sep 17 Oct 3 75 Oct 3 Sep 8	1930 1932 1929 1929						
STATISTICS OF MONTHLY MEA			- 1998,	BY WATER	YEAR (WY)	[REGULA	ATED, UNADJ	USTED]	
OCT NOV	DEC JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN 3228 3761	4724 6016	7565	8485	7486	6020	4517	3285	3199	2861
	10910 13290					12860	9784	16410	11500
(WY) 1990 1978	1949 1996 1305 1489	1957 3304	1993	1987	1984	1992	1949	1940	1989
MIN 1204 1258	1305 1489	3304	2407	2673	2397	1741	1390	1267	1127
(WY) 1989 1982	1998 1966			1986	1941	1988	1988	1981	1998
SUMMARY STATISTICS	FOR 1997 CA	LENDAR YEAR		FOR 1998 V	WATER YEAR		WATER YE	ARS 193	9 - 1998
ANNUAL TOTAL	1521313			2263032					
ANNUAL MEAN	4168			6200			5082		
HIGHEST ANNUAL MEAN							7424		1949
LOWEST ANNUAL MEAN							2626		1988
HIGHEST DAILY MEAN	25800	Mar 4		48700	Apr 20		126000	Αιια	15 1940
LOWEST DAILY MEAN	005	Aug 28		868	Sep 16		787		8 1988
ANNUAL SEVEN-DAY MINIMUM		Aug 28 Dec 3		991	Sep 12		837		5 1988
INSTANTANEOUS PEAK FLOW	2000	200 3		56700	Apr 20		226000	Διια	14 1940
					93 Apr 20		226000 27.50	Aug	14 1940
INSTANTANEOUS FEAR STAGE				789	Sep 16		697	.Tul	5 1988
ANNITAL PUNCES (CECM)	1	11		1.6	<u>-</u> -		1.35		3 1700
ANNITAL DINOFF (CFSM)	15	0.2		20 3	3.4		18.32		
10 DERCENT EXCEEDS	9020	.02		22.3 14500	<i>J</i> 1		9760		
50 DEPOENT EXCEEDS	2020			3400			3710		
INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	1120			1070			1560		
JO IENCENI ENCEEDS	1120			10,0			1300		

03176500 NEW RIVER AT GLEN LYN, VA

LOCATION.--Lat $37^{\circ}22^{\circ}22^{\circ}$, long $80^{\circ}51^{\circ}39^{\circ}$, Giles County, Hydrologic Unit 05050002, on right bank 90 ft upstream from bridge on U.S. Highway 460 at Glen Lyn, 0.3 mi upstream from East River, and 6.3 mi downstream from Wolf Creek.

DRAINAGE AREA.--3,768 mi².

REMARKS.--Analyzed for pesticide schedules A and B, only detected compounds reported.

PERIOD OF RECORD.--Water years 1931, 1950, 1952, 1955-56, 1965-1995, 1997-98, discontinued.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: April 1968 to September 1988. WATER TEMPERATURE: October 1964 to September 1988.

DATE	TIME	GAGE HEIGHT (FEET) (00065)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (µS/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	E. COLI WATER WHOLE TOTAL UREASE (COL / 100 ML) (31633)
OCT 1997												
06	0930	2.83	1360	192	8.2	20.0	19.9	728	8.1	93	K7	20
NOV 12	1145	3.04	1780	189	8.0	8.5	9.5	724	10.4	96		к3
DEC	1113	3.01	1700	100	0.0	0.5	5.5	721	10.1	50		105
08	1200	2.58	995	234	8.5	5.5	3.3	725	13.6	107	K1	K3
JAN 1998												
05	1115	2.88	1450	193	8.0	9.0	4.6	727	10.4	84	24	K18
08	1515	8.50	24800	111	7.5	11.5	8.9	702	9.3	87	>600	>800
FEB	1145	0 01	00000						10.0	100	420	200
06	1145	8.31	23700	116	7.4	7.5	4.4	715	12.2	100	430	390
19	1200	9.24	29200	107	7.4	11.5	5.8	715	11.4	97	250	K120
26 MAR	1245	5.30	8830	112	7.6	12.0	7.1	722	10.2	89	83	K41
24	0945	6.86	16200	116	7.6	7.0	6.4	724	9.2	79	73	93
APR	0943	0.00	10200	110	7.0	7.0	0.4	724	9.2	19	73	93
22	0845	7.64	20200	122	7.3	15.5	12.6	719	9.6	96	1000	770
30	1015	4.66	6080	129	7.9	19.5	14.4	722	8.7	90	43	K18
MAY												
13	0845	6.82	16000	115	7.6	15.5	15.4	721	7.9	84	220	200
JUN												
09	0845	4.78	6560	140	7.9	15.5	18.8	715	9.3	106	120	160
JUL												
16	1000	3.51	2700	159	8.1	26.0	25.4	720	8.3	108	K63	K45
AUG												
05	0915	3.13	1950	167	8.6	21.5	24.3	726	8.5	107	16	45
SEP 08	0845	2.51	910	188	8.3	21.0	23.7	715	8.0	101	23	26
08	0845	∠.51	910	T 8 8	8.3	Z1.U	43.7	/15	8.0	101	23	26

K Results based on colony count outside the acceptance range (non-ideal colony count).

03176500 NEW RIVER AT GLEN LYN, VA--Continued

DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB DISSOLV FLD. AS CACO3 (MG/L) (00904)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM PERCENT (00932)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)
OCT 1997	7 78	18	17	8.5	6.5	15	.3	1.9	73	<1	60	20
NOV 12	76	17	17	8.1	6.8	16	.3	1.9	72	<1	60	20
DEC 08	92	29	22	9.1	8.3	16	. 4	2.0	78		65	32
JAN 1998	8									<1		
05 08	77 49	13 9	17 13	8.1 4.1	7.5 4.8	17 17	. 4	1.6 1.8	78 49	<1 <1	64 40	18 10
FEB 06	42	5	11	3.7	4.4	18	.3	1.5	45	<1	37	8.1
19	42	7	11	3.8	4.0	16	.3	1.3	43	<1	35	6.8
26	46	11	11	4.1	3.6	14	. 2	1.3	42	<1	35	7.7
MAR 24	49	9	12	4.3	3.2	12	.2	1.1	48	<1	42	6.6
APR 22	52	5	13	4.5	3.1	11	. 2	1.2	56	<1	46	6.8
30 MAY	56	9	14	5.1	3.2	11	. 2	1.4	57	<1	47	8.6
13 JUN	49	7	13	4.4	2.9	11	.2	1.2	52	<1	43	5.7
09 JUL	55	7	13	5.4	3.3	11	. 2	1.3	59	<1	49	8.1
16 AUG	64	13	15	6.6	3.9	11	. 2	1.5	63	<1	52	9.8
05 SEP	68	15	15	7.2	4.9	13	.3	1.5	65	<1	53	12
08	76	16	17	8.0	5.5	13	.3	1.8	73	<1	60	16
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)
DATE OCT 199	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	DIS- SOLVED (TONS PER AC-FT)	DIS- SOLVED (TONS PER DAY)	GEN, NITRITE DIS- SOLVED (MG/L AS N)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	GEN, AMMONIA DIS- SOLVED (MG/L AS N)	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)
	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	DIS- SOLVED (TONS PER AC-FT)	DIS- SOLVED (TONS PER DAY)	GEN, NITRITE DIS- SOLVED (MG/L AS N)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	GEN, AMMONIA DIS- SOLVED (MG/L AS N)	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)
OCT 1997	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)
OCT 199° 06 NOV 12 DEC 08	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 7 6.3 6.1	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)
OCT 1997 06 NOV 12 DEC 08 JAN 1998	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 7 6.3 6.1	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302) 417	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) <.20
OCT 1997 06 NOV 12 DEC 08 JAN 1998 05 08 FEB	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 7 6.3 6.1 6.9 8 9.0 5.9	RIDE, DIS- SOLVED (MG/L AS F) (00950) .11 .12 <.10 <.10	DIS- SOLVED (MG/L AS SIO2) (00955) 4.9 6.3 3.8 3.7 5.5	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 114 117 133 109 77	SUM OF CONSTITUENTS, DIS- SOLVED (MG/L) (70301) 104 105 129 106 71	DIS- SOLVED (TONS PER AC-FT) (70303) .16 .16 .18	DIS- SOLVED (TONS PER DAY) (70302) 417 561 357 427 5160	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 .014 <.010 <.010 <.010	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .581 .810 1.51 .419 .543	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.020 <.020 <.020	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .21 .15 <.10 .12 1.2	GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) <.20 .13 <.10 <.10 .15
OCT 1997 06 NOV 12 DEC 08 JAN 1998 05 08 FEB 06	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 7 6.3 6.1 6.9 8 9.0 5.9 6.8	RIDE, DIS- SOLVED (MG/L AS F) (00950) .11 .12 <.10 <.10	DIS- SOLVED (MG/L AS SIO2) (00955) 4.9 6.3 3.8 3.7 5.5	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 114 117 133 109 77	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 104 105 129 106 71	DIS- SOLVED (TONS PER AC-FT) (70303) .16 .16 .18 .15 .10	DIS- SOLVED (TONS PER DAY) (70302) 417 561 357 427 5160	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 .014 <.010 <.010 <.010 <.010	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .581 .810 1.51 .419 .543	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.020 <.020 <.020 .066	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .21 .15 <.10 .12 1.2 .36	GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) <.20 .13 <.10 <.15 .17
OCT 199° 06 NOV 12 DEC 08 JAN 1998 05 08 FEB 06	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 7 6.3 6.1 6.9 8 9.0 5.9 6.8 6.4	RIDE, DIS- SOLVED (MG/L AS F) (00950) .11 .12 <.10 <.10 <.10	DIS- SOLVED (MG/L AS SIO2) (00955) 4.9 6.3 3.8 3.7 5.5	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 114 117 133 109 77 71 67	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 104 105 129 106 71 68 64	DIS- SOLVED (TONS PER AC-FT) (70303) .16 .16 .18 .15 .10	DIS- SOLVED (TONS PER DAY) (70302) 417 561 357 427 5160 4550 5280	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 .014 <.010 <.010 <.010 <.010 <.010	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .581 .810 1.51 .419 .543 .811 .682	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.020 <.020 <.020 .066 .027	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .21 .15 <.10 .12 1.2 .36 .25	GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) <.20 .13 <.10 <.10 .15 .17 .13
OCT 199° 06 NOV 12 DEC 08 JAN 1998 05 8 FEB 06 19 26 MAR	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 7 6.3 6.1 6.9 8 9.0 5.9 6.8 6.4 5.4	RIDE, DIS- SOLVED (MG/L AS F) (00950) .11 .12 <.10 <.10 <.10 <.10	DIS- SOLVED (MG/L AS SIO2) (00955) 4.9 6.3 3.8 3.7 5.5 6.7 6.9 6.6	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 114 117 133 109 77 71 67 76	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 104 105 129 106 71 68 64 64	DIS- SOLVED (TONS PER AC-FT) (70303) .16 .16 .18 .15 .10	DIS- SOLVED (TONS PER DAY) (70302) 417 561 357 427 5160 4550 5280 1810	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 .014 <.010 <.010 <.010 <.010 <.010 <.010 <.010	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .581 .810 1.51 .419 .543 .811 .682 .724	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.020 <.020 <.020 .066 .027 .038	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .21 .15 <.10 .12 1.2 .36 .25 .18	GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) <.20 .13 <.10 <.10 .15 .17 .13 <.10
OCT 199° 06 NOV 12 DEC 08 JAN 1998 05 19 26 MAR 24 APR	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 7 6.3 6.1 6.9 8 9.0 5.9 6.8 6.4 5.4	RIDE, DIS- SOLVED (MG/L AS F) (00950) .11 .12 <.10 <.10 <.10 <.10 <.10 <.10	DIS- SOLVED (MG/L AS SIO2) (00955) 4.9 6.3 3.8 3.7 5.5 6.7 6.9 6.6	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 114 117 133 109 77 71 67 76	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 104 105 129 106 71 68 64 64 64	DIS- SOLVED (TONS PER AC-FT) (70303) .16 .16 .18 .15 .10 .10 .09 .10	DIS- SOLVED (TONS PER DAY) (70302) 417 561 357 427 5160 4550 5280 1810 3060	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 .014 <.010 <.010 <.010 <.010 <.010 .015	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .581 .810 1.51 .419 .543 .811 .682 .724	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.020 <.020 <.020 .066 .027 .038 <.020	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .21 .15 <.10 .12 1.2 .36 .25 .18 .14	GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) <.20 .13 <.10 <.11 .15 .17 .13 <.10 <.10 <.10
OCT 1997 06 NOV 12 DEC 08 JAN 1998 05 FEB 06 19 26 MAR 24 APR 22	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 7 6.3 6.1 6.9 8 9.0 5.9 6.8 6.4 5.4 4.7 3.9	RIDE, DIS- SOLVED (MG/L AS F) (00950) .11 .12 <.10 <.10 <.10 <.10 <.10	DIS- SOLVED (MG/L AS SIO2) (00955) 4.9 6.3 3.8 3.7 5.5 6.7 6.9 6.6 7.0	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 114 117 133 109 77 71 67 76 70 73	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 104 105 129 106 71 68 64 64 64 66 70	DIS- SOLVED (TONS PER AC-FT) (70303) .16 .16 .18 .15 .10 .10 .10 .10	DIS- SOLVED (TONS) PER DAY) (70302) 417 561 357 427 5160 4550 5280 1810 3060 3980	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 .014 <.010 <.010 <.010 <.010 .015 .015	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .581 .810 1.51 .419 .543 .811 .682 .724 .749	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.020 <.020 <.020 <.020 .066 .027 .038 <.020 .067	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .21 .15 <.10 .12 1.2 .36 .25 .18 .14 .28	GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) <.20 .13 <.10 <.10 .15 .17 .13 <.10 <.10 .11
OCT 1997 06 NOV 12 DEC 08 JAN 1998 05 08 FEB 06 19 26 MAR 24 APR 22 30 MAY	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 7 6.3 6.1 6.9 8 9.0 5.9 6.8 6.4 5.4 4.7	RIDE, DIS- SOLVED (MG/L AS F) (00950) .11 .12 <.10 <.10 <.10 <.10 <.10 <.10	DIS- SOLVED (MG/L AS SIO2) (00955) 4.9 6.3 3.8 3.7 5.5 6.7 6.9 6.6	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 114 117 133 109 77 71 67 76 70 73 81	SUM OF CONSTITUENTS, DIS- SOLVED (MG/L) (70301) 104 105 129 106 71 68 64 64 64	DIS- SOLVED (TONS PER AC-FT) (70303) .16 .16 .18 .15 .10 .10 .10 .10 .10 .11	DIS- SOLVED (TONS PER DAY) (70302) 417 561 357 427 5160 4550 5280 1810 3060 3980 1330	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 .014 <.010 <.010 <.010 <.010 .015 .015	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .581 .810 1.51 .419 .543 .811 .682 .724 .749 .627 .717	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.020 <.020 <.020 .066 .027 .038 <.020 .067 .038	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .21 .15 <.10 .12 1.2 .36 .25 .18 .14 .28 .16	GEN,AM- MONIA + ORGANIC DISI. (MG/L AS N) (00623) <.20 .13 <.10 <.10 .15 .17 .13 <.10 <.10 .11
OCT 199° 06 NOV 12 DEC 08 JAN 1998 05 08 FEB 06 19 26 MAR 24 APR 22 30 MAY 13 JUN	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 7 6.3 6.1 6.9 8 9.0 5.9 6.8 6.4 5.4 4.7 3.9 4.8	RIDE, DIS- SOLVED (MG/L AS F) (00950) .11 .12 <.10 <.10 <.10 <.10 <.10 <.10 <.10	DIS- SOLVED (MG/L AS SIO2) (00955) 4.9 6.3 3.8 3.7 5.5 6.7 6.9 6.6 7.0 6.9 6.6	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 114 117 133 109 77 71 67 76 70 73 81 66	SUM OF CONSTITUENTS, DIS- SOLVED (MG/L) (70301) 104 105 129 106 71 68 64 64 66 70 75 66	DIS- SOLVED (TOMS PER AC-FT) (70303) .16 .16 .18 .15 .10 .10 .09 .10 .10 .10 .10 .10 .10 .10 .10	DIS- SOLVED (TONS) PER DAY) (70302) 417 561 357 427 5160 4550 5280 1810 3060 3980 1330 2850	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 .014 <.010 <.010 <.010 <.010 .015 .012 .026 .011	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .581 .810 1.51 .419 .543 .811 .682 .724 .749 .627 .717	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.020 <.020 <.020 .066 .027 .038 <.020 .067 .038 .036	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .21 .15 <.10 .12 1.2 .36 .25 .18 .14 .28 .16 .19	GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) <.20 .13 <.10 <.11 .15 .17 .13 <.10 <.10 .15 .17
OCT 199' 06 NOV 12 DEC 08 JAN 1998 05 8 FEB 06 19 26 MAR 24 APR 22 30 MAY 13 JUN 09 JUL	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 7 6.3 6.1 6.9 8 9.0 5.9 6.8 6.4 5.4 4.7 3.9 4.8 4.0	RIDE, DIS- SOLVED (MG/L AS F) (00950) .11 .12 <.10 <.10 <.10 <.10 <.10 <.10 <.10	DIS- SOLVED (MG/L AS SIO2) (00955) 4.9 6.3 3.8 3.7 5.5 6.7 6.9 6.6 7.0 6.9 6.6	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 114 117 133 109 77 71 67 76 70 73 81 66 81	SUM OF CONSTITUENTS, DIS-SOLVED (MG/L) (70301) 104 105 129 106 71 68 64 64 66 70 75 66	DIS- SOLVED (TONS PER AC-FT) (70303) .16 .16 .18 .15 .10 .10 .09 .10 .10 .10 .11 .09 .11	DIS- SOLVED (TONS PER DAY) (70302) 417 561 357 427 5160 4550 5280 1810 3060 3980 1330 2850	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 .014 <.010 <.010 <.010 <.010 .015 .015 .012 .026 .011 .010	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .581 .810 1.51 .419 .543 .811 .682 .724 .749 .627 .717 .585 .603	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.020 <.020 <.020 .066 .027 .038 <.020 .067 .038 .036 .026	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .21 .15 <.10 .12 1.2 .36 .25 .18 .14 .28 .16 .19 .14	GEN,AM- MONIA + ORGANIC DIS: (MG/L AS N) (00623) <.20 .13 <.10 <.10 .15 .17 .13 <.10 <.10 .11 .11 .12 .12
OCT 199° 06 NOV 12 DEC 08 JAN 1998 05 19 26 MAR 24 APR 22 30 MAY 13 JUN 09 JUN 16 AUG	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 7 6.3 6.1 6.9 8 9.0 5.9 6.8 6.4 5.4 4.7 3.9 4.8 4.0 4.3	RIDE, DIS- SOLVED (MG/L AS F) (00950) .11 .12 <.10 <.10 <.10 <.10 <.10 <.10 <.10 <.10	DIS- SOLVED (MG/L AS SIO2) (00955) 4.9 6.3 3.8 3.7 5.5 6.7 6.9 6.6 7.0 6.9 6.6 7.1	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 114 117 133 109 77 71 67 76 70 73 81 66 81	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 104 105 129 106 71 68 64 64 66 70 75 66 75 82	DIS- SOLVED (TOMS PER AC-FT) (70303) .16 .16 .18 .15 .10 .10 .09 .10 .10 .10 .11 .09 .11 .13	DIS- SOLVED (TOMS PER DAY) (70302) 417 561 357 427 5160 4550 5280 1810 3060 3980 1330 2850 1430 672	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 .014 <.010 <.010 <.010 <.010 <.010 .015 .012 .026 .011 .010	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .581 .810 1.51 .419 .543 .811 .682 .724 .749 .627 .717 .585 .603 .599	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.020 <.020 <.020 .066 .027 .038 <.020 .067 .038 .036 .026	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .21 .15 <.10 .12 1.2 .36 .25 .18 .14 .28 .16 .19 .14 .13	GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) <.20 .13 <.10 <.10 .15 .17 .13 <.10 <.10 .15 .17 .13 <.10 <.110 .15
OCT 1997 06 NOV 12 DEC 08 JAN 1998 05 08 FEB 06 19 26 MAR 24 APR 22 30 MAY 13 JUN 09 JUL 16	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 7 6.3 6.1 6.9 8 9.0 5.9 6.8 6.4 5.4 4.7 3.9 4.8 4.0	RIDE, DIS- SOLVED (MG/L AS F) (00950) .11 .12 <.10 <.10 <.10 <.10 <.10 <.10 <.10	DIS- SOLVED (MG/L AS SIO2) (00955) 4.9 6.3 3.8 3.7 5.5 6.7 6.9 6.6 7.0 6.9 6.6	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 114 117 133 109 77 71 67 76 70 73 81 66 81	SUM OF CONSTITUENTS, DIS-SOLVED (MG/L) (70301) 104 105 129 106 71 68 64 64 66 70 75 66	DIS- SOLVED (TONS PER AC-FT) (70303) .16 .16 .18 .15 .10 .10 .09 .10 .10 .10 .11 .09 .11	DIS- SOLVED (TONS PER DAY) (70302) 417 561 357 427 5160 4550 5280 1810 3060 3980 1330 2850	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 .014 <.010 <.010 <.010 <.010 .015 .015 .012 .026 .011 .010	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .581 .810 1.51 .419 .543 .811 .682 .724 .749 .627 .717 .585 .603	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.020 <.020 <.020 .066 .027 .038 <.020 .067 .038 .036 .026	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .21 .15 <.10 .12 1.2 .36 .25 .18 .14 .28 .16 .19 .14	GEN,AM- MONIA + ORGANIC DIS: (MG/L AS N) (00623) <.20 .13 <.10 <.10 .15 .17 .13 <.10 <.10 .11 .12 .12

03176500 NEW RIVER AT GLEN LYN, VA--Continued

DATE	NITRO- GEN, TOTAL (MG/L AS N) (00600)	NITRO- GEN DIS- SOLVED (MG/L AS N) (00602)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	CADMIUM WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)
OCT 1997	7											
06	.79		<.050	<.050	.015	.05	11	<0.1	<0.1	21	<1	<1
NOV												
12	.96	.94	<.050	E.043	.060	.18	7.6	<0.1	<0.1	31	<1	<1
DEC 08			E.031	<.050	.032	.10	11	<0.1	0.1	37	<1	<1
JAN 1998			E.031	1.050	.032	.10	1,1	VO.1	0.1	37	~1	~±
05	.54		<.050	<.050	.020	.06	10	<0.1	<0.1	23	<1	<1
08	1.7	.70	.296	<.050	.020	.06	22			47		
FEB												
06	1.2	.98	.067	<.050	.026	.08				46		
19	.93	.81	.055	<.050	.024	.07	18			36		
26	.91		<.050	<.050	.017	.05	14	<0.1	<0.1	21	1	<1
MAR 24	.89		<.050	<.050	<.010		16	<0.1	<0.1	34	1	<1
APR	.09		<.050	<.050	<.010		10	<0.1	<0.1	34	1	<.π
22	.90	.76	E.030	<.050	.016	.05	20			41		
30	.87	.85	< .050	<.050	.022	.07	39	<0.1		60	<1	
MAY												
13	.77	.71	<.050	<.050	.015	.05	16	<0.1	<0.1	35	2	<1
JUN												
09	.75	.73	<.050	<.050	.023	.07	10	<0.1	<0.1	35	<1	<1
JUL	.73	. 75	<.050	<.050	.014	.04	13	<0.1	<0.1	16	<1	. 1
16 AUG	. / 3	. /5	<.050	<.050	.014	.04	13	<0.1	<0.1	16	<1	<1
05	.58	.52	<.050	<.050	.018	.06	16	<0.1	<0.1	23	<1	<1
SEP	. 50	.52	1.050	1.050	.010	.00	10	~0.1	~0.1	23	~-	~=
08	.74	.65	.070	.050	.038	.12	35	<0.1	<0.1	17	<1	<1

03176500 NEW RIVER AT GLEN LYN, VA--Continued

DATE	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)	DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	METO- LACHLOR WATER DISSOLV (UG/L) (39415)	PRO- METON, WATER, DISS, REC (UG/L) (04037)	SI- MAZINE, WATER, DISS, REC (UG/L) (04035)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)	QUALITY ASSUR- ANCE DATA INDICA- TOR CODE *(99111)
OCT 199	7											
06 NOV	3.0	1.7	<.20	.012	E.0058	.006	E.0054	.0082	3	11	48	1
12	5.9	1.6		.012	E.0141	.007	E.0040	.0091	1	4.8	56	1
DEC 08	<1.0	1.5	<.20	.009	E.0053	.006	<.0180	.0067	1	2.7	71	30
JAN 199		1.5	1.20	.005	1.0055	.000	1.0100	.0007	_	2.,	, 1	50
05	5.7	1.5	.20						31	121	82	30
08	<4.0	3.2	4.8						240	16100	80	1
FEB												
06	4.5	4.1	.70						39	2500	66	1
19	4.4	1.4	.90						39	3070	77	1
26	7.7	1.5	.50						15	358	96	100
MAR												
24	4.4	1.4	.70						16	700	79	1
APR	- 0	1.0							1.0	1040	0.5	
22 30	5.2 14	1.9	.60						19	1040	95	1
MAY	14	1.9	.20						8	131	89	1
MAY 13	<4.0	1.4	. 50						13	562	90	1
JUN	<4.0	1.1	. 30						13	302	90	_
09	<4.0	1.5	.30						3	53	93	1
JUL	11.0	1.5	.50						3	33	,,,	_
16	<4.0	1.7	.60						2	15	67	1
AUG												
05 SEP	6.1	1.6	.50						3	16	40	1
08	<4.0	1.5	.40						5	12	36	1

E Estimated.
* The values listed under parameter code 99111 indicate the type of quality-assurance sample associated with each environmental sample, where 1 denotes none, 30 denotes a replicate sample, and 100 denotes more than one type of quality-assurance sample.

03207800 LEVISA FORK AT BIG ROCK, VA

LOCATION.--Lat 37°21'13", long 82°11'45", Buchanan County, Hydrologic Unit 05070202, on left bank at Big Rock, 2,000 ft downstream from Rocklick Creek, and 2,500 ft downstream from bridge on State Highway 645.

DRAINAGE AREA. -- 297 mi².

PERIOD OF RECORD. -- October 1967 to current year.

GAGE.--Water-stage recorder. Datum of gage is 866.37 ft above sea level.

REMARKS.--Records good except for period of doubtful gage-height record Aug. 3-13, which is fair. U.S. Army Corps of Engineers satellite precipitation and gage-height telemeter at station. Maximum discharge, $56,000 \text{ ft}^3/\text{s}$, from rating curve extended above $7,000 \text{ ft}^3/\text{s}$ on basis of slope-area measurement of peak flow. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Jan. 29, 1957, reached a stage of about 23.0 ft, information from local resident.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of $4,500~{\rm ft}^3/{\rm s}$ and maximum (*):

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Feb. 4 Mar. 21	0330 0530	4,560 11,100	8.36 12.35	Apr. 19 May 24	2200 1100	6,380 6,430	9.65 9.68
Apr. 17	0830	12,900	13.15	June 10	1300	*16,300	*14.56

Minimum discharge, 24 ft³/s, Oct. 17-18, 23-24, gage height, 2.54 ft.

					Di	AILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	44	30	169	59	663	557	525	412	443	365	302	61
2	37	61	123	55	645	487	591	450	379	283	191	59
3	33	70	83	69	1000	452	550	402	430	240	e160	58
4	31	61	74	134	3420	410	951	450	1090	212	e130	55
5	30	51	75	188	1690	402	1220	599	1050	202	e120	52
6	30	45	74	196	1150	385	962	559	888	191	e110	51
7	27	38	63	199	878	392	747	516	654	178	e103	51
8	30	37	57	901	921	419	646	946	514	294	e98	52
9	31	41	55	737	1060	529	771	986	475	444	e130	54
10	31	42	84	393	1260	596	1070	755	6990	290	e450	53
11	36	44	136	275	1450	561	1180	754	2820	228	369	53
12	36	41	111	217	2260	495	1010	683	1470	193	e185	51
13	30	38	87	194	1460	438	797	582	1170	176	e132	49
14	27	46	76	161	1020	411	682	485	928	188	127	48
15	27	50	64	160	762	373	587	410	873	193	129	46
16	27	47	52	212	651	372	600	356	832	172	204	44
17	26	43	55	223	832	420	6380	321	659	165	623	41
18	27	36	49	228	1220	683	2360	284	528	156	364	63
19	28	33	45	226	922	2760	3900	257	457	142	237	177
20	29	32	43	233	793	2280	3780	250	437	138	177	58
21	29	45	43	217	730	6520	1820	500	377	135	142	52
22	27	122	57	208	675	2150	1300	337	347	128	121	103
23	25	104	59	244	870	1340	1020	1860	518	165	109	86
24	28	72	56	299	1670	1000	833	3940	484	281	101	58
25	32	55	59	343	1280	795	694	1830	417	207	90	48
26	46	49	56	315	936	684	608	1350	349	173	82	43
27	56	45	62	331	746	605	542	1140	309	156	77	41
28	44	43	71	802	622	536	477	1060	279	142	73	41
29	34	41	65	979		477	431	808	259	132	66	42
30	31	62	65	1150		430	407	614	281	122	70	149
31	28		64	885		398		527		317	68	
TOTAL	997	1524	2232	10833	31586	28357	37441	24423	26707	6408	5340	1839
MEAN	32.2	50.8	72.0	349	1128	915	1248	788	890	207	172	61.3
MAX	56	122	169	1150	3420	6520	6380	3940	6990	444	623	177
MIN	25	30	43	55	622	372	407	250	259	122	66	41
CFSM	.11	.17	.24	1.18	3.80	3.08	4.20	2.65	3.00	.70	.58	.21
IN.	.12	.19	.28	1.36	3.96	3.55	4.69	3.06	3.35	.80	.67	.23

e Estimated.

03207800 LEVISA FORK AT BIG ROCK, VA--Continued

STATIST	rics of M	ONTHLY MEAN	DATA F	OR WATER	YEARS 1968	- 1998,	BY WATER	YEAR (WY)				
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	133	214	373	572	697	762	705	535	282	153	119	83.7
MAX	692	911	1201	1596	1451	2107	2355	1323	1135	630	325	273
(WY)	1990	1978	1973	1974	1994	1975	1987	1984	1979	1979	1971	1989
MIN	6.85	19.3	72.0	82.7	168	139	154	113	40.2	29.1	33.3	12.6
(WY)	1970	1970	1998	1981	1968	1988	1986	1976	1970	1970	1969	1969
SUMMARY	Y STATIST	ICS	FOR	1997 CAL	ENDAR YEAR	F	OR 1998 W	ATER YEAR		WATER YEA	ARS 1968	- 1998
ANNUAL	TOTAL			114391			177687					
ANNUAL	MEAN			313			487			384		
HIGHEST	r annual	MEAN								606		1979
LOWEST	ANNUAL M	EAN								121		1988
HIGHEST	r daily m	EAN		4660	Mar 3		6990	Jun 10		24800	Apr	4 1977
LOWEST	DAILY ME	AN		25	Oct 23		25	Oct 23		5.1	Oct 1	19 1969
ANNUAL	SEVEN-DA	Y MINIMUM		27	Oct 14		27	Oct 14		5.5	Oct	13 1969
INSTANT	raneous p	EAK FLOW					16300	Jun 10		56000	Apr	4 1977
INSTANT	TANEOUS P	EAK STAGE					14.56	5 Jun 10		27.38	Apr	4 1977
INSTANT	TANEOUS L	OW FLOW					24	a0ct 17		5.0	b0ct	1 1969
ANNUAL	RUNOFF (CFSM)		1.	06		1.64	1		1.29		
ANNUAL	RUNOFF (INCHES)		14.	33		22.26	5		17.57		
	CENT EXCE			688			1060			841		
50 PERG	CENT EXCE	EDS		197			217			186		
90 PERG	CENT EXCE	EDS		37			41			37		

a Also Oct. 18, 23, 24, 1997. b Also Oct. 13, 14, 17-20, 1969.

03208500 RUSSELL FORK AT HAYSI, VA

LOCATION.--Lat 37°12'25", long 82°17'45", Dickenson County, Hydrologic Unit 05070202, on right bank 180 ft downstream from bridge on State Highway 63, at Haysi, and 700 ft downstream from McClure River.

DRAINAGE AREA. -- 286 mi².

PERIOD OF RECORD.--July 1926 to current year. Monthly discharge only for some periods, published in WSP 1305.

REVISED RECORDS.--WSP 1003: 1926-43. WSP 1385: 1928(M), 1929, 1933(M), 1935(M), 1937-38(M).

GAGE.--Water-stage recorder. Datum of gage is 1,237.61 ft above sea level. Prior to Dec. 21, 1939, nonrecording gage at highway bridge 180 ft upstream at same datum.

REMARKS.--No estimated daily discharges. Records good. U.S. Army Corps of Engineers satellite precipitation and gage-height telemeter at station. Maximum discharge, $59,000~{\rm ft}^3/{\rm s}$, from rating curve extended above $32,000~{\rm ft}^3/{\rm s}$ on basis of slope-area measurement of peak flow. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of $4,500~{\rm ft}^3/{\rm s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Feb. 4 Mar. 19	0130 0230	6,860 5,970	8.27 7.72	Apr. 17 Apr. 19	0830 2000	*24,300 10,000	*17.21 10.18
Mar. 21	0500	7,980	8.93	June 10	1300	12,700	11.65

Minimum discharge, 21 ft³/s, Oct. 24, gage height, 1.99 ft.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	41	26	151	48	815	438	434	353	222	331	268	46
2	34	36	128	53	772	390	498	501	188	217	131	44
3	30	51	80	51	1480	369	482	435	181	175	97	43
4	28	49	65	87	4570	333	2050	557	271	153	81	43
5	27	42	62	134	1870	317	1960	612	393	148	71	40
6	26	37	56	148	1120	302	1130	547	424	131	65	38
7	25	34	47	176	881	300	787	520	312	119	60	41
8	23	34	42	1190	1040	325	633	1720	236	212	56	43
9	22	34	42	805	1170	536	966	1650	238	289	76	39
10	24	36	69	416	1430	713	1220	1260	6020	176	167	36
11	27	36	124	268	1720	579	1080	2090	2690	135	135	34
12	28	34	98	196	2520	482	871	1410	1240	115	83	34
13	27	30	75	152	1410	411	689	890	1030	104	68	34
14	26	34	62	123	934	379	590	625	825	204	64	33
15	25	38	51	117	694	332	518	472	714	140	72	31
16	25	37	44	170	597	334	1580	378	534	119	111	30
17	25	34	41	184	788	437	11700	311	411	302	1290	29
18	25	29	39	172	1160	1000	2820	251	304	164	502	29
19	25	26	36	174	892	3950	6340	215	278	122	225	29
20	25	25	35	203	732	3200	4820	194	271	108	130	29
21	24	39	34	207	623	5630	1940	334	216	96	100	33
22	28	110	45	195	543	2050	1260	241	210	153	86	39
23	22	90	49	292	615	1170	938	683	1310	151	77	37
24	22	60	45	519	845	821	747	1250	871	140	70	34
25	27	45	46	533	810	639	604	859	1030	107	65	32
26	40	39	47	409	672	534	519	651	567	99	61	30
27	60	36	50	363	583	467	455	489	385	85	58	29
28	47	34	55	818	496	424	388	399	285	79	54	28
29	34	31	54	1210		383	335	312	227	73	53	96
30	28	35	55	1500		351	317	256	267	67	53	109
31	26		54	1110		325		275		369	49	
TOTAL	896	1221	1881	12023	31782	27921	48671	20740	22150	4883	4478	1192
MEAN	28.9	40.7	60.7	388	1135	901	1622	669	738	158	144	39.7
MAX	60	110	151	1500	4570	5630	11700	2090	6020	369	1290	109
MIN	22	25	34	48	496	300	317	194	181	67	49	28
CFSM	.10	.14	.21	1.36	3.97	3.15	5.67	2.34	2.58	.55	.51	.14
IN.	.12	.16	.24	1.56	4.13	3.63	6.33	2.70	2.88	.64	.58	.16

16.05

742

132

15

BIG SANDY RIVER BASIN

03208500 RUSSELL FORK AT HAYSI, VA--Continued

STATISTICS OF	MONTHLY	MEAN	DATA	FOR	WATER	YEARS	1926	- 1998	BY	WATER	YEAR	(WY))

14.98

632

184

30

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	88.4	166	334	518	656	777	588	422	188	149	120	64.0
MAX	838	961	1326	2083	1797	2331	1994	1429	738	566	561	608
(WY)	1990	1978	1927	1937	1939	1955	1977	1958	1998	1938	1966	1989
MIN	.98	2.46	11.1	19.6	57.7	168	64.0	63.4	21.6	3.03	8.81	2.07
(WY)	1954	1954	1954	1940	1941	1988	1942	1941	1966	1930	1953	1943
SUMMARY	STATIST	ICS	FOR 1	.997 CALE	NDAR YEAR	<u>!</u>	FOR 1998	WATER YEAR		WATER YEA	RS 1926	- 1998
ANNUAL '	TOTAL			115202			177838					
ANNUAL I	MEAN			316			487			338		
HIGHEST	ANNUAL I	MEAN								568		1994
LOWEST A	ANNUAL M	EAN								100		1941
HIGHEST	DAILY M	EAN		8060	Mar 3		11700	Apr 17		30600	Apr	4 1977
LOWEST I	DAILY ME	AN		22	aOct 9		22	aOct 9		.20	Jun 2	7 1936
ANNUAL S	SEVEN-DA	Y MINIMUM		24	Oct 18		24	Oct 18		.56	Jun 2	4 1936
INSTANT	ANEOUS P	EAK FLOW					24300	Apr 17		59000	Apr	4 1977
INSTANT	ANEOUS P	EAK STAGE					17.	21 Apr 17		28.24	Apr	4 1977
INSTANT	ANEOUS L	OW FLOW					21	Oct 24		b.20	cJun 2	7 1936
ANNUAL I	RUNOFF (CFSM)		1.1	0		1.	70		1.18		

23.13

1170

174

30

ANNUAL RUNOFF (INCHES)

10 PERCENT EXCEEDS 50 PERCENT EXCEEDS

90 PERCENT EXCEEDS

a Also Oct. 23, 24, 1997.
b Observed.
c Also June 28, 1936.

03208950 CRANES NEST RIVER NEAR CLINTWOOD, VA

LOCATION.--Lat 37°07'26", long 82°26'20", Dickenson County, Hydrologic Unit 05070202, on left bank on State Highway 649, 500 ft downstream from Clinchfield Railway bridge, 1,000 ft downstream from Rush Creek, and 2.1 mi southeast of Clintwood.

DRAINAGE AREA. -- 66.5 mi².

PERIOD OF RECORD. -- October 1963 to current year.

REVISED RECORDS.--WDR VA-77-1: 1967(M). WDR VA-92-1: 1991(P).

GAGE.--Water-stage recorder. Datum of gage is 1,440.30 ft above sea level.

REMARKS.--No estimated daily discharges. Records good. U.S. Army Corps of Engineers satellite precipitation and gage-height telemeter at station. Maximum discharge, 18,000 ft³/s, from rating curve extended above 3,100 ft³/s on basis of slope-area measurement of peak flow. Minimum gage height, 0.91 ft, Sept. 28, 1964. Several measurements of water temperature were made during the year. Water-quality record for some prior periods have been collected at this location.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Jan. 29, 1957, reached a stage of about 20.0 ft.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 1,000 ${\rm ft}^3/{\rm s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Mar. 18	2400	1,160 *3 410	7.27 *12.90	Apr. 19	1600	2,110	10.00

Minimum discharge, 4.9 ft³/s, Dec. 19, gage height, 1.47 ft.

		DISCH	ARGE, IN	CUBIC FEET		OND, WATER		TOBER 1991	7 TO SEPTI	EMBER 1998	3	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	10	7.7	31	13	137	77	87	113	52	70	67	13
2	9.0	11	24	16	123	70	85	141	46	54	42	12
3	8.6	14	16	17	256	67	80	119	45	46	32	12
4	8.4	13	14	32	583	63	431	134	85	42	26	12
5	8.2	13	13	31	285	59	312	130	119	40	23	11
6	7.8	11	12	29	194	53	192	115	117	36	22	10
7	7.4	11	10	56	168	52	142	125	85	34	20	10
8	7.7	11	9.3	384	212	58	121	255	67	48	20	9.7
9	7.6	13	11	136	233	90	222	275	79	69	27	10
10	7.8	12	32	76	264	98	245	277	498	43	29	9.6
11	8.5	11	36	53	327	84	213	393	384	36	22	9.2
12	8.7	11	23	43	424	74	169	248	213	32	19	8.8
13	9.0	9.9	18	37	255	67	137	176	225	32	18	8.5
14	9.5	13	16	32	179	65	122	138	182	39	22	8.3
15	12	19	13	32	136	59	109	113	158	33	33	7.8
16	10	15	14	41	118	67	289	97	118	42	56	7.7
17	9.9	13	14	39	170	85	1860	85	101	52	194	7.5
18	9.6	11	12	37	227	240	494	74	79	37	95	7.4
19	9.7	10	12	40	176	602	1530	67	74	32	52	11
20	9.7	9.8	11	45	147	457	878	62	67	38	35	8.0
21	9.1	18	11	42	127	477	409	79	60	30	28	7.6
22	8.8	39	14	40	110	285	295	66	67	41	24	11
23	8.8	24	15	74	113	194	238	220	247	36	21	11
24	9.2	15	13	100	114	147	197	169	287	35	20	9.3
25	12	11	15	85	105	119	166	114	329	31	18	8.6
26	17	9.3	14	67	98	102	145	107	156	28	17	8.3
27	22	8.8	15	56	92	89	129	92	104	24	16	7.7
28	13	8.4	17	106	83	81	116	80	78	23	15	7.6
29	9.3	8.0	15	152		73	104	68	65	21	14	11
30	8.2	9.7	16	219		67	101	60	70	20	14	25
31	7.8		15	177		63		55		118	13	
TOTAL	304.3	390.6	501.3	2307	5456	4184	9618	4247	4257	1262	1054	300.6
MEAN	9.82	13.0	16.2	74.4	195	135	321	137	142	40.7	34.0	10.0
MAX	22	39	36	384	583	602	1860	393	498	118	194	25
MIN	7.4	7.7	9.3	13	83	52	80	55	45	20	13	7.4
CFSM	.15	.20	.24	1.12	2.93	2.03	4.82	2.06	2.13	.61	.51	.15
IN.	.17	.22	.28	1.29	3.05	2.34	5.38	2.38	2.38	.71	.59	.17

03208950 CRANES NEST RIVER NEAR CLINTWOOD, VA--Continued

STATIST	rics of M	ONTHLY MEAN	DATA E	FOR WATER	YEARS 19	64 - 1998,	BY WATER	YEAR (WY)				
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	30.5	47.9	84.4	119	146	169	139	98.4	53.0	31.6	31.6	23.8
MAX	191	164	228	338	367	434	498	262	236	75.7	142	116
(WY)	1990	1978	1992	1972	1994	1975	1977	1984	1989	1991	1966	1982
MIN	1.67	6.33	4.41	5.98	36.6	37.8	28.1	21.2	7.40	5.50	10.0	3.95
(WY)	1964	1966	1966	1966	1968	1988	1986	1976	1966	1970	1964	1965

SUMMARY STATISTICS	FOR 1997 CALENDAR YEAR	FOR 1998 WATER YEAR	WATER YEARS 1964 - 1998
ANNIJAI, TOTAI,	22769.8	33881.8	
ANNUAL MEAN	62.4	92.8	80.8
	02.4	92.0	
HIGHEST ANNUAL MEAN			126 1994
LOWEST ANNUAL MEAN			34.7 1988
HIGHEST DAILY MEAN	1570 Mar 3	1860 Apr 17	8000 Apr 4 1977
LOWEST DAILY MEAN	7.3 aSep 6	7.4 bOct 7	.70 Sep 17 1964
ANNUAL SEVEN-DAY MINIMUM	7.6 Sep 2	7.8 Oct 4	.93 Sep 12 1964
INSTANTANEOUS PEAK FLOW		3410 Apr 17	18000 Apr 4 1977
INSTANTANEOUS PEAK STAGE		12.90 Apr 17	c26.09 Apr 4 1977
INSTANTANEOUS LOW FLOW		4.9 Dec 19	.48 Sep 28 1964
ANNUAL RUNOFF (CFSM)	.94	1.40	1.22
ANNUAL RUNOFF (INCHES)	12.74	18.95	16.51
10 PERCENT EXCEEDS	132	226	175
50 PERCENT EXCEEDS	31	42	39
90 PERCENT EXCEEDS	9.0	9.3	8.1

a Also Sept. 7, 8, 1997. b Also Sept. 18, 1998. c From floodmark.

03209000 POUND RIVER BELOW FLANNAGAN DAM, NEAR HAYSI, VA

LOCATION.--Lat 37°14'13", long 82°20'36", Dickenson County, Hydrologic Unit 05070202, on right bank 1,100 ft upstream from Blacklog Branch, 1,700 ft downstream from John W. Flannagan Dam, 1.4 mi upstream from mouth, and 3.4 mi northwest of Haysi.

DRAINAGE AREA. -- 221 mi².

PERIOD OF RECORD.--July 1926 to current year. Monthly discharge only for some periods, published in WSP 1305. Prior to October 1963, published as Pound River near Haysi.

REVISED RECORDS.--WSP 953: 1940-41. WSP 1003: 1942, 1943(P). WSP 1275: 1927-30, 1931(M), 1932-39.

GAGE.--Water-stage recorder. Datum of gage is 1,200.00 ft above sea level (U.S. Army Corps of Engineers bench mark). Prior to Dec. 20, 1939, nonrecording gage at site 3.8 mi upstream at different datum. Dec. 20, 1939, to Sept. 30, 1963, water-stage recorder at site 4.6 mi upstream at datum 79.91 ft higher.

REMARKS.--No estimated daily discharges. Records good. Flow regulated since March 1965 by John W. Flannagan Reservoir (station 03208990) 1,700 ft upstream and since August 1966 by North Fork of Pound Lake (station 03208680) 33 mi upstream. U.S. Army Corps of Engineers satellite precipitation and gage-height telemeter at station. Maximum discharge, about 30,000 ft³/s, from rating curve extended above 1,750 ft³/s. Maximum discharge since construction of John W. Flannagan Dam in 1965, 4,540 ft³/s. Minimum gage height since construction of John W. Flannagan Dam, 0.91 ft, Sept. 26, 1996, when gates in Flannagan Dam were closed for inspection. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 4,020 $\rm ft^3/s$, Apr. 22, gage height, 7.78 ft; minimum, 32 $\rm ft^3/s$, Oct. 18-19, gage height, 2.04 ft; minimum daily, 39 $\rm ft^3/s$, Oct. 1-3.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

		DISC	narge, co	DIC FEET		ILY MEAN V		BER 1997 1	O SEPIEME	5EK 1990		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	39 39 39 252 282	79 131 302	151 98 92	74 74 74	733 547 1230	221 145 147	51 50 51 51	339 495 462	150 153 154 222 588	244 244 189 63	360 152 62 62 107	46 45 46 54 63
6 7 8 9 10	152 204 109 48 49	72 72 72	94 78 53	212 655 745	579 313 813	258 257 258	51 51 52 53 54	425 1110 1280	463 282 231 231 137	95 141 141 190 268	53 53 53 71 141	63 63 64 65 65
11 12 13 14 15	257 255 45 114 148	200 200 200	140 69 70	278 166 142	1170 673 293	309 314 279	54 54 54 54 168	1240 682 417	1620 2460 981 937 700	178 68 69 68 108	139 133 98 60 60	65 65 64 63 68
16 17 18 19 20	148 101 269 260 108	200 123 87	72 72 72	91 138 138	637 650 582	203 250 1420	602 585 2230 694 1800	186 139 163	447 281 244 227 151	129 129 129 129 129	156 376 493 242 72	75 76 75 74 74
21 22 23 24 25	169 174 142 143 400	200 210 302	72 72 72	189 189 189	281 485 478	975 1680 1570	2980 3640 3950 3290 1720	208 478 1290	148 228 456 556 932	129 88 262 194 64	72 72 72 72 72	74 74 62 56 69
26 27 28 29 30 31	382 130 145 103 75	197 173 138 138	74 74 74 74	330 577 936 734	362 369 	339 339 339 280	1020 1220 1100 437 437	441 376 360 170	929 275 268 155 133	63 64 65 65 65 414	55 50 50 50 50	75 75 75 76 58
TOTAL MEAN MAX MIN (†) MEAN‡ CFSM‡ IN.‡	4856 157 400 39 -4371 15.6 .07	173 391 72 -3927 41.6 .19	83.7 179 53 -101 80.5 .36	302 936 74 +625 322 1.46	632 1740 279 -620 610 2.76	504 1680 145 -96 501 2.27	26604 887 3950 50 +8994 1187 5.37	523 1360 139 +15 524 2.37	14739 491 2460 133 +141 496 2.24 2.50	4247 137 414 63 -277 128 .58	3608 116 493 50 +152 121 .55 .63	1967 65.6 76 45 -1326 21.4 .10
CAL YR WTR YR		TOTAL TOTAL	83027 122687	MEAN MEAN	227 MAX 336 MAX			27 MEAN 39 MEAN		CFSM‡ 1 CFSM‡ 1	.03 IN.‡	

[†] Total change in contents, equivalent in cubic feet per second, per month, in North Fork of Pound Lake and John W. Flannagan Reservoir; provided by U. S. Army Corps of Engineers. ‡ Adjusted for monthly change in contents.

03209000 POUND RIVER BELOW FLANNAGAN DAM, NEAR HAYSI, VA--Continued

STATISTICS OF MONTHLY MEAN	N DATA FOR WATER Y	EARS 1926 - 196	4, BY WATER YEAR (WY)	[UNREGULATED]	
OCT NOV MEAN 48.6 132 MAX 362 678 (WY) 1938 1930 MIN 1.00 2.33 (WY) 1954 1940	DEC JAN 272 431 1064 1242 1927 1937 8.34 16.0 1940 1940	FEB MAF 534 640 1118 1968 1957 1963 35.0 226 1941 1931	APR MAY 440 287 974 892 1927 1958 57.7 45.1 1942 1941	JUN JUL 126 146 392 692 1938 1942 11.3 3.07 1941 1930	AUG SEP 93.5 38.8 400 211 1942 1928 4.22 .51 1932 1932
SUMMARY STATISTICS	WATER Y	EARS 1926 - 196	4		
ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS	265 420 76.6 16100 .1 .1 30000 b16.5 <.1 1.2 16.2 630 94 8.0	192 194 Jan 29 195 0 aSep 9 193 0 Sep 12 193 Mar 23 192 0 (c)	7 1 7 2 2 2 9 9		
STATISTICS OF MONTHLY MEAN				-	
OCT NOV MEAN 241 307 MAX 927 679 (WY) 1990 1978 MIN 48.9 24.8 (WY) 1989 1966	DEC JAN 338 448 1003 1171 1992 1972 16.1 31.8 1966 1966	FEB MAF 507 535 1343 1181 1994 1975 92.3 110 1992 1988	APR MAY 299 361 1004 1074 1977 1975 46.1 47.4 1995 1982	JUN JUL 187 112 756 320 1989 1989 9.66 5.49 1966 1965	AUG SEP 104 96.3 245 405 1994 1982 7.13 32.5 1965 1967
SUMMARY STATISTICS	FOR 1997 CALEN	DAR YEAR	FOR 1998 WATER YEAR	WATER	YEARS 1965 - 1998
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN HIGHEST DAILY MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	83027 227 3850 27 33 1.03 13.98 419 131 39	Mar 7 Aug 15 Aug 13	122687 336 3950 Apr 23 39 dOct 1 48 Aug 28 4020 Apr 22 7.78 Apr 22 32 gOct 18 1.52 20.65 772 169 57	294 481 120 4410 2 2 2 4540 8 1 1 18 662 145	1975 1966 Apr 9 1977 3 fJun 26 1965 5 Jun 25 1965 Apr 8 1977 20 Apr 8 1977 2 hFeb 16 1968 33

< Less than.

Less than.
a Also Sept. 10, 12-22, 28-30, 1932.
b From floodmarks, site and datum then in use.
c On several days in September 1932.
d Also Oct. 2, 3, 1997.
f Also June 27-29, 1965.
g Also Oct. 19, 1997.
h Also Aug. 26, 1986.

TENNESSEE RIVER BASIN

03471500 SOUTH FORK HOLSTON RIVER AT RIVERSIDE, NEAR CHILHOWIE, VA

LOCATION.--Lat 36°45'37", long 81°37'53", Smyth County, Hydrologic Unit 06010102, on right bank 400 ft upstream from highway bridge at Riverside, 900 ft upstream from Spring Branch, 3.2 mi downstream from Redstone Branch, 4.0 mi southeast of Chilhowie, and at mile 97.2.

DRAINAGE AREA. -- 76.1 mi².

PERIOD OF RECORD.--October 1920 to December 1931, July 1942 to current year. Monthly discharge only for some periods, published in WSP 1306. Prior to October 1924, published as "near Chilhowie." June 1907 to December 1909, at site 4.5 mi downstream also published as "near Chilhowie"; records not equivalent.

REVISED RECORDS.--WSP 1033: 1943-44(m). WSP 1306: Drainage area, 1921-31(M).

GAGE.--Water-stage recorder. Datum of gage is 2,106.77 ft above sea level. Nov. 1, 1920, to Nov. 14, 1931, nonrecording gage at site 400 ft downstream at same datum.

REMARKS.--No estimated daily discharges. Records good. Prior to August 1951, diurnal fluctuation at low flow caused by mill 500 ft upstream from station. Maximum discharge, 9,600 ft³/s, from rating curve extended above 3,700 ft³/s on basis of slope-area measurement of peak flow. Minimum discharge recorded, 2 ft³/s, but may have been less in 1925 and 1926 before installation of water-stage recorder. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 650 ft^3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 8	0600	1,300	5.04	Apr. 19	2400	1,300	5.04
Feb. 17	1945	*2,190	*6.09	May 11	0800	959	4.50
Mar. 21	0245	959	4.50	June 10	1515	725	4.06
Apr. 17	1045	1,100	4.74				

 $\texttt{Minimum discharge, 19 ft}^3/\texttt{s, Oct. 13, 31, Nov. 29, Dec. 19, 20, 21, minimum gage height, 1.21 ft, Oct. 13. } \\$

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	29	23	33	27	95	233	108	136	203	105	45	28
2	25	28	32	25	92	199	99	212	164	86	40	27
3	24	30	27	26	135	174	94	210	144	79	38	27
4	23	29	26	27	327	147	153	305	165	75	37	27
5	23	27	25	35	325	130	173	303	191	78	35	26
	23	2.	23	33	323	130	1.3	303		, 0	33	20
6	23	24	24	50	240	119	160	244	261	70	34	26
7	23	24	23	51	197	110	141	222	235	67	33	26
8	22	24	2.3	686	179	152	127	260	188	66	34	29
9	22	25	23	301	188	382	144	279	165	66	35	28
10	22	25	27	180	223	376	164	380	488	62	42	27
11	22	24	28	127	282	255	179	873	527	59	41	26
12	22	23	26	100	491	198	175	556	350	56	36	26
13	22	23	24	85	412	162	157	363	314	55	34	25
14	22	25	23	73	298	143	141	273	272	54	33	26
15	22	27	23	78	235	126	126	223	330	52	35	24
16	22	25	22	121	218	114	129	188	294	50	52	24
17	23	24	22	130	1070	107	765	164	231	51	62	24
18	23	23	22	111	1070	109	533	145	188	48	46	24
19	23	23	22	99	560	232	607	131	166	46	41	24
20	23	22	21	89	438	445	966	120	148	45	37	24
21	23	26	21	78	353	816	512	133	129	44	36	24
22	24	30	24	73	286	480	351	121	124	43	34	26
23	24	27	25	111	277	325	272	161	297	45	33	27
24	24	24	24	166	282	247	223	189	179	46	32	25
	24	23	33				188	213	140			25
25	21	23	33	153	243	202	188	213	140	44	31	24
26	29	22	31	131	214	172	164	373	121	44	30	24
27	31	22	34	124	210	151	150	423	110	42	30	24
28	26	22	33	117	239	138	138	399	101	41	30	23
29	23	22	31	100		127	123	288	94	40	29	23
30	22	24	31	103		116	117	247	102	39	29	24
31	22		29	101		107		255		47	28	
TOTAL	735	740	812	3678	9179	6794	7379	8389	6421	1745	1132	762
MEAN	23.7	24.7	26.2	119	328	219	246	271	214	56.3	36.5	25.4
MAX	31	30	34	686	1070	816	966	873	527	105	62	29
MIN	22	22	21	25	92	107	94	120	94	39	28	23
CFSM	.31	.32	.34	1.56	4.31	2.88	3.23	3.56	2.81	.74	.48	.33
IN.	.36	.36	.40	1.80	4.49	3.32	3.61	4.10	3.14	.85	.55	.37

TENNESSEE RIVER BASIN

03471500 SOUTH FORK HOLSTON RIVER AT RIVERSIDE, NEAR CHILHOWIE, VA--Continued

STATIST	ICS OF	MONTHLY MI	EAN DATA	FOR WATER	YEARS 1921	- 1932,	1942 -	1998, BY	WATER YEAR	(WY)		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	50.3	70.4	112	155	205	210	171	139	91.7	58.9	54.9	44.9
MAX	162	409	272	353	508	512	570	278	322	172	209	254
(WY)	1990	1978	1973	1996	1957	1955	1987	1945	1923	1989	1942	1989
MIN	19.9	19.9	25.8	28.8	57.2	51.3	52.6	49.1	31.1	22.5	17.5	20.6
(WY)	1954	1954	1956	1956	1931	1988	1986	1926	1988	1988	1988	1988
~	~			. 1005		_	1000					1000
SUMMARY	STATI	STICS	F'OF	R 1997 CAL	ENDAR YEAR	F.	OR 1998	WATER YEAR	ξ	WATER YEA		
											1942	- 1998
ANNUAL '	TOTAL			35824			47766					
ANNUAL I	MEAN			98.	1		131			113		
HIGHEST	ANNUA	L MEAN								162		1974
LOWEST A	ANNUAL	MEAN								53.8		1988
HIGHEST	DAILY	MEAN		748	Mar 4		1070	aFeb 17	7	4040	Nov	6 1977
LOWEST 1	DAILY I	MEAN		21	bDec 20		21	bDec 20)	8.0	Jul 1	9 1926
ANNUAL	SEVEN-1	DAY MINIMU	4	22	Dec 15		22	Dec 15	5	15	Jul 1	7 1926
INSTANT	ANEOUS	PEAK FLOW					2190	Feb 17	7	9600	Nov	6 1977
INSTANT	ANEOUS	PEAK STAG	€				6.	09 Feb 17	7	10.20	Nov	6 1977
INSTANT	ANEOUS	LOW FLOW					19	cOct 13	3	2.0	dAug 2	6 1943
ANNUAL 1	RUNOFF	(CFSM)		1.	29		1.	72		1.48		
ANNUAL 1	RUNOFF	(INCHES)		17.	51		23.	35		20.17		
10 PERC	ENT EX	CEEDS		222			302			229		
50 PERC	ENT EX	CEEDS		58			66			71		
90 PERC	ENT EX	CEEDS		23			23			27		

a Also Feb. 18, 1998. b Also Dec. 21, 1997. c Also Oct. 31, Nov. 29, and Dec. 19-21, 1997. b Also Oct. 15, 1943, Aug. 9, 11, 1944, and Oct. 19, 1945.

TENNESSEE RIVER BASIN

03473000 SOUTH FORK HOLSTON RIVER NEAR DAMASCUS, VA

LOCATION.--Lat 36°39'06", long 81°50'39", Washington County, Hydrologic Unit 06010102, on right bank 500 ft upstream from bridge on U.S. Highway 58, 0.7 mi downstream from Laurel Creek, 3.2 mi northwest of Damascus, 4.9 mi upstream from Middle Fork, and at mile 77.2.

DRAINAGE AREA. -- 301 mi².

PERIOD OF RECORD.--October 1931 to current year. Monthly discharge only for some periods, published in WSP 1306. Published as "at Vestal" prior to October 1978.

REVISED RECORDS.--WSP 823: Drainage area. WSP 1306: 1932-33(M).

GAGE.--Water-stage recorder. Datum of gage is 1,792.30 ft above sea level.

REMARKS.--Records good except for period with ice effect, Jan. 2, which is fair. Prior to 1980, some diurnal fluctuation at low flow caused by powerplant upstream from station. Maximum discharge, 22,000 ft³/s, from rating curve extended above 10,000 ft³/s on basis of slope-area measurement of peak flow. Minimum gage height, 2.07 ft, Aug. 19, 1988. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 3,000 ${\rm ft}^3/{\rm s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 8 Feb. 18	1000 0030	5,350 4,180	8.80 7.80	May 11 May 20	0030 2200	5,670 4,010	9.06 7.65
Mar. 21 Apr. 17 Apr. 20	0500 0815 0215	4,790 *6,780 4,970	8.34 *9.91 8.49	May 27 June 10	1800 1100	3,180 5,350	6.88 8.80

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Minimum discharge, 84 ft^3/s , Oct. 13, 14, gage height, 2.18 ft.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	110	111	449	186	578	769	530	524	772	581	240	122
2	108	166	367	e180	551	671	481	756	634	465	193	120
3	98	164	280	191	861	613	453	771	567	407	177	117
4	96	159	258	217	2100	528	1700	1040	843	377	168	117
5	93	144	233	331	1890	478	1680	1080	1050	712	160	114
6	91	133	208	496	1260	463	1110	904	1010	458	155	111
7	89	125	187	493	997	464	853	895	921	380	151	109
8	89	122	175	3970	883	646	716	1780	751	380	149	139
9	87	128	183	1830	841	1290	843	2600	679	409	164	141
10	86	130	215	1020	905	1410	896	2940	3220	380	274	120
11	87	126	222	723	1060	996	920	4540	2650	332	273	115
12	87	122	211	567	1890	771	849	2490	1840	306	193	112
13	86	121	200	481	1620	634	745	1550	1560	289	170	108
14	85	135	188	405	1150	567	667	1120	1260	278	163	105
15	87	177	173	487	883	502	592	893	1330	264	168	104
16	87	159	164	731	765	464	684	750	1090	248	262	100
17	87	145	158	728	1990	445	4840	655	867	243	391	101
18	90	134	151	613	3040	456	2800	570	711	236	331	100
19	92	129	145	554	1760	1210	2650	510	667	225	252	105
20	97	124	140	494	1370	1850	4050	778	601	228	209	101
21	93	145	138	431	1130	4100	2270	1590	517	212	186	106
22	97	210	172	407	941	2310	1510	953	482	200	174	128
23	95	176	170	522	951	1450	1140	902	1000	231	163	125
24	96	159	166	658	978	1060	924	1000	716	236	155	110
25	109	147	286	641	874	861	768	1040	781	219	149	105
26	147	141	265	563	764	741	671	1700	589	208	140	104
27	200	135	274	563	734	665	623	2470	547	195	138	102
28	136	129	256	620	790	621	597	2240	460	191	134	101
29	115	125	232	557		575	515	1360	415	185	131	104
30	106	130	230	675		528	501	1010	503	188	129	104
31	100		211	647		490		973		268	125	
TOTAL	3126	4251	6707	20981	33556	28628	37578	42384	29033	9531	5867	3350
MEAN	101	142	216	677	1198	923	1253	1367	968	307	189	112
MAX	200	210	449	3970	3040	4100	4840	4540	3220	712	391	141
MIN	85	111	138	180	551	445	453	510	415	185	125	100
CFSM	.34	.47	.72	2.25	3.98	3.07	4.16	4.54	3.22 3.59	1.02	.63	. 37
IN.	.39	.53	.83	2.59	4.15	3.54	4.64	5.24	3.59	1.18	.73	. 41

e Estimated.

TENNESSEE RIVER BASIN

03473000 SOUTH FORK HOLSTON RIVER NEAR DAMASCUS, VA--Continued

STATIS'	TICS OF M	ONTHLY MEA	N DATA	FOR WATER	YEARS 1932	- 1998,	BY WATER	R YEAR (WY)				
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	215	287	486	672	853	890	727	580	368	286	253	178
MAX	938	1258	1203	1490	2022	2075	1995	1367	968	1079	1193	790
(WY)	1978	1978	1973	1957	1957	1955	1987	1998	1998	1938	1940	1989
MIN	76.5	85.3	93.6	101	200	228	224	155	129	100	89.6	79.0
(WY)	1953	1940	1940	1940	1941	1988	1942	1941	1988	1988	1988	1954
SUMMAR	Y STATIST	ics	FOI	R 1997 CAL	ENDAR YEAR	F	OR 1998 V	WATER YEAR		WATER	YEARS 1932	- 1998
ANNUAL	TOTAL			172955			224992					
ANNUAL	MEAN			474			616			481		
HIGHES'	T ANNUAL	MEAN								712		1974
LOWEST	ANNUAL M	IEAN								245		1988
	T DAILY M			3930	Mar 3		4840	Apr 17		12800	_	5 1977
LOWEST	DAILY ME	AN		85	Oct 14		85	Oct 14		40		27 1983
		MUMINIM YA		86	Oct 9		86	Oct 9		63	-	13 1954
	TANEOUS P						6780	Apr 17		22000	-	5 1977
		EAK STAGE						91 Apr 17		17.		5 1977
	TANEOUS L						84	a0ct 13		30		14 1941
	RUNOFF (1.			2.0			1.		
	RUNOFF (21.	38		27.8	81		21.	72	
	CENT EXCE			1010			1390			1000		
50 PER	CENT EXCE	EDS		343			405			307		

106

112

102

90 PERCENT EXCEEDS

a Also Oct. 14, 1997. b Also Dec. 24, 1943.

03474000 MIDDLE FORK HOLSTON RIVER AT SEVEN MILE FORD, VA

LOCATION.--Lat $36^{\circ}48^{\circ}26^{\circ}$, long $81^{\circ}37^{\circ}20^{\circ}$, Smyth County, Hydrologic Unit 06010102, on right bank at downstream side of bridge on U.S. Highway 11 at Seven Mile Ford, 0.3 mi upstream from Meade Creek, 3.3 mi downstream from Walker Creek, and at mile 32.1

DRAINAGE AREA. -- 132 mi².

PERIOD OF RECORD.--July 1942 to December 1981, January 1982 to September 1987 (annual maximum only), October 1987 to September 1989, October 1989 to September 1996 (annual maximum only), October 1996 to current year.

REVISED RECORDS. -- WSP 973: 1942(m). WSP 1306: 1947(M).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,960.00 ft above sea level.

REMARKS.--No estimated daily discharges. Records good. Prior to April 1977, some diurnal fluctuation at low flow caused by mill 9 mi above station. Since May 1936, flow occasionally regulated by the filling or draining of Hungry Mother Lake on Hungry Mother Creek, capacity, about 1,600 acre-ft. Tennessee Valley Authority gageheight data logger at station, called at 6-hour intervals by computer at Knoxville, TN. Maximum discharge, 14,500 ft³/s. Minimum gage height, 0.89 ft, Sept. 8, 1988. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been made at this location.

COOPERATION.--Gage-height record of extremes were provided by Tennessee Valley Authority for the period Jan. 1, 1982, to Sept. 30, 1987, and October 1, 1989 to September 30, 1996.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 2,000 ${\rm ft}^3/{\rm s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Apr. 17	0915	*2,130	*3.63	June 10	1530	2,030	3.57

Minimum discharge, 27 $\mathrm{ft}^3/\mathrm{s},$ Nov. 21, gage height, 1.05 ft.

		DISCHA	ARGE, IN (CUBIC FEE		OND, WATE		TOBER 199	7 TO SEPT	EMBER 1998	3	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	36	34	56	38	176	230	150	213	165	150	61	45
2	36	52	45	37	177	206	137	432	149	117	56	44
3	36	45	39	40	356	194	131	350	159	105	54	44
4	35	45	45	44	1040	177	290	868	205	100	52	44
5	36	40	45	55	946	159	285	522	322	102	51	44
6	35	36	41	73	635	133	227	366	282	92	51	43
7	34	34	37	70	495	127	193	358	228	89	49	42
8	34	35	35	713	330	145	172	511	181	86	54	47
9	34	36	35	309	366	228	333	445	170	86	56	44
10	33	34	47	204	419	269	335	509	964	82	144	43
11	34	33	54	144	435	217	317	948	764	78	100	42
12	33	33	63	119	564	182	273	666	448	75	63	42
13	33	31	59	113	473	159	193	472	397	74	54	41
14	33	35	57	107	359	149	174	316	321	84	51	40
15	32	37	54	136	288	137	151	263	353	73	54	38
16	32	35	54	266	259	129	160	222	304	70	82	39
17	32	33	53	217	571	128	1430	203	248	68	158	39
18	33	32	52	169	885	171	781	182	204	66	112	40
19	33	31	35	154	560	680	774	165	205	64	77	39
20	33	31	32	152	452	762	1040	151	185	62	65	39
21	33	37	32	135	371	1470	650	177	156	61	59	41
22	33	46	43	129	321	863	487	159	147	61	56	47
23	32	39	44	175	330	596	324	241	281	64	54	47
24	32	35	43	207	362	328	269	324	183	71	52	41
25	36	32	61	201	318	268	231	308	172	65	50	40
26	45	32	51	179	279	227	204	580	168	62	50	39
27	48	32	53	161	258	202	187	457	132	59	49	39
28	37	31	52	159	246	185	170	350	119	58	48	39
29	34	30	46	168		167	146	273	112	57	47	41
30	34	32	46	207		152	140	221	146	55	47	57
31	32		43	197		142		186		66	46	
TOTAL	1073	1068	1452	5078	12271	9182	10354	11438	7870	2402	2002	1270
MEAN	34.6	35.6	46.8	164	438	296	345	369	262	77.5	64.6	42.3
MAX	48	52	63	713	1040	1470	1430	948	964	150	158	57
MIN	32	30	32	37	176	127	131	151	112	55	46	38
CFSM	.26	.27	.35	1.24	3.32	2.24	2.61	2.80	1.99	.59	.49	.32
IN.	.30	.30	.41	1.43	3.46	2.59	2.92	3.22	2.22	.68	.56	.36

03474000 MIDDLE FORK HOLSTON RIVER AT SEVEN MILE FORD, VA--Continued

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1942 - 1981, 1988 - 1989, 1997 - 1998, BY WATER YEAR (WY)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	M	ΑY	JUN	JUL	AUG	SEP
MEAN	71.2	95.2	166	234	301	312	248	2	07	123	82.8	75.6	65.5
MAX	298	580	534	708	870	844	630	4	33	294	207	210	256
(WY)	1977	1978	1973	1957	1957	1955	1977	19	45	1979	1989	1947	1989
MIN	32.4	29.8	34.1	37.0	85.5	74.5	107	73	. 0	38.9	33.8	28.1	32.4
(WY)	1989	1954	1956	1966	1954	1988	1963	19	54	1988	1988	1988	1988
SUMMARY	STATIST:	ICS	FOR 1	L997 CALEI	NDAR YEAR	1	FOR 1998	WATER	YEAR		WATER YE	EARS 1942	- 1981
												1988	- 1989
												1997	- 1998
ANNUAL	TOTAL			57198			65460						
ANNUAL				157			179				165		
HIGHEST	' ANNUAL I	MEAN									250		1973
LOWEST	ANNUAL MI	EAN									79.2		1988
HIGHEST	DAILY M	EAN		1760	Mar 3		1470	Ma	r 21		5990	Apr	4 1977
LOWEST	DAILY ME	AN		30	Nov 29		30	No	z 29		20	aSep :	26 1944
ANNUAL	SEVEN-DAY	Y MINIMUM		32	Nov 24		32	No	v 24		24	Sep	3 1960
INSTANT	ANEOUS PI	EAK FLOW					2130	Ap:	r 17		14500	Nov	6 1977
INSTANT	ANEOUS PI	EAK STAGE					3.	63 Ap:	r 17		10.75	Jan :	29 1957
INSTANT	CANEOUS LO	OW FLOW					27	No	v 21		9.0	Sep	26 1944
ANNUAL	RUNOFF (CFSM)		1.19	9		1.	36			1.25	5	
ANNUAL	RUNOFF (INCHES)		16.12	2		18.	45			16.96	5	
10 PERC	CENT EXCE	EDS		339			433				340		
50 PERC	CENT EXCE	EDS		87			100				93		
90 PERC	CENT EXCE	EDS		34			34				37		

a Also Aug. 2, 1964.

NATIONAL WATER-QUALITY ASSESSMENT PROGRAM TENNESSEE RIVER BASIN SURFACE-WATER QUALITY

03474000 MIDDLE FORK HOLSTON RIVER AT SEVEN MILE FORD, VA

LOCATION.--Lat 36°48'26", long 81°37'20", Smyth County, Hydrologic Unit 06010102, on right bank at downstream side of bridge on U.S. Highway 11 at Seven Mile Ford, 0.3 mi upstream from Meade Creek, 3.3 mi downstream from Walker Creek, and at mile 32.1

DRAINAGE AREA. -- 132 mi².

PERIOD OF RECORD. -- October 1996 to present.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Column C	DATE	GAGE HEIGHT (FEET) (00065)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML) (31501)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	E. COLI WATER WHOLE TOTAL UREASE (COL / 100 ML) (31633)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)
Note			34	333	8.2	15.0	11.8	709	10.6	300	160	110	38
1		1.09	30	336	8.0	. 0	2.2	710		300	100	92	37
PRE		1.24	53	264	7.3	-5.0	1.1	707	11.4	150	68	56	30
Oct 197	22		125	257	7.9	3.0	5.2	709	11.6	810	310	260	30
MACNE FOTAS FOTAS CHLO FUL	04												
20 15 5 5.6 2.5 14 10 2.3 6.2 184 0 151 202 <.010 NOV 20 14 7.1 2.3 15 13 1.6 4.5 107 0 88 194 <.010 ECC 18 11 6.5 1.8 14 10 1.2 2.0 178 0 146 149 <.010 JAN 1998 22 9.6 8.4 1.8 14 15 <.10 5.1 126 0 103 148 .013 FEB 04 5.9 10 1.8 10 18 <.10 5.1 66 0 5.3 7 1.4 9.4 10 <.10 5.3 76 1 66 0 6 10 54 115 <.010 25 7.6 5.7 1.4 9.4 10 <.10 5.3 76 1 66 0 6 0 54 115 <.010 ETHYL NOTE OF SOLVED S	DATE	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	BONATE WATER DIS IT FIELD MG/L AS HCO3	BONATE WATER DIS IT FIELD MG/L AS CO3	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	GEN, NITRITE DIS- SOLVED (MG/L AS N)
20 14			5.6	2.5	14	10	.23	6.2	184	0	151	202	<.010
18 11	20	14	7.1	2.3	15	13	.16	4.5	107	0	88	194	<.010
PHOS- PHORUS ORGANIC O	18		6.5	1.8	14	10	.12	2.0	178	0	146	149	<.010
04 5.9 10 1.8 10 18 <.10 5.1 66 0 54 115 <.010 25 7.6 5.7 1.4 9.4 10 <.10 5.1 66 0 5.3 76 1 64 121 <.010 25 7.6 5.7 1.4 9.4 10 <.10 5.3 76 1 64 121 <.010 25 7.6 5.7 1.4 9.4 10 <.10 5.3 76 1 64 121 <.010 25 7.6 5.7 1.4 9.4 10 <.10 5.3 76 1 64 121 <.010 25 7.6	22		8.4	1.8	14	15	<.10	5.1	126	0	103	148	.013
GEN, GEN, GEN, GEN, AM- GEN, AM- GEN, AM- GEN, AM- CARBON, ORGANIC SUS- ANILINE DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS-	04												
20 1.26	DATE	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	GEN, AMMONIA DIS- SOLVED (MG/L AS N)	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHORUS TOTAL (MG/L AS P)	PHORUS DIS- SOLVED (MG/L AS P)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	DIS- SOLVED (UG/L AS FE)	NESE, DIS- SOLVED (UG/L AS MN)	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L)
NOV 20 1.51 .229 .15 <.10 .016 .036 .053 12 <4.0 1.1 <.20 <.003 DEC 18995 <.020 .14 .13 .023 .031 .041 37 <4.0 1.7 .20 <.003 JAN 1998 22 1.11 <.020 .13 <.10 .029 .018 .022 30 5.4 1.5 <.20 <.003 FEB 04985 .051 .87 .17 .139 .023 .030 29 7.8 3.2 2.4 <.003			0.61	. 00	. 20	110	222	000	11		1 0	2.0	. 003
DEC 18995 <.020 .14 .13 .023 .031 .041 37 <4.0 1.7 .20 <.003 JAN 1998 22 1.11 <.020 .13 <.10 .029 .018 .022 30 5.4 1.5 <.20 <.003 FEB 04985 .051 .87 .17 .139 .023 .030 29 7.8 3.2 2.4 <.003	NOV												
JAN 1998 22 1.11 <.020 .13 <.10 .029 .018 .022 30 5.4 1.5 <.20 <.003 FEB 04985 .051 .87 .17 .139 .023 .030 29 7.8 3.2 2.4 <.003	DEC												
FEB 04985 .051 .87 .17 .139 .023 .030 29 7.8 3.2 2.4 <.003	JAN 1998		<.020	.14	.13	.023	.031	.041	37	<4.0	1.7	.20	<.003
		1.11	<.020	.13	<.10	.029	.018	.022	30	5.4	1.5	<.20	<.003
25869 <.020 <.10 <.10 .010 <.010 .019 16 5.2 1.1 .20 <.003	04 25	.985 .869	.051 <.020	.87 <.10	.17 <.10	.139 .010	.023 <.010	.030 .019	29 16	7.8 5.2	3.2 1.1	2.4	<.003 <.003

< Actual value is known to be less than the value shown.</p>> Actual value is known to be greater than the value shown.

K Results based on colony count outside the acceptance range (non-ideal colony count).

NATIONAL WATER-QUALITY ASSESSMENT PROGRAM TENNESSEE RIVER BASIN SURFACE-WATER QUALITY

03474000 MIDDLE FORK HOLSTON RIVER AT SEVEN MILE FORD, VA--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DATE	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)	ACETO- CHLOR, WATER FLTRD REC (UG/L) (49260)	ALPHA BHC DIS- SOLVED (UG/L) (34253)	BEN- FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	BUTYL- ATE, WATER, DISS, REC (UG/L) (04028)	CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)	CARBO- FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674)	CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)	DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)
OCT 1997 20	<.002	.010	<.002	<.002	<.002	<.002	<.004	<.003	<.003	<.004	<.002	E.0132
NOV 20	<.002	.008	<.002	<.002	<.002	<.002	<.004	<.003	<.003	<.004	<.002	E.0086
DEC 18	<.002	.012	<.002	<.002	<.002	<.002	<.004	<.003	<.003	<.004	<.002	E.0094
JAN 1998 22		.012	<.002	<.002	<.002	<.002	<.004	<.003	<.003	<.004	<.002	E.0093
FEB												
04 25	<.002 <.002	.005	<.002 <.002	<.002 <.002	<.002 <.002	<.002 <.002	<.004 <.004	<.003 <.003	<.003 <.003	<.004 <.004	<.002 <.002	E.0067 E.0093
DATE	DISUL- FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	DI- AZINON, DIS- SOLVED (UG/L) (39572)	DI- ELDRIN DIS- SOLVED (UG/L) (39381)	P,P' DDE DISSOLV (UG/L) (34653)	EPTC WATER FLTRD 0.7 U GF, REC (UG/L) (82668)	ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663)	ETHO- PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672)	FONOFOS WATER DISS REC (UG/L) (04095)	LINDANE DIS- SOLVED (UG/L) (39341)	LIN- URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666)	MOL- INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671)	MALA- THION, DIS- SOLVED (UG/L) (39532)
OCT 1997 20	<.017	.007	<.001	E.0009	<.002	<.004	<.003	<.003	<.004	<.002	<.004	<.005
NOV 20	<.017	.027	<.001	<.006	<.002	<.004	<.003	<.003	<.004	<.002	<.004	<.005
DEC 18	<.017	E.002	<.001	<.006	<.002	<.004	<.003	<.003	<.004	<.002	<.004	<.005
JAN 1998 22		<.002	<.001	<.006	<.002	<.004	<.003	<.003	<.004	<.002	<.004	<.005
FEB 04	<.017	<.002	<.001	<.006	<.002	<.004	<.003	<.003	<.004	<.002	<.004	<.005
25	<.017	<.002	<.001	<.006	<.002	<.004	<.003	<.003	<.004	<.002	<.004	<.005
DATE	METO- LACHLOR WATER DISSOLV (UG/L) (39415)	METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)	METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667)	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	PRON- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	PRO- PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	PHORATE WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	PARA- THION, DIS- SOLVED (UG/L) (39542)
OCT 1997	LACHLOR WATER DISSOLV (UG/L) (39415)	AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)	PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667)	BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	THION, DIS- SOLVED (UG/L) (39542)
OCT 1997 20 NOV	LACHLOR WATER DISSOLV (UG/L) (39415)	AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)	PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667)	BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	THION, DIS- SOLVED (UG/L) (39542)
OCT 1997 20 NOV 20 DEC	LACHLOR WATER DISSOLV (UG/L) (39415) .006	AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001	PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667) <.006	BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.004	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) <.003	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.004	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.005	WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <.002	THION, DIS- SOLVED (UG/L) (39542) <.004
OCT 1997 20 NOV 20 DEC 18 JAN 1998	LACHLOR WATER DISSOLV (UG/L) (39415) .006 .006	AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001 <.001	PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667) <.006 <.006	BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.004 <.004	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) <.003 <.003	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.004 <.004	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.005 <.005	WATER FLURD 0.7 U GF, REC (UG/L) (82664) <.002 <.002	THION, DIS- SOLVED (UG/L) (39542) <.004 <.004
OCT 1997 20 NOV 20 DEC 18 JAN 1998 22 FEB	LACHLOR WATER DISSOLV (UG/L) (39415) .006 .006 .007	AZIN- PHOS: WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001 <.001 <.001	PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667) <.006 <.006 <.006	BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.004 <.004 <.004	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) <.003 <.003	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.004 <.004 <.004	ULATE WATER WATER 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.005 <.005 <.005	WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <.002 <.002 <.002	THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004
OCT 1997 20 NOV 20 DEC 18 JAN 1998 22	LACHLOR WATER DISSOLV (UG/L) (39415) .006 .006	AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001 <.001	PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667) <.006 <.006	BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.004 <.004	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) <.003 <.003	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.004 <.004	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.005 <.005	WATER FLURD 0.7 U GF, REC (UG/L) (82664) <.002 <.002	THION, DIS- SOLVED (UG/L) (39542) <.004 <.004
OCT 1997 20 NOV 20 DEC 18 JAN 1998 22 FEB 04	LACHLOR WATER DISSOLV (UG/L) (39415) .006 .006 .007 .010	AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001 <.001 <.001	PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667) <.006 <.006 <.006 <.006	BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.004 <.004 <.004 <.004	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) < .003 < .003 < .003 < .003 < .003	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 <.003	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.004 <.004 <.004 <.004 <.004	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004 <.004	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.005 <.005 <.005	WATER FLURD 0.7 U GF, REC (UG/L) (82664) <.002 <.002 <.002 <.002	THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004 <.004
OCT 1997 20 NOV 20 JAN 1998 22 FEB 04 25	LACHLOR WATER DISSOLV (UG/L) (39415) .006 .006 .007 .010 .005 .006 PROP-CHLOR, WATER, DISS, REC (UG/L) (04024)	AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001 <.001 <.001 <.001 <.001 METON, WATER, DISS, REC (UG/L) (04037)	PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667) <.006 <.006 <.006 <.006 <.006 PRO- PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.004 <.004 <.004 <.004 <.004 SI- MAZINE, WATER, DISS, REC (UG/L) (04035)	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .0	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .0	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.004 <.004 <.004 <.004 <.004 TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670)	ULATE WATER FILITED 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004 TER-BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675)	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004 <.004 <.004 TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678)	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.005 <.005 <.005 <.005 <.005 <.005 THIO-BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681)	WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <-002 <-002 <-002 <-002 <-002 <-002 <-002 <-002 <-002 <-004 <-005 <-006 <-006 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <	THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004 <.004 <.004 <.004 SED. SIEVE DIAM. % FINER THAN .062 MM (70331)
OCT 1997 20 NOV 20 JAN 1998 22 FEB 04 25 DATE	LACHLOR WATER DISSOLV (UG/L) (39415) .006 .006 .007 .010 .005 .006 PROP-CHLOR, WATER, DISS, REC (UG/L) (04024) <.007	AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001 <.001 <.001 <.001 <.001 <.001 METON, WATER, DISS, REC (UG/L) (04037) E.0049	PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667) <.006 <.006 <.006 <.006 <.006 PRO- PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.004 <.004 <.004 <.004 <.004 SI- MAZINE, WATER, DISS, REC (UG/L) (04035)	AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82684) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 .005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.0</td <td>AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 <.003 <.003 TER-BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665) <.007</td> <td>PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.004 <.004 <.004 <.004 <.004 TEBU-THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) <.010</td> <td>ULATE WATER WATER FILITRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004 TER- BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675) <.013</td> <td>METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004 <.004 <.004 TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678) <.001</td> <td>METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.005 <.005 <.005 <.005 <.005 <.005 MATER FLIRD 0.7 U GF, REC (UG/L) (82681)</td> <td>WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <.002 <.002 <.002 <.002 <.002 <.002 SEDI-MENT, SUS-PENDED (MG/L) (80154)</td> <td>THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004 <.004 <.004 <.004 SED. SUSP. SIEVE DIAM. FINER THAN .062 MM (70331)</td>	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 <.003 <.003 TER-BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665) <.007	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.004 <.004 <.004 <.004 <.004 TEBU-THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) <.010	ULATE WATER WATER FILITRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004 TER- BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675) <.013	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004 <.004 <.004 TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678) <.001	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.005 <.005 <.005 <.005 <.005 <.005 MATER FLIRD 0.7 U GF, REC (UG/L) (82681)	WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <.002 <.002 <.002 <.002 <.002 <.002 SEDI-MENT, SUS-PENDED (MG/L) (80154)	THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004 <.004 <.004 <.004 SED. SUSP. SIEVE DIAM. FINER THAN .062 MM (70331)
OCT 1997 20 NOV 20 JAN 1998 22 FEB 04 25 DATE OCT 1997 20 NOV 20 DEC	LACHLOR WATER DISSOLV (UG/L) (39415) .006 .006 .007 .010 .005 .006 PROP-CHLOR, WATER, DISS, REC (UG/L) (04024) <.007	AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001 <.001 <.001 <.001 <.001 METON, WATER, DISS, REC (UG/L) (04037) E.0049 <.018	PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667) <.006 <.006 <.006 <.006 <.006 PRO- PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685) <.013 <.070	BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.004 <.004 <.004 <.004 <.004 <.004 SI- MAZINE, WATER, DISS, REC (UG/L) (04035) E.0041	AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82684) < .003 < .003 < .003 < .003 < .003 < .003 G .003 < .003 < .003 < .003 < .004 G .005 G .	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 <.003 <.003 <.003 <.004 TER-BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665) <.007 <.007	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.004 <.004 <.004 <.004 <.004 <.004 TEBU-THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) <.010 <.010	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004 <.004 TER-BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675) <.013 <.013	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004 <.004 <.004 <.004 C.004 <.004 <.004 <.004 <.004 <.004 <.004 <.001 CRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678) <.001 <.001	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 (.005 (.005) (.00	WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <.002 <.002 <.002 <.002 <.002 <.002 SEDI-MENT, SUS-PENDED (MG/L) (80154)	THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004 <.004 <.004 <.004 SED. SUSP. SIEVE DIAM. FINER THAN (70331) 76 33
OCT 1997 20 NOV 20 JAN 1998 22 FEB 04 25 DATE OCT 1997 20 NOV 20 DEC 18 JAN 1998	LACHLOR WATER DISSOLV (UG/L) (39415) .006 .006 .007 .010 .005 .006 PROP-CHLOR, WATER, DISS, REC (UG/L) (04024) <.007 <.007	AZIN-PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <	PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667) <.006 <.006 <.006 <.006 <.006 <.006 PRO- PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685) <.013 <.070 <.013	BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.004 <.004 <.004 <.004 <.004 SI- MAZINE, WATER, DISS, REC (UG/L) (04035) E.0041 E.0047 <.005	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .0	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 <.003 <.003 <.003 <.007 <.007 <.007 <.007 <.007	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.004 <.004 <.004 <.004 <.004 TEBU- THIURON WATER FLTRD 0.7 U (82670) <.010 <.010 E.0059	ULATE WATER FILITED 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004 <.004 TER- BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675) <.013 <.013	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.007 TRIAL- LATE WATER FLTRD 0.7 U (82678) <.001 <.001 <.001	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.005 <.005 <.005 <.005 <.005 THIO-BENCARB WATER FLTRD 0.7 U (82681) <.002 <.002	WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <.002 <.002 <.002 <.002 <.002 <.002 <.002 (.002 3EDI-MENT, SUS-PENDED (MG/L) (80154) 3 3 3 1	THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004 <.004 <.004 <.004 SED. SIEVE DIAM. FINER THAN062 MM (70331) 76 33 50
OCT 1997 20 NOV 20 JAN 1998 22 FEB 04 25 DATE OCT 1997 20 NOV 20 DEC	LACHLOR WATER DISSOLV (UG/L) (39415) .006 .006 .007 .010 .005 .006 PROP-CHLOR, WATER, DISS, REC (UG/L) (04024) <.007 <.007	AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001 <.001 <.001 <.001 <.001 METON, WATER, DISS, REC (UG/L) (04037) E.0049 <.018	PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667) <.006 <.006 <.006 <.006 <.006 PRO- PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685) <.013 <.070	BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.004 <.004 <.004 <.004 <.004 <.004 SI- MAZINE, WATER, DISS, REC (UG/L) (04035) E.0041	AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82684) < .003 < .003 < .003 < .003 < .003 < .003 G .003 < .003 < .003 < .003 < .004 G .005 G .	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 <.003 <.003 <.003 <.004 TER-BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665) <.007 <.007	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.004 <.004 <.004 <.004 <.004 <.004 TEBU-THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) <.010 <.010	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004 <.004 TER-BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675) <.013 <.013	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004 <.004 <.004 <.004 C.004 <.004 <.004 <.004 <.004 <.004 <.004 <.001 CRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678) <.001 <.001	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 (.005 (.005) (.00	WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <.002 <.002 <.002 <.002 <.002 <.002 SEDI-MENT, SUS-PENDED (MG/L) (80154)	THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004 <.004 <.004 <.004 SED. SUSP. SIEVE DIAM. FINER THAN (70331) 76 33

< Actual value is known to be less than the value shown. ${\tt E}\ {\tt Estimated}\,.$

03475000 MIDDLE FORK HOLSTON RIVER NEAR MEADOWVIEW, VA

LOCATION.--Lat 36°42'47", long 81°49'08", Washington County, Hydrologic Unit 06010102, on left bank 48 ft downstream from bridge on State Highway 803, 0.9 mi upstream from Cedar Creek, 4.1 mi southeast of Meadowview, and at mile 13.2.

DRAINAGE AREA. -- 211 mi².

PERIOD OF RECORD.--October 1931 to September 1953, May 1976 to current year. Monthly discharge only for October 1931, published in WSP 1306.

REVISED RECORDS. -- WSP 823: Drainage area. WSP 1276: 1932-34.

GAGE.--Water-stage recorder. Datum of gage is 1,820.22 ft above sea level.

REMARKS.--Records good except for period with ice effect, Jan. 2, which is fair. Prior to 1954, flow regulated by powerplant 0.9 mi upstream from station. Maximum discharge, 12,500 ft³/s, from rating curve extended above 12,000 ft³/s. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Jan. 29, 1957, reached a stage of 11.8 ft, from floodmark, discharge, 10,000 ft³/s, and flood of Dec. 10, 1972, reached a stage of 11.0 ft, from floodmark, discharge, 8,540 ft³/s, from information by Tennessee Valley Authority. Flood of Mar. 30, 1975, reached a stage of 10.37 ft, discharge, 7,410 ft³/s.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 2,000 ft^3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Feb. 5	0200	2,090	5.77	Apr. 20	0345	2,390	6.16
Mar. 21	0815	3,110	7.04	June 10	2200	2,880	6.77
Apr. 17	1515	*3.380	*7.35				

Minimum discharge, 51 ft³/s, Dec. 20, gage height, 1.99 ft.

		DISCHA	ARGE, IN (CUBIC FEE		OND, WATE		CTOBER 199	7 TO SEPTI	EMBER 1998	3	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	68 65 65 63	63 86 100 84 80	89 86 72 76 77	68 e66 69 72 83	322 320 468 1540 1690	336 313 297 277 261	303 291 274 458 507	287 567 462 951 718	275 254 256 267 429	271 212 193 183 186	119 105 100 97 95	79 78 78 77 76
6 7 8 9 10	63 61 61 60 61	70 66 64 65 64	72 66 62 63 73	106 117 925 517 327	1020 811 584 577 624	229 218 232 301 378	417 362 329 488 566	511 475 657 625 643	381 328 275 257 1580	172 163 163 160 154	92 91 90 106 240	75 75 78 80 75
11 12 13 14 15	61 62 60 58 59	62 61 59 63 69	92 92 91 86 81	231 185 172 159 176	628 719 685 538 434	329 286 255 244 229	505 442 352 322 294	1340 1030 737 524 432	1500 799 685 583 573	145 140 136 142 135	225 135 114 106 105	73 73 72 71 68
16 17 18 19 20	59 59 61 62 61	66 62 59 58 57	78 77 76 69 54	337 325 256 228 227	382 454 1230 739 597	221 219 236 1010 890	297 2260 1480 1150 1980	374 336 311 288 270	516 428 360 331 329	130 127 124 122 119	132 222 216 145 121	67 69 69 69
21 22 23 24 25	58 58 57 58 64	62 83 78 67 60	54 64 75 71 94	206 188 237 291 294	510 443 438 503 461	2600 1490 1010 632 514	1140 860 624 509 446	290 288 324 407 456	282 268 395 312 277	116 115 117 125 119	109 102 99 95 90	71 78 83 74 71
26 27 28 29 30 31	76 97 77 65 62 60	58 57 56 55 58	91 87 94 83 79 76	261 253 257 309 338 348	406 375 354 	448 399 368 341 318 298	397 368 343 303 288	756 666 529 418 347 302	283 241 220 209 217	114 110 108 105 104 118	88 87 85 83 82 82	70 70 69 68 104
TOTAL MEAN MAX MIN CFSM IN.	1964 63.4 97 57 .30	1992 66.4 100 55 .31	2400 77.4 94 54 .37 .42	7628 246 925 66 1.17 1.34	17852 638 1690 320 3.02 3.15	15179 490 2600 218 2.32 2.68	18355 612 2260 274 2.90 3.24	16321 526 1340 270 2.50 2.88	13110 437 1580 209 2.07 2.31	4428 143 271 104 .68	3658 118 240 82 .56 .64	2229 74.3 104 67 .35 .39

e Estimated.

03475000 MIDDLE FORK HOLSTON RIVER NEAR MEADOWVIEW, VA--Continued

STATIST	CICS OF	MONTHLY MEAI	N DATA	FOR WATER	YEARS 1932	- 1953,	1976 - 3	1998, BY W	ATER YEAR	(WY)		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	113	133	213	352	463	461	359	303	194	143	145	97.8
MAX	479	739	526	731	1050	899	1158	677	485	420	649	357
(WY)	1977	1978	1943	1996	1994	1993	1987	1990	1981	1938	1940	1989
MIN	45.3	44.3	49.9	52.6	64.0	114	98.3	74.2	61.5	55.5	50.5	50.0
(WY)	1934	1942	1940	1940	1934	1988	1942	1941	1988	1988	1988	1952
				1005 655		_	1000				1000	1050
SUMMARY	STATIS	TICS	FOF	R 1997 CAL	ENDAR YEAR	F	OR 1998 I	WATER YEAR		WATER YEA		- 1953 - 1998
ANNUAL	TOTAL			91035			105116					
ANNUAL	MEAN			249			288			247		
HIGHEST	ANNUAL	MEAN								356		1990
LOWEST	ANNUAL	MEAN								105		1941
HIGHEST	DAILY	MEAN		2640	Mar 4		2600	Mar 21		8220	Apr	5 1977
LOWEST	DAILY M	EAN		54	aDec 20		54	aDec 20		b7.0	Nov 1	9 1950
ANNUAL	SEVEN-D	AY MINIMUM		59	Nov 24		59	Nov 24		38	Oct 2	5 1952
INSTANT	CANEOUS	PEAK FLOW					3380	Apr 17		12500	Nov	7 1977
INSTANT	CANEOUS	PEAK STAGE					7.	35 Apr 17		13.41	Nov	7 1977
INSTANT	CANEOUS	LOW FLOW					51	Dec 20		b6.0	cNov 1	0 1933
ANNUAL	RUNOFF	(CFSM)		1.	18		1.3	36		1.17		
ANNUAL	RUNOFF	(INCHES)		16.	05		18.	53		15.94		
10 PERC	CENT EXC	EEDS		526			624			500		
50 PERC	CENT EXC	EEDS		133			172			147		
90 PERC	CENT EXC	EEDS		62			62			62		

Also Dec. 21, 1997. Flow was regulated by powerplant. Also Dec. 4, 1936, Jan. 21, 22, Feb. 1, 1940, Jan. 8, 1942, and Oct. 15, 16, 31, 1943.

03478400 BEAVER CREEK AT BRISTOL, VA

LOCATION.--Lat 36°37'54", long 82°08'02", Bristol City, Hydrologic Unit 06010102, on right bank 50 ft upstream from bridge on State Highway 1405, 75 ft downstream from Goose Creek, 0.9 mi downstream from Clear Creek, 3.7 mi northeast of Bristol, VA post office, and at mile 20.6.

DRAINAGE AREA. -- 27.7 mi².

PERIOD OF RECORD.--July 1957 to current year. Published as "near Bristol" prior to October 1974.

GAGE.--Water-stage recorder. Datum of gage is 1,780.98 ft above sea level.

REMARKS.--Records good except for period of no gage-height record, Oct. 26-27, which is fair. Small diurnal fluctuation at low flow caused by with- drawal of water, which is returned to stream 600 ft upstream from station, for car-washing operation. Since September 1965, some regulation at high flow by flood-control reservoirs, capacity, 7,600 acre-ft. Maximum discharge, 1,600 ft³/s, from rating curve extended above 390 ft³/s on basis of slope-area measurement of peak flow. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in 1936 reached a stage of about 12 ft.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,080 ft^3/s , Apr. 17, gage height, 8.80 ft; minimum, 13 ft^3/s , Oct. 9, 12-18, 19-24, 25-26, minimum gage height, 2.75 ft, Nov. 27-30.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

					DAI	LY MEAN V	ALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	16	16	40	15	58	48	57	67	41	83	29	18
2	15	18	23	15	57	47	50	67	39	53	27	18
3	15	17	20	16	102	47	57	69	44	47	26	18
4	15	18	20	16	134	45	125	71	72	48	26	18
5	14	16	18	16	113	43	86	62	60	48	25	17
6	14	15	17	16	93	41	71	58	50	43	25	17
7	14	15	16	40	80	40	64	89	46	41	24	16
8	14	15	15	80	73	51	61	90	44	43	24	18
9	14	14	17	52	68	66	116	78	48	42	24	17
10	14	14	19	38	64	55	99	103	54	39	41	16
11	14	14	18	33	61	50	83	142	49	38	27	16
12	14	14	17	31	59	47	73	104	58	37	25	15
13	14	14	16	30	53	45	68	90	61	37	41	15
14	13	18	16	27	50	44	65	81	52	35	41	15
15	13	16	15	31	48	43	64	74	54	34	31	14
16	13	15	15	33	50	45	110	69	47	33	29	14
17	13	15	15	31	65	43	466	65	45	33	29	14
18	13	14	14	29	66	75	267	61	43	32	30	15
19	13	14	14	33	58	122	285	57	47	35	27	15
20	13	14	14	30	55	135	284	54	43	34	24	14
21	13	18	14	28	52	166	204	55	41	32	23	15
22	13	17	17	31	50	117	146	52	50	30	22	16
23	13	15	15	36	62	94	123	66	99	31	22	15
24	14	15	17	34	60	82	106	56	54	31	21	14
25	14	14	17	31	55	75	93	49	48	30	21	14
26	e22	14	16	29	52	69	84	66	46	29	20	14
27	e20	13	19	39	51	64	82	51	44	29	20	13
28	16	13	18	64	49	60	78	46	42	28	20	13
29	15	13	17	64		57	72	44	44	28	19	13
30	14	21	17	67		55	68	42	76	28	19	13
31	14		16	63		52		41		36	19	
TOTAL	446	459	542	1098	1838	2023	3607	2119	1541	1167	801	460
MEAN	14.4	15.3	17.5	35.4	65.6	65.3	120	68.4	51.4	37.6	25.8	15.3
MAX	22	21	40	80	134	166	466	142	99	83	41	18
MIN	13	13	14	15	48	40	50	41	39	28	19	13
CFSM	.52	. 55	.63	1.28	2.37	2.36	4.34	2.47	1.85	1.36	.93	.55
IN.	.60	.62	.73	1.47	2.47	2.72	4.84	2.85	2.07	1.57	1.08	.62

e Estimated.

03478400 BEAVER CREEK AT BRISTOL, VA--Continued

STATISTICS	OF	MONTHLY	MEAN	DATA	FOR	WATER	YEARS	1958	_	1998.	BY	WATER	YEAR	(WY)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	18.3	19.9	32.0	42.8	55.4	59.7	53.0	41.8	33.1	25.5	21.3	17.9
MAX	76.1	58.0	128	141	131	130	120	129	73.1	53.4	64.5	48.9
(WY)	1973	1978	1973	1974	1994	1963	1998	1958	1972	1972	1982	1982
MIN	8.08	10.3	9.13	8.92	19.5	19.7	19.3	17.7	13.0	10.2	9.96	9.23
(WY)	1970	1970	1966	1966	1981	1988	1985	1985	1988	1988	1988	1969
SUMMAR'	Y STATIST	ICS	FOR :	1997 CALE	NDAR YEAR	F	OR 1998 W	ATER YEAR		WATER Y	EARS 1958	- 1998
ANNUAL	TOTAL			14430			16101					
ANNUAL	MEAN			39.5			44.1			34.9		
		417 7 7 7								CO 0		1072

ANNUAL TOTAL	14430	16101	
ANNUAL MEAN	39.5	44.1	34.9
HIGHEST ANNUAL MEAN			62.8 1973
LOWEST ANNUAL MEAN			16.2 1988
HIGHEST DAILY MEAN	204 Mar 3	466 Apr 17	580 Mar 12 1963
LOWEST DAILY MEAN	13 aOct 14	13 aOct 14	7.4 bSep 28 1969
ANNUAL SEVEN-DAY MINIMUM	13 Oct 14	13 Oct 14	7.6 Oct 13 1969
INSTANTANEOUS PEAK FLOW		1080 Apr 17	1600 Oct 2 1977
INSTANTANEOUS PEAK STAGE		8.80 Apr 17	9.94 Oct 2 1977
INSTANTANEOUS LOW FLOW		13 cOct 9	3.4 Dec 30 1963
ANNUAL RUNOFF (CFSM)	1.43	1.59	1.26
ANNUAL RUNOFF (INCHES)	19.38	21.62	17.14
10 PERCENT EXCEEDS	67	80	63
50 PERCENT EXCEEDS	39	34	27
90 PERCENT EXCEEDS	14	14	12

a Also Oct. 15-23, and Nov. 27-29, 1997. b Also Sept. 29 and Oct. 5, 15, 18, 19, 23, 24, 1969. c Also Oct. 12-26, 1997.

03488000 NORTH FORK HOLSTON RIVER NEAR SALTVILLE, VA

LOCATION.--Lat 36°53'48", long 81°44'47", Smyth County, Hydrologic Unit 06010101, on right bank 0.5 mi upstream from Cedar Branch bridge, 1.5 mi northeast of Saltville, 7.8 mi downstream from Laurel Creek, and at mile 85.0.

DRAINAGE AREA. -- 222 mi².

PERIOD OF RECORD.--June 1907 to December 1908 (published as "at Saltville"), October 1920 to current year. Monthly discharge only for some periods, published in WSP 1306.

REVISED RECORDS.--WSP 758: Drainage area. WSP 1113: 1944-47. WSP 1306: 1907(M), 1921-22(M), 1924-30(M), 1932-34(M), drainage area at site used 1907-8. WSP 1726: 1947, monthly and yearly runoff.

GAGE.--Water-stage recorder. Datum of gage is 1,703.53 ft above sea level. June 11, 1907, to Nov. 12, 1908, nonrecording gage on highway bridge 2.1 mi downstream at different datum. Nov. 2, 1920, to May 23, 1934, nonrecording gage on highway bridge 0.5 mi downstream at datum 7.74 ft lower.

REMARKS.--Records good except those for period with ice effect, Jan. 2, and period of no gage-height record, June 4-5, which are fair. National Weather Service gage-height telemeter at station. Maximum discharge, 16,500 ft³/s, from rating curve extended above 13,000 ft³/s on basis of slope-area measurement of peak flow. Minimum discharge, 1.0 ft³/s, Oct. 15, 16, 1947, gage height, 0.13 ft, flow retarded by mine cave-in. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 3,000 ${\rm ft}^3/{\rm s}$ and maximum (*):

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Mar. 21 Apr. 17	0845 1300	6,070 *6,570	7.94 *8.30	June 10	1915	3,050	5.42

Minimum discharge, 26 ft³/s, Oct. 8-9, 10-11, gage height, 0.47 ft.

		DISCH	ARGE, IN	CUBIC FEE		OND, WATE AILY MEAN		TOBER 199	7 TO SEPT	EMBER 199	8	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	31	39	47	51	339	488	252	238	264	169	67	42
2	30	44	56	e50	329	388	262	577	233	148	64	40
3	28	55	65	55	556	333	240	470	225	125	52	40
4	28	69	61	63	2430	286	447	485	e380	115	48	39
5	27	59	57	88	2000	254	583	509	e640	113	45	38
6	29	51	55	177	1060	232	497	437	618	106	43	37
7	27	45	50	218	748	219	407	386	446	98	41	36
8	27	42	44	1590	641	311	343	482	332	95	39	39
9	26	41	44	846	652	859	1500	736	296	106	137	37
10	27	41	52	457	744	914	1740	756	1600	104	403	35
11	26	42	76	295	819	625	1150	1170	1570	91	507	35
12	27	43	82	224	1020	457	814	958	889	83	198	34
13	27	41	69	208	960	358	608	680	835	77	122	33
14	27	43	59	194	684	317	492	517	829	73	100	33
15	28	44	49	193	492	279	411	409	659	74	91	31
16	28	48	43	342	402	256	379	337	555	70	141	31
17	29	48	41	375	528	251	4290	291	428	67	289	31
18	30	44	40	294	1660	297	1960	252	341	65	289	31
19	31	41	39	248	1160	1960	1440	226	297	62	198	31
20	31	39	38	239	936	1540	2200	206	274	61	139	31
21	31	41	37	208	766	4480	1240	304	226	58	104	34
22	32	48	46	187	623	1850	854	291	210	56	86	41
23	32	53	57	296	627	1020	650	356	334	73	75	53
24	33	54	68	464	786	706	512	980	276	81	67	51
25	38	47	78	399	677	536	414	880	230	68	62	45
26	45	43	92	302	574	435	351	725	265	60	57	40
27	55	41	89	267	539	377	310	689	184	56	52	38
28	53	39	81	465	549	342	279	609	163	53	49	35
29	50	39	70	441		306	248	476	146	52	47	36
30	43	39	67	420		274	234	373	150	50	46	79
31	38		60	394		250		305		54	44	
TOTAL	1014	1363	1812	10050	23301	21200	25107	16110	13895	2563	3702	1156
MEAN	32.7	45.4	58.5	324	832	684	837	520	463	82.7	119	38.5
MAX	55	69	92	1590	2430	4480	4290	1170	1600	169	507	79
MIN	26	39	37	50	329	219	234	206	146	50	39	31
CFSM	.15	.20	.26	1.46	3.75	3.08	3.77	2.34	2.09	.37	.54	.17
IN.	.17	.23	.30	1.68	3.90	3.55	4.21	2.70	2.33	.43	.62	.19

e Estimated.

03488000 NORTH FORK HOLSTON RIVER NEAR SALTVILLE, VA--Continued

STATIST	rics of M	ONTHLY MEAN	DATA	FOR WATER	YEARS 1	907	- 1909,	1921 -	1998, BY	WATER YEAR	(WY)		
	OCT	NOV	DEC	JAN	FEB	3	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	115	169	330	473	577		607	450	373	226	125	118	86.8
MAX	916	1077	1178	1317	1500		1735	1311	858	1036	353	584	474
(WY)	1977	1978	1927	1957	1957	,	1955	1987	1990	1907	1938	1940	1989
MIN	24.9	27.5	32.4	49.9	98.0		121	116	80.4	46.3	33.6	25.2	25.8
(WY)	1954	1940	1940	1966	1934	:	1988	1995	1941	1930	1988	1988	1930
SUMMARY	Y STATIST	ICS	FOF	R 1997 CAL	ENDAR YE	AR	F	OR 1998	WATER YEA	ıR.	WATER Y	EARS 1907	
												1921	- 1998
ANNUAL	TOTAL			87240				121273					
ANNUAL	MEAN			239				332			302		
HIGHEST	r annual	MEAN									457		1973
	ANNUAL M										135		1988
HIGHEST	r daily m	EAN		3510	Mar			4480	Mar 2		10900	-	5 1977
	DAILY ME			26	aSep			26	b0ct		2.0		L5 1947
ANNUAL	SEVEN-DA	Y MINIMUM		27	Sep	2		27	Oct	7	21	-	8 1952
	TANEOUS P							6570	-		16500		29 1957
		EAK STAGE							.30 Apr 1		13.5		6 1977
	FANEOUS L							26		8	d1.0		L5 1947
	RUNOFF (1.				1.			1.3		
	RUNOFF (14.	62			20	. 32		18.4	7	
	CENT EXCE			578				816			650		
	CENT EXCE			92				148			158		
90 PERC	CENT EXCE	EDS		30				35			40		

a Also Sept. 6-8, 22, 23, and Oct. 9, 11, 1997. b Also Oct. 11, 1997. c Also Oct. 9-11, 1997 d Flow retarded by mine cave-in. f Also Oct. 16, 1947.

03524000 CLINCH RIVER AT CLEVELAND, VA

LOCATION.--Lat 36°56'41", long 82°09'18", Russell County, Hydrologic Unit 06010205, on right bank 500 ft upstream from highway bridge at Cleveland, 0.5 mi downstream from Muddy Hollow, 2.3 mi downstream from Weaver Creek, 4.4 mi downstream from Thompson Creek, and at mile 271.6.

DRAINAGE AREA. -- 528 mi².

PERIOD OF RECORD. --October 1920 to current year. Monthly discharge only for some periods, published in WSP 1306.

REVISED RECORDS.--WSP 823: Drainage area. WSP 1306: 1921-23(M), 1926(M), 1929-31(M). WSP 1706: 1927(M).

GAGE.--Water-stage recorder. Datum of gage is 1,500.24 ft above sea level. Prior to Nov. 1, 1931, nonrecording gage on highway bridge 500 ft downstream at datum 1.0 ft lower.

REMARKS.--Records good except those for periods of no gage-height record, Jan. 8-9, and 27-30, which are fair. National Weather Service gage-height telemeter at station. Maximum discharge, 34,500 ft³/s, from rating curve extended above 26,000 ft³/s on basis of contracted-opening measurement at gage height 24.40 ft. Minimum gage height, 0.96 ft, Feb. 10, 1934. Several measurements of water temperature made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 5,000 ${\rm ft}^3/{\rm s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Feb. 4	1115	5,980	9.26	Apr. 17	1245	*13,800	*16.19
Feb. 12	1730	5,530	8.79	Apr. 20	0800	6,560	9.85
Mar. 21	1545	12,200	14.91	June 11	0030	9,740	12.83

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Minimum discharge, 55 ft³/s, Oct. 14-17, gage height, 1.24 ft.

			·		Di	AILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	83	75	176	117	1120	1170	751	618	724	563	336	111
2	74	83	177	115	1080	1010	877	665	597	459	270	104
3	71	96	148	133	2030	886	760	688	542	379	197	101
4	66	123	137	167	5660	783	1790	841	646	335	165	98
5	63	132	130	226	4150	704	2110	812	988	328	149	97
6	61	116	124	315	2560	659	1560	736	1080	308	138	94
7	60	102	117	503	1800	640	1210	683	857	291	130	92
8	59	96	108	e3500	1630	710	1000	1040	676	295	124	97
9	59	92	105	e2700	1740	1470	2320	2470	605	404	124	96
10	58	90	118	1350	2260	1840	4670	2090	5210	390	395	91
11	58	92	164	840	2840	1410	3640	3210	6750	299	737	89
12	58	92	181	612	5050	1100	2630	2460	2870	265	407	85
13	58	91	166	503	4310	906	1870	1710	2190	243	270	83
14	56	90	141	426	2740	797	1450	1280	1720	286	210	81
15	55	93	121	373	1840	709	1190	1010	1510	242	266	78
16	55	94	106	397	1430	671	1290	836	1330	224	346	76
17	55	92	97	456	2130	725	10900	725	1040	220	622	75
18	60	90	92	455	4170	862	6840	628	834	211	598	74
19	61	88	88	459	3170	3740	4390	557	752	200	451	73
20	59	83	84	524	2250	3920	6110	503	991	187	331	73
21	58	85	82	510	1820	10600	3940	542	754	178	270	75
22	59	110	89	449	1550	6560	2680	634	638	170	221	83
23	58	153	100	537	1730	3370	1960	740	1320	294	195	135
24	58	132	108	768	2960	2210	1530	1530	1030	359	179	115
25	66	114	122	812	2430	1610	1220	2050	851	297	164	107
26	78	100	124	704	1780	1280	1020	1490	666	236	150	92
27	102	91	127	e680	1460	1070	886	1420	560	199	141	86
28	114	86	133	e810	1290	934	791	1500	486	181	133	82
29	95	82	134	e1000		831	695	1160	435	167	125	92
30	88	121	133	e1200		745	640	907	458	158	119	181
31	78		132	1290		674		875		235	114	
TOTAL	2083	2984	3864	22931	68980	54596	72720	36410	39110	8603	8077	2816
MEAN	67.2	99.5	125	740	2464	1761	2424	1175	1304	278	261	93.9
MAX	114	153	181	3500	5660	10600	10900	3210	6750	563	737	181
MIN	55	75	82	115	1080	640	640	503	435	158	114	73
CFSM	.13	.19	. 24	1.40	4.67	3.34	4.59	2.22	2.47	.53	.49	.18
IN.	.15	.21	.27	1.62	4.86	3.85	5.12	2.57	2.76	.61	.57	.20

e Estimated.

03524000 CLINCH RIVER AT CLEVELAND, VA--Continued

STATIS	STICS OF	MONTHLY M	EAN DATA	FOR WATER	YEARS 1921	- 1998,	BY WATE	R YEAR (WY)				
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	264	400	778	1140	1385	1439	1024	804	488	328	315	210
MAX	1389	2011	3043	2817	3360	4572	3414	2254	2016	972	1640	1003
(WY)	1977	1978	1927	1937	1957	1955	1987	1958	1923	1938	1940	1989
MIN	53.8	64.0	80.7	92.1	206	309	228	195	79.7	78.2	63.2	55.3
(WY)	1931	1940	1940	1940	1941	1988	1942	1941	1930	1930	1988	1930
SUMMAR!	Y STATIST	rics	FOR	1997 CALE	NDAR YEAR	FO	R 1998 W	ATER YEAR		WATER YEA	RS 1921	- 1998
ANNUAL	TOTAL			207117			323174					
ANNUAL	MEAN			567			885			712		
HIGHES	T ANNUAL	MEAN								1076		1972
LOWEST	ANNUAL M	IEAN								287		1988
HIGHEST	T DAILY M	IEAN		7670	Mar 4		10900	Apr 17		27800	Apr	5 1977
LOWEST	DAILY ME	AN		55	a0ct 15		55	a0ct 15		37	bSep 1	L3 1964
ANNUAL	SEVEN-DA	Y MINIMUM		56	Oct 11		56	Oct 11		40	Sep 1	L3 1964
INSTAN	TANEOUS P	EAK FLOW					13800	Apr 17		34500	Apr	5 1977
INSTAN	TANEOUS P	EAK STAGE					16.1	9 Apr 17		26.40	Apr	5 1977
INSTAN	TANEOUS L	OW FLOW					55	cOct 14		35	Sep 2	28 1964
ANNUAL	RUNOFF (CFSM)		1.0	7		1.6	8		1.35	-	
ANNUAL	RUNOFF (INCHES)		14.5	9		22.7	7		18.31		

10 PERCENT EXCEEDS 50 PERCENT EXCEEDS

90 PERCENT EXCEEDS

a Also Oct. 16, 17, 1997. b Also Sept. 28, 1964. c Also Oct. 15-17, 1997.

03524550 GUEST RIVER NEAR MILLER YARD, VA

LOCATION.--Lat 36°52'43", long 82°24'22", Wise County, Hydrologic Unit 06010205, on left bank, 850 ft upstream from footbridge on Guest River Gorge Trail, 210 ft downstream from Lick Branch, and 1,200 ft upstream from mouth.

DRAINAGE AREA.--100 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1996 to September 1998 (discontinued).

GAGE.--Water-stage recorder. Datum of gage is 1,400 ft above sea level, from topographic map.

REMARKS.--Records good except those for period of ice effect, Jan. 2, period of no gage-height record, Feb. 8-27, and period of doubtful gage-height record, Apr. 17, which are poor. Maximum discharge, 4,660 ft³/s, from rating curve extended above 1,600 ft³/s. Minimum gage height, 1.82 ft, Sept. 5, 6, 1997.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

EXTREMES FOR CURRENT YEAR.--Maximum observed discharge, 4,660 ${\rm ft^3/s}$, Apr. 17, gage height, 7.65 ${\rm ft}$; minimum, 5.9 ${\rm ft^3/s}$, Sept. 17, gage height, 1.87 ${\rm ft}$.

		DISCIE	AKGE, IN	CODIC FEE		AILY MEAN	VALUES	TOBER 199	, 10 PEF11	SHEEK 1990	,	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	20	16	66	51	307	148	206	181	159	131	88	14
2	14	20	66	e50	290	133	231	203	109	92	55	15
3	11	26	53	54	527	123	208	188	100	80	46	14
4	12	31	49	81	1200	117	757	399	466	74	40	12
5	11	31	48	105	627	111	752	354	751	70	30	12
6	11	24	45	114	395	106	507	289	554	67	26	12
7	9.1	21	42	290	305	102	354	267	366	61	23	13
8	7.5	22	39	1810	e290	125	282	360	260	66	24	19
9	9.9	24	41	722	e280	336	674	437	243	106	31	24
10	12	25	105	381	e300	363	665	640	808	83	34	15
11	18	23	189	246	e350	246	532	1340	847	64	37	12
12	14	21	106	169	e450	189	402	711	526	57	27	11
13	13	20	79	125	e400	158	315	438	624	55	23	10
14	10	24	66	107	e300	142	269	314	497	83	22	10
15	9.1	39	57	99	e250	127	238	242	414	65	53	8.8
16	12	35	49	112	e220	145	472	199	305	57	73	8.0
17	11	29	42	108	e350	213	e3500	157	231	68	405	7.6
18	11	24	38	102	e440	482	1280	123	173	53	152	9.4
19	12	22	35	106	e350	1770	1640	109	162	50	79	9.3
20	12	22	33	113	e290	1090	1490	99	137	52	58	14
21	10	34	32	106	e250	1130	929	188	113	46	46	15
22	8.5	110	42	111	e230	684	606	134	116	63	38	33
23	9.3	86	49	403	e220	456	500	303	552	57	34	29
24	11	59	49	459	e230	336	385	374	296	58	29	20
25	19	46	67	337	e210	275	317	231	267	52	25	15
26	31	38	64	247	e190	241	272	256	184	52	24	14
27	49	33	64	216	e180	205	241	209	130	43	22	14
28	41	31	65	322	161	179	226	159	109	36	19	14
29	25	30	59	334		157	188	122	98	32	19	15
30	18	32	58	381		133	173	108	102	30	18	22
31	16		56	360		120		253		63	17	
TOTAL	477.4	998	1853	8221	9592	10142	18611	9387	9699	1966	1617	441.1
MEAN	15.4	33.3	59.8	265	343	327	620	303	323	63.4	52.2	14.7
MAX	49	110	189	1810	1200	1770	3500	1340	847	131	405	33
MIN	7.5	16	32	50	161	102	173	99	98	30	17	7.6
CFSM	.15	.33	.60	2.65	3.43	3.27	6.20	3.03	3.23	.63	.52	.15
IN.	.18	.37	.69	3.06	3.57	3.77	6.92	3.49	3.61	.73	.60	.16

e Estimated.

03524550 GUEST RIVER NEAR MILLER YARD, VA--Continued

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	40.2	119	207	266	311	398	404	236	215	57.2	35.7	18.3
262.75	C F O	205	254	0.67	2 4 2	450	600	202	202	C 2 4	F0 0	01 0

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1996 - 1998, BY WATER YEAR (WY)

MEAN MAX	40.2 65.0 1997	119 205 1997	207 354 1997	266 267 1997	311 343 1998	398 470 1997	404 620 1998	236 303 1998	215 323 1998	57.2 63.4 1998	35.7 52.2 1998	18.3 21.8 1997
(WY) MIN (WY)	15.4 1998	33.3 1998	59.8 1998	265 1998	279 1997	327 1998	1998 188 1997	1998 169 1997	1998 106 1997	51.0 1997	1998 19.3 1997	14.7 1998

SUMMARY STATISTICS	FOR 1997 CALENDAR YEAR	FOR 1998 WATER YEAR	WATER YEARS 1996 - 1998
ANNUAL TOTAL	50848.8	73004.5	
ANNUAL MEAN	139	200	191
HIGHEST ANNUAL MEAN			200 1998
LOWEST ANNUAL MEAN			183 1997
HIGHEST DAILY MEAN	1580 Mar 3	3500 Apr 17	3500 Apr 17 1998
LOWEST DAILY MEAN	6.0 Sep 5	7.5 Oct 8	6.0 Sep 5 1997
ANNUAL SEVEN-DAY MINIMUM	7.5 Sep 2	9.0 Sep 13	7.5 Sep 2 1997
INSTANTANEOUS PEAK FLOW		a4660 Apr 17	a4660 Apr 17 1998
INSTANTANEOUS PEAK STAGE		a7.65 Apr 17	a7.65 Apr 17 1998
INSTANTANEOUS LOW FLOW		5.9 Sep 17	4.9 bSep 5 1997
ANNUAL RUNOFF (CFSM)	1.39	2.00	1.91
ANNUAL RUNOFF (INCHES)	18.92	27.16	26.00
10 PERCENT EXCEEDS	359	462	434
50 PERCENT EXCEEDS	72	99	105
90 PERCENT EXCEEDS	12	14	15

a Observed a Also Sept. 6, 1997.

03524550 GUEST RIVER NEAR MILLER YARD, VA--Continued WATER-QUALITY RECORDS

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1996 to September 1998.

WATER TEMPERATURE: October 1996 to September 1998.

INSTRUMENTATION.--Water-temperature and specific conductance recorder since October 1996.

REMARKS.--Interruption in record due to instrument malfunction. Records represent specific conductance within 5 microsiemens and water temperature within 0.5°C at sensors.

EXTREMES FOR PERIOD OF RECORD. --

SPECIFIC CONDUCTANCE: Maximum recorded, 956 microsiemens, Sept. 10, 1997; minimum recorded, 131 microsiemens, Apr. 17, 1998.
WATER TEMPERATURE: Maximum recorded, 26.7°C, Aug. 17, 1997; minimum 0.0°C on several days during winter periods.

EXTREMES FOR CURRENT YEAR.--SPECIFIC CONDUCTANCE: Maximum recorded, 848 microsiemens, Oct. 19; minimum recorded, 131 microsiemens, Apr. 17. WATER TEMPERATURE: Maximum recorded, 25.9°C, Aug. 24; minimum, 0.0°C, Jan. 1-3.

SPECIFIC CONDUCTANCE, US/CM @ 25 DEGREES CELSIUS, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DAY	MAX	MIN	MEAN									
		OCTOBER		NO	OVEMBER		DI	ECEMBER			JANUARY	•
1	605	566	577	709	697	703	551	474	514	659	576	612
2	584	557	564	730	709	717	580	465	523	721	654	672
3	658	584	620	741	724	735	595	539	580	721	670	692
4	675	658	666	768	704	731	539	511	520	698	626	653
5	661	648	653	767	746	757	540	528	534	653	492	589
6	688	661	674	765	739	753	564	531	543	492	412	444
7	727	688	708	739	700	714	598	564	579	431	339	411
8	738	727	732	708	682	695	594	584	589	339	186	225
9	748	732	739	684	658	668	593	569	581	250	212	228
10	750	724	743	670	656	665	630	532	579	273	250	262
11	732	671	707	698	667	683	595	423	499	300	271	285
12	738	687	723	713	698	707	466	439	452	320	299	313
13	734	692	711	727	713	721	482	441	465	349	317	333
14	768	734	757	725	705	715	441	419	430	378	349	366
15	772	761	765	709	651	682	429	418	424	401	374	390
16	782	772	777	697	656	682	434	422	427	421	392	407
17	783	770	776	740	697	721	441	429	434	435	419	429
18	847	783	816	738	676	703	465	441	454	428	412	423
19	848	823	835	677	633	651	493	463	477	456	399	418
20	827	811	820	641	630	636	504	490	496	483	432	448
21	832	810	822	653	615	634	524	499	511	501	458	476
22	835	815	824	666	552	611	526	516	521	466	434	457
23	818	795	806	663	497	537	535	518	525	434	298	380
24	807	783	796	536	504	519	557	534	546	298	273	284
25	783	767	774	525	511	518	556	476	503	292	273	282
26	767	717	739	556	523	542	520	493	507	311	287	301
27	747	689	725	571	554	562	519	481	496	341	311	321
28	771	719	756	569	553	562	544	485	511	359	324	338
29	761	744	755	564	554	559	508	469	481	432	339	380
30	744	698	714	570	545	557	572	508	542	434	389	412
31	712	691	702				638	520	577	411	367	390
MONTH	848	557	735	768	497	655	638	418	510	721	186	407

03524550 GUEST RIVER NEAR MILLER YARD, VA--Continued

SPECIFIC CONDUCTANCE, US/CM @ 25 DEGREES CELSIUS, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1	371	358	365	459	451	454	486	407	451	524	507	517
2	371 366	361 281	366 340	476 517	458 473	469 497	448 393	384 349	409 372	527 533	506 510	517 521
4	296	256	280	517	501	509	349	204	257	510	379	423
5	332	291	313	534	513	520				392	359	377
6	362	325	344	537	524	531	260	213	234	385	360	373
7	376	360	369	543	529	534	295	255	273	396	366	385
8 9	393 389	366 360	383 380	537 511	491 357	518 441	331 331	295 238	310 282	382 394	348 329	362 355
10	382	355	371	357	309	325	247	229	237	344	243	307
11	357	311	339	335	315	324	268	241	257	259	227	238
12	313	243	265	372	329	349	284	266	272	277	238	257
13	280	248	259	420	366	393 407	315	284	294	333	276	305
14 15	324 359	276 319	299 338	415 430	398 404	418	334 359	315 334	324 348	386 419	333 385	355 404
16 17	383 385	357 250	370 349	515 536	421 402	446 474	377 253	240 131	348 160	469 501	417 461	448 485
18	254	225	241	403	210	359	255	187	217	532	501	519
19 20	290 320	254 283	272 301	248 227	178 211	211 219	255 242	170 172	219 208	557 581	529 554	547 568
20	320	203	301	221	211	219	242	1/2	200	201	334	300
21	355	317	334	236	217	228	330	242	290	608	519	567
22 23	376 384	352 373	366 378	279 320	234 277	253 300	374 408	330 374	351 392	591 513	452 392	503 482
24	397	380	389	365	319	338	415	389	400	502	383	429
25	398	388	394	390	355	370	443	415	432	408	383	391
26	424	392	409	412	388	404	468	439	450	437	394	408
27	432	419	425	425 447	412	419 434	480 499	465 479	474 491	458	403 449	434
28 29	453	427	441	454	420 435	434	516	479	505	467 482	449	458 472
30				479	454	468	527	513	520	503	482	489
31				487	467	474				529	301	416
MONTH	453	225	346	543	178	404				608	227	429
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN		MIN AUGUST	MEAN		MIN SEPTEMBE	
		JUNE			JULY		i	AUGUST			SEPTEMBE	R
1 2	409 445	JUNE 371 369	383 407	555 555	JULY 533 548	543 552	647 625	AUGUST 545 582	617 598	748 749	SEPTEMBE 737 742	743 745
1 2 3	409 445 482	JUNE 371 369 445	383 407 465	555 555 575	JULY 533 548 554	543 552 564	647 625 638	545 582 606	617 598 618	748 749 	737 742	743 745
1 2	409 445	JUNE 371 369	383 407	555 555	JULY 533 548	543 552	647 625	AUGUST 545 582	617 598	748 749	SEPTEMBE 737 742	743 745
1 2 3 4 5	409 445 482 524 389	JUNE 371 369 445 340 277	383 407 465 423 305	555 555 575 590 592	JULY 533 548 554 575 587	543 552 564 581 589	647 625 638 660 659	545 582 606 638 647	617 598 618 655 653	748 749 	737 742 	743 745
1 2 3 4 5	409 445 482 524 389	JUNE 371 369 445 340 277	383 407 465 423 305	555 555 575 590 592 613	JULY 533 548 554 575 587	543 552 564 581 589	647 625 638 660 659	545 582 606 638 647	617 598 618 655 653	748 749 	737 742 	743 745
1 2 3 4 5	409 445 482 524 389 296 324 366	JUNE 371 369 445 340 277 272 296 324	383 407 465 423 305 282 312 345	555 555 575 590 592 613 630 648	JULY 533 548 554 575 587 591 613 630	543 552 564 581 589 599 621 641	647 625 638 660 659 680 702 701	545 582 606 638 647 659 680 679	617 598 618 655 653 669 693 690	748 749 	737 742 	743 745
1 2 3 4 5 6 7 8 9	409 445 482 524 389 296 324 366 388	JUNE 371 369 445 340 277 272 296 324 364	383 407 465 423 305 282 312 345 378	555 555 575 590 592 613 630 648 649	JULY 533 548 554 575 587 591 613 630 625	543 552 564 581 589 599 621 641 637	647 625 638 660 659 680 702 701 722	545 582 606 638 647 659 680 679 679	617 598 618 655 653 669 693 690 705	748 749 	737 742 	743 745
1 2 3 4 5 6 7 8 9	409 445 482 524 389 296 324 366 388 401	JUNE 371 369 445 340 277 272 296 324 364 262	383 407 465 423 305 282 312 345 378 327	555 555 575 590 592 613 630 648 649 659	JULY 533 548 554 575 587 591 613 630 625 649	543 552 564 581 589 599 621 641 637 656	647 625 638 660 659 680 702 701 722 747	545 582 606 638 647 659 680 679 679 721	617 598 618 655 653 669 693 690 705 735	748 749 	737 742 	743 745
1 2 3 4 5 6 7 8 9 10	409 445 482 524 389 296 324 366 388 401 267	JUNE 371 369 445 340 277 272 296 324 364 262 248	383 407 465 423 305 282 312 345 378 327 256	555 555 575 590 592 613 630 648 649 659	JULY 533 548 554 575 587 591 613 630 625 649 647	543 552 564 581 589 599 621 641 637 656	647 625 638 660 659 680 702 701 722 747	545 582 606 638 647 659 680 679 679 721	617 598 618 655 653 669 693 690 705 735	748 749 	737 742 	743 745
1 2 3 4 5 6 7 8 9 10	409 445 482 524 389 296 324 366 388 401 267 288	JUNE 371 369 445 340 277 272 296 324 364 262 248 261	383 407 465 423 305 282 312 345 378 327 256 274	555 555 575 590 592 613 630 648 649 659	JULY 533 548 554 575 587 591 613 630 625 649	543 552 564 581 589 599 621 641 647 656	647 625 638 660 659 680 702 701 722 747	545 582 606 638 647 659 680 679 721 738 719	617 598 618 655 653 669 693 690 705 735	748 749 	737 742 	743 745
1 2 3 4 5 6 7 8 9 10 11 12 13 14	409 445 482 524 389 296 324 366 388 401 267 288 318 306	JUNE 371 369 445 340 277 272 296 324 364 262 248 261 271 271	383 407 465 423 305 282 312 345 378 327 256 274 298 293	555 555 575 590 592 613 630 648 649 659 655 647 607	JULY 533 548 554 575 587 591 613 630 625 649 647 605 599 564	543 552 564 581 589 599 621 641 637 656 652 631 604 582	647 625 638 660 659 680 702 701 722 747 751 751 736 725	545 582 606 638 647 659 680 679 721 738 719 717	617 598 618 655 653 669 693 690 705 735 743 734 724 719	748 749 	737 742 	743 745
1 2 3 4 5 6 7 8 9 10	409 445 482 524 389 296 324 366 388 401 267 288 318	JUNE 371 369 445 340 277 272 296 324 364 2662 248 261 271	383 407 465 423 305 282 312 345 378 327 256 274 298	555 555 575 590 592 613 630 648 649 659 655 647 607	JULY 533 548 554 575 587 591 613 630 625 649 647 605 599	543 552 564 581 589 599 621 641 637 656 652 631 604	647 625 638 660 659 680 702 701 722 747 751 751 736	545 582 606 638 647 659 680 679 679 721 738 719 717	617 598 618 655 653 669 693 690 705 735 743 734 724	748 749 	737 742 	743 745
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	409 445 482 524 389 296 324 366 388 401 267 288 318 306 337	JUNE 371 369 445 340 277 272 296 324 364 262 248 261 271 305 331	383 407 465 423 305 282 312 345 378 327 256 274 298 293 317	555 555 575 590 592 613 630 648 649 659 655 647 607 629	JULY 533 548 554 575 587 591 613 630 625 649 647 605 599 564 584	543 552 564 581 589 599 621 641 637 656 652 631 604 582 615	647 625 638 660 659 680 702 701 722 747 751 751 736 725 732	545 582 606 638 647 659 680 679 721 738 719 717 710 672	617 598 618 655 653 669 693 690 705 735 743 734 724 719 696	748 749 	737 742 	743 745
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	409 445 482 524 389 296 324 366 388 401 267 288 318 306 337 376 413	JUNE 371 369 445 340 277 272 296 324 364 262 248 261 271 271 305 331 376	383 407 465 423 305 282 312 345 378 327 256 274 298 293 317	555 555 575 590 592 613 630 648 649 659 655 647 607 607 629	JULY 533 548 554 575 587 591 613 630 625 649 647 605 599 564 584	543 552 564 581 589 599 621 641 637 656 652 631 604 582 615	647 625 638 660 659 680 702 701 722 747 751 751 736 725 732	545 582 606 638 647 659 680 679 721 738 719 717 710 672 588 339	617 598 618 655 653 669 693 705 735 743 734 724 719 696	748 749 	737 742 	743 745
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	409 445 482 524 389 296 324 366 388 401 267 288 318 306 337	JUNE 371 369 445 340 277 272 296 324 364 262 248 261 271 305 331	383 407 465 423 305 282 312 345 378 327 256 274 298 293 317	555 555 575 590 592 613 630 648 649 659 655 647 607 629	JULY 533 548 554 575 587 591 613 630 625 649 647 605 599 564 584	543 552 564 581 589 599 621 641 637 656 652 631 604 582 615	647 625 638 660 659 680 702 701 722 747 751 751 736 725 732	545 582 606 638 647 659 680 679 721 738 719 717 710 672	617 598 618 655 653 669 693 690 705 735 743 734 724 719 696	748 749 	737 742 	743 745
1 2 3 4 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18	409 445 482 524 389 296 324 366 388 401 267 288 318 306 337 376 413 435	JUNE 371 369 445 340 277 272 296 324 364 262 248 261 271 271 305 331 376 413	383 407 465 423 305 282 312 345 378 327 256 274 298 293 317 352 391 425	555 555 575 575 590 592 613 630 648 649 659 655 647 607 607 629	JULY 533 548 554 575 587 591 613 630 625 649 647 605 599 564 584 564 599 615	543 552 564 581 589 599 621 641 656 652 631 604 582 615	647 625 638 660 659 680 702 701 722 747 751 751 736 725 732 777 588 422	545 582 606 638 647 659 680 679 721 738 719 717 710 672 588 339 349	617 598 618 655 653 669 693 690 705 735 743 724 719 696 719 428 401	748 749	737 742 	743 745
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	409 445 482 524 389 296 324 366 388 401 267 288 318 306 337 376 413 435 463	JUNE 371 369 445 340 277 272 296 324 364 262 248 261 271 305 331 376 413 435	383 407 465 423 305 282 312 345 378 327 256 274 298 293 317 352 391 425 450	555 555 575 590 592 613 630 648 649 659 655 647 607 629 605 615 642 646	JULY 533 548 554 575 587 591 613 630 625 649 647 605 599 564 584 564 599 615	543 552 564 581 589 599 621 641 637 656 652 631 604 582 615 576 605 6028 643	647 625 638 660 659 680 702 701 722 747 751 751 736 725 732 777 588 422 428	545 582 606 638 647 659 680 679 721 738 719 717 710 672 588 339 349 420	617 598 618 655 653 669 693 690 705 735 743 724 719 696 719 428 401 424	748 749	737 742	743 745
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	409 445 482 524 389 296 324 366 388 401 267 288 318 401 376 413 435 463 481 501 522	JUNE 371 369 445 340 277 272 296 324 364 262 248 261 271 305 331 376 413 435 445	383 407 465 423 305 282 312 345 378 327 256 274 298 293 317 352 450 469 487 507	555 555 575 590 592 613 630 648 649 659 655 647 607 629 605 615 642 646 646	JULY 533 548 554 575 587 591 613 625 649 647 605 599 564 584 564 599 615 639 624 624 659	543 552 564 581 589 599 621 637 656 652 631 604 582 615 576 605 628 635 646 644	647 625 638 660 659 680 702 701 722 747 751 751 736 725 732 777 588 422 428 455	AUGUST 545 582 606 638 647 659 680 679 721 738 719 717 710 672 588 339 349 424 455 496	617 598 618 655 653 669 693 705 735 743 734 719 696 719 428 401 424 441	748 749	737 742	743 745
1 2 3 4 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	409 445 482 524 389 296 324 368 401 267 288 318 306 337 376 413 435 463 481 501 522 519	JUNE 371 369 445 340 277 272 296 324 364 262 248 261 271 305 331 376 413 445 465 493 295	383 407 465 423 305 282 312 345 327 256 274 298 293 317 352 391 425 450 469 487 507 383	555 555 575 590 592 613 630 648 649 659 655 647 607 607 607 629 605 615 642 646 645	JULY 533 548 554 575 587 591 613 625 649 647 605 599 564 584 564 599 615 639 624 624 659 630	543 552 564 581 589 599 621 641 637 656 652 631 604 582 615 576 628 643 646 646	647 625 638 660 659 680 702 701 722 747 751 736 725 732 777 588 422 428 455	AUGUST 545 582 606 638 647 659 680 679 721 738 719 717 710 672 588 339 349 420 424 455 496 530	617 598 618 655 653 669 693 690 705 735 743 724 719 696 719 428 401 424 441 474 512 548	748 749	737 742	743 745
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	409 445 482 524 389 296 324 366 388 401 267 288 318 401 376 413 435 463 481 501 522	JUNE 371 369 445 340 277 272 296 324 364 262 248 261 271 305 331 376 413 435 445	383 407 465 423 305 282 312 345 378 327 256 274 298 293 317 352 450 469 487 507	555 555 575 590 592 613 630 648 649 659 655 647 607 629 605 615 642 646 646	JULY 533 548 554 575 587 591 613 625 649 647 605 599 564 584 564 599 615 639 624 624 659	543 552 564 581 589 599 621 637 656 652 631 604 582 615 576 605 628 635 646 644	647 625 638 660 659 680 702 701 722 747 751 751 736 725 732 777 588 422 428 455	AUGUST 545 582 606 638 647 659 680 679 721 738 719 717 710 672 588 339 349 424 455 496	617 598 618 655 653 669 693 705 735 743 734 719 696 719 428 401 424 441	748 749	737 742	743 745
1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	409 445 482 524 389 296 324 368 401 267 288 318 306 337 376 413 435 463 481 501 522 519 447 399	JUNE 371 369 445 340 277 272 296 324 364 262 248 261 271 305 331 376 413 445 465 493 295 391 371	383 407 465 423 305 282 312 345 378 327 256 274 298 293 317 352 450 469 487 507 383 426 381	555 555 575 590 592 613 630 648 649 659 655 647 607 607 629 605 615 642 646 645 663 669 667 666	JULY 533 548 554 575 587 591 613 630 625 649 647 605 599 564 584 564 599 615 639 624 624 659 630 654 622	543 552 564 581 589 599 621 637 656 652 631 604 582 615 576 628 635 646 646 646 663 7	647 625 638 660 659 680 702 701 722 747 751 736 725 732 777 588 422 428 455 496 530 568 589 611	545 582 606 638 647 659 680 679 721 738 719 717 710 672 588 339 349 420 424 455 496 530 568 589	617 598 618 655 653 669 693 690 705 735 743 724 719 696 719 428 401 424 441 474 512 548 581 601	748 749	737 742	743 745 -
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	409 445 482 524 389 296 324 366 388 401 267 288 318 306 337 376 413 463 463 481 501 522 519 447	JUNE 371 369 445 340 277 272 296 324 364 262 248 261 271 305 331 376 413 445 465 493 295	383 407 465 423 305 282 312 345 378 327 256 274 298 293 317 352 391 425 469 487 507 383 426	555 555 575 590 592 613 630 648 649 659 655 647 607 629 605 615 642 646 645	JULY 533 548 554 575 587 591 613 630 625 649 647 605 599 564 584 564 599 615 639 624 659 630 654	543 552 564 581 589 599 621 637 656 652 631 582 615 576 6028 643 635 646 646 664 663	647 625 638 660 659 680 702 701 722 747 751 736 725 732 777 588 422 428 455 496 530 568 589	545 582 606 638 647 659 680 679 721 738 719 717 710 672 588 339 420 424 455 496 530	617 598 618 655 653 669 690 705 735 743 734 719 696 719 428 401 424 441 474 512 581	748 749	737 742	743 745
1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	409 445 482 524 389 296 324 368 401 267 288 318 306 337 376 413 435 463 481 501 522 519 447 399 453 483 512	JUNE 371 369 445 340 277 272 296 324 364 262 248 261 271 305 331 376 413 445 465 493 295 391 371 399 453 483	383 407 465 423 305 282 312 345 327 256 274 298 293 317 352 450 469 487 507 383 426 381 428 466 497	555 555 575 590 592 613 630 648 649 659 655 647 607 607 629 605 615 642 646 645 669 669 669 667 666	JULY 533 548 554 575 587 591 613 6305 649 647 605 599 564 584 564 599 615 630 654 624 659 630 654 627 643 667	543 552 564 581 589 599 621 637 656 652 631 604 505 628 635 646 643 646 646 646 646 646 646 646 646	647 625 638 660 659 680 702 701 722 747 751 736 725 732 777 588 422 428 455 496 530 568 589 611 635 654 679	545 582 606 638 647 659 680 679 721 738 719 717 710 672 588 339 349 420 424 455 496 530 568 589	617 598 618 655 653 669 693 693 705 735 743 724 719 696 719 428 401 424 441 474 512 548 581 601 623 644 666	748 749	737 742	743 745
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	409 445 482 524 389 296 324 366 388 401 267 288 318 306 337 376 413 463 463 463 481 501 522 519 447 399	JUNE 371 369 445 340 277 272 296 324 364 262 248 261 271 305 331 376 413 445 465 493 295 391 371 399 453 483 512	383 407 465 423 305 282 312 345 378 327 256 274 298 293 317 352 391 425 450 469 487 507 381 426 381 428 426 381	555 555 575 590 592 613 630 648 649 659 655 647 607 629 605 615 642 646 645 669 669 667 666	JULY 533 548 554 575 587 591 613 625 649 647 605 599 564 584 564 599 615 639 624 659 624 659 654 622 627 643 6662	543 552 581 589 599 621 637 656 652 631 582 615 576 6028 643 635 646 646 663 637 656 664 663 637	647 625 638 660 659 680 702 701 722 747 751 736 725 732 777 588 422 428 455 496 530 568 589 611 635 654 679 693	545 582 606 638 647 659 680 679 721 738 719 717 710 672 588 339 420 424 455 496 530 568 589	617 598 618 655 653 6693 690 705 735 743 734 719 696 719 424 441 474 512 581 601 623 644 666 686	748 749	737 742	743 745 -
1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	409 445 482 524 389 296 324 368 401 267 288 318 306 337 376 413 435 463 481 501 522 519 447 399 453 483 512	JUNE 371 369 445 340 277 272 296 324 364 262 248 261 271 305 331 376 413 445 465 493 295 391 371 399 453 483	383 407 465 423 305 282 312 345 327 256 274 298 293 317 352 450 469 487 507 383 426 381 428 466 497	555 555 575 590 592 613 630 648 649 659 655 647 607 607 629 605 615 642 646 645 669 669 669 667 666	JULY 533 548 554 575 587 591 613 6305 649 647 605 599 564 584 564 599 615 630 654 624 659 630 654 627 643 667	543 552 564 581 589 599 621 637 656 652 631 604 505 628 635 646 643 646 646 646 646 646 646 646 646	647 625 638 660 659 680 702 701 722 747 751 736 725 732 777 588 422 428 455 496 530 568 589 611 635 654 679	545 582 606 638 647 659 680 679 721 738 719 717 710 672 588 339 349 420 424 455 496 530 568 589	617 598 618 655 653 669 693 693 705 735 743 724 719 696 719 428 401 424 441 474 512 548 581 601 623 644 666	748 749	737 742	743 745
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	409 445 482 524 389 296 324 366 388 401 267 288 306 337 376 413 445 463 481 501 522 519 447 399 453 483 512 526 536 558	JUNE 371 369 445 340 277 272 296 324 364 262 248 261 271 305 331 376 413 445 465 493 295 391 371 399 453 483 512 536	383 407 465 423 305 282 312 345 378 327 256 274 293 317 352 391 425 469 487 507 383 426 381 428 466 497 525 549	555 555 575 590 592 613 630 648 649 659 655 647 607 629 605 615 642 646 645 669 669 669 669 667 666	JULY 533 548 554 575 587 591 613 625 649 647 605 594 584 564 599 6139 624 629 630 654 662 663	543 5564 581 589 599 621 637 656 652 631 582 615 576 605 644 643 637 646 646 643 637 656 666 667 6666	647 625 638 660 659 680 702 701 722 747 751 736 725 732 777 588 422 428 455 496 530 568 589 611 635 679 693 719	AUGUST 545 582 606 638 647 659 680 679 721 738 719 717 710 672 588 339 3490 424 455 496 530 568 589	617 598 618 655 653 669 693 705 735 743 724 719 696 719 428 401 424 441 474 512 548 601 623 644 666 686 704	748 749	737 742	743 745

03524550 GUEST RIVER NEAR MILLER YARD, VA--Continued

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DAY	MAX	MIN OCTOBER	MEAN	MAX	MIN	MEAN	MAX	MIN ECEMBER	MEAN	MAX	MIN JANUARY	MEAN
1 2 3 4 5	16.7 16.2 15.7 16.4 17.1	15.0 13.7 12.7 13.3	16.0 14.7 14.0 14.5 15.2	10.2 10.9 9.9 9.1 7.4	8.6	9.4 10.2 9.4 8.1 6.3	8.1 6.8 7.1 7.9 7.3		7.7 6.3 6.4 7.5 6.1	.7 .5 1.2 2.7 4.4	. 0	.2 .1 .5 1.7 3.0
6 7 8 9 10	17.4 17.6 17.9 18.3 17.7	14.6 14.9	15.6 15.8 16.1 16.5 17.0	6.8 8.1 7.8 8.2 8.1	5.6 6.4 7.5 7.4 6.9	6.2 7.1 7.7 7.7 7.5	4.6 2.4 2.2 3.2 5.5	2.4 1.8 1.6 2.1 3.2	3.3 2.1 1.9 2.6 4.1	6.9 9.2 10.4 10.2 7.7	6.9	5.7 7.6 10.1 9.0 6.5
12 13 14	19.1 18.8 18.7 17.2 14.6	17.1 16.0 15.9 14.5 12.2	17.7 17.3 17.1 16.0 13.2	7.7 7.2 7.3 8.0 7.4	7.2 6.4 6.0 7.3 5.9	7.4 6.9 6.6 7.6 6.7	5.5 5.0 4.3 3.1 1.9	3.1	5.2 4.6 3.8 2.5 1.3	6.0 6.8 7.6 6.8	5.3 6.0 6.8 5.4 6.2	5.7 6.4 7.1 6.0 6.5
17 18	13.6 12.3 13.4 13.4 12.4	11.5	12.1 11.9 12.3 12.6 11.7	5.9 4.2 3.2 4.0 3.8	4.0 2.7 1.4 2.2 1.9	5.0 3.4 2.3 2.8 2.9	1.5 1.5 1.8 1.9 2.3	.3	.8 .7 1.0 1.1 1.4	7.2 6.7 6.1 5.4 4.8	6.7 6.1 5.0 4.8 3.5	7.0 6.5 5.5 5.0 3.9
22 23 24	11.7 10.9 9.5 8.4 11.8	10.4 9.0 6.9 7.5 8.4	10.8 9.9 8.2 7.9 9.9	4.5 6.8 7.5 6.2 4.3	3.2 4.5 6.2 4.2 2.9	3.6 5.9 7.0 5.4 3.6	3.6 5.2 6.4 6.3 6.9	3.6 5.2	2.7 4.4 5.7 5.9 6.5	4.2 5.5 6.9 6.9 5.4	3.0 4.2 5.5 5.4 4.3	3.6 4.8 6.4 6.3 4.8
27	12.5 12.5 10.5 9.6 9.4 9.6	11.1 10.5 8.8 7.3 6.7 7.0	11.6 11.7 9.6 8.3 7.9 8.1	3.9 4.4 5.2 6.1 7.9	2.5 2.8 3.1 4.6 6.1	3.2 3.6 4.1 5.3 7.0	7.0 6.1 4.0 2.7 2.2 1.6	6.1 4.0 2.7 1.8 1.6	6.5 5.1 3.5 2.2 2.0 1.4	4.7 4.4 3.3 4.4 5.1 4.8	3.9 1.6 1.4 2.9 4.4 4.2	4.3 3.5 2.4 3.6 4.7 4.5
MONTH	19.1	6.7	12.9	10.9	1.4	6.0	8.1	.1	3.8	10.4	.0	4.9
DAY	MAX	MIN FEBRUARY	MEAN	MAX	MIN MARCH	MEAN	MAX	MIN APRIL	MEAN	MAX	MIN MAY	MEAN
1 2 3 4 5	4.2 5.1 5.5 4.7 4.3	2.9 3.8 4.7 3.9 3.9	3.7 4.4 5.2 4.2 4.2	9.8 8.9 7.4 6.2 7.1	8.8 7.4 6.1 5.6 5.6	9.3 8.1 6.6 5.9 6.3	16.2 15.1 13.5 12.1	14.6 12.4 11.4 9.3	15.5 13.9 12.1 10.6	14.5 14.0 14.0 13.3 13.2	13.2 12.7 12.7 12.0 11.6	13.8 13.4 13.3 12.5 12.4
6 7 8 9 10	4.8 5.6 5.9 6.4 6.5	4.2 4.5 5.1 5.3	4.5 5.1 5.5 5.8 6.0	7.2 8.4 10.4 10.6 8.4	6.0 6.9 8.4 8.4	6.6 7.6 9.4 10.0 6.3	11.2 12.2 14.2 13.5 11.7		9.9 10.8 12.6 12.9 10.4	14.9 14.8 14.5 14.4 14.0	11.4 13.9 13.8 13.6 13.2	13.2 14.3 14.0 14.0 13.5
11 12 13 14 15	6.9 6.9 6.1 6.2 5.7	5.8 6.1 5.9 5.4 4.3	6.3 6.5 6.0 5.8 5.2	4.6 4.0 3.6 6.2 6.7	3.3 2.2 1.6 2.8 4.0	3.9 3.0 2.8 4.3 5.3	10.8 11.8 12.3 14.2 14.0	8.2 8.7 9.5 11.6 11.8	9.5 10.3 11.0 12.7 12.9	14.1 14.6 16.0 18.0 19.2	13.1 12.4 13.0 14.9 16.0	13.5 13.6 14.5 16.3 17.7
16 17 18 19 20	6.6 8.0 7.7 7.4 7.4	5.5 6.6 7.3 7.1 7.0	6.0 7.3 7.4 7.3 7.2	6.1 7.4 8.8 9.5 9.8	4.5 5.8 6.8 8.4 8.7	5.5 6.7 7.7 9.0 9.2	14.0 12.9 12.4 11.6 11.7	12.6 11.8 11.4 11.2 10.5	13.3 12.3 11.6 11.5 11.1	19.1 20.6 20.5 20.8 21.1	17.5 17.6 17.1 17.2 18.6	18.4 19.0 18.9 18.9
21 22 23 24 25	7.1 7.1 7.1 6.7 7.2	6.4 5.6 6.7 5.8 5.2	6.9 6.4 7.0 6.3 6.3	9.3 7.2 7.0 7.5 7.3	7.2 6.1 5.3 5.9 6.2	8.3 6.6 6.2 6.7	12.0 11.7 12.0 12.6 13.8	10.2 11.0 10.6 10.4 10.7	11.3 11.2 11.3 11.6 12.3	20.7 20.1 19.1 19.1 19.4	19.3 18.9 17.6 17.1 17.8	20.0 19.5 18.2 18.0 18.7
26 27 28 29 30 31	8.1 10.1 11.2 	5.7 8.1 9.5 	7.0 9.1 10.1 	10.3 13.0 14.5 15.8 16.3 16.7	6.4 9.5 11.6 12.8 13.0 14.1	8.4 11.3 13.1 14.1 14.7 15.4	14.8 14.3 13.4 13.3 14.0	12.3 12.4 10.8 11.9 12.6	13.6 13.4 12.3 12.7 13.3	19.1 18.8 20.1 20.8 22.4 21.1	18.1 17.9 17.4 18.2 19.3 19.7	18.7 18.3 18.8 19.6 20.7 20.4
MONTH	11.2	2.9	6.2	16.7	1.6	7.9				22.4	11.4	16.6

03524550 GUEST RIVER NEAR MILLER YARD, VA--Continued

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMBE	ER
1	21.8	19.2	20.4	22.0	20.4	21.3	22.4	20.4	21.4	24.2	20.8	22.3
2	21.7	18.8	20.2	22.1	19.7	21.0	23.5	20.1	21.6	23.6	20.1	21.8
3	21.4	19.6	20.5	23.0	19.5	21.1	23.5	19.3	21.3			
4	20.2	17.9	18.8	22.5	20.4	21.4	23.8	19.5	21.5			
5	18.6	17.2	17.8	23.7	20.9	22.1	24.0	19.8	21.8			
6	18.0	15.5	16.8	24.6	21.2	22.6	24.6	20.7	22.5			
7	15.5	13.9	14.8	24.1	21.6	22.8	25.0	21.1	22.9			
8	15.7	13.6	14.7	22.8	22.1	22.4	25.0	22.1	23.5			
9	15.4	14.9	15.1	23.9	21.6	22.6	25.4	22.5	23.8			
10	16.1	15.2	15.7	24.6	22.0	23.1	24.9	23.3	24.0			
11	17.3	15.7	16.5	24.0	22.0	23.0	25.0	22.6	23.6			
12	18.4	16.7	17.3	24.8	21.0	22.8	25.1	22.2	23.6			
13	19.1	17.8	18.4	24.7	22.0	23.3	25.5	22.1	23.7			
14	18.4	17.1	17.6	23.1	22.3	22.6	24.1	22.8	23.2			
15	19.1	17.0	18.0	23.9	21.5	22.5	23.3	22.2	22.8			
16	20.5	17.8	19.0	23.8	21.7	22.7	22.7	22.1	22.3			
17	21.0	18.1	19.5	23.9	21.7	22.6	22.1	21.0	21.6			
18	21.0	18.2	19.7	24.0	20.9	22.4	22.7	20.5	21.6			
19	20.9	19.6	20.2	24.1	21.6	22.5	24.1	21.9	22.7			
20	22.2	18.8	20.5	23.7	20.8	22.1	23.9	20.5	22.1			
21	21.4	20.1	20.5	24.9	21.1	22.9	24.3	20.7	22.2			
22	22.0	19.7	20.7	24.3	22.1	23.2	24.7	20.9	22.6			
23	21.1	19.5	20.3	24.5	22.7	23.4	25.3	21.6	23.3			
24	21.7	19.9	20.6	24.4	22.6	23.2	25.9	22.5	24.0			
25	21.8	19.0	20.5	24.7	22.2	23.1	25.5	22.0	23.7			
26	22.4	20.3	21.4	24.2	22.2	23.1	25.4	22.3	23.8			
27	23.9	21.3	22.5	23.9	21.9	22.9	25.5	22.3	23.7			
28	23.8	21.8	22.8	23.7	21.6	22.7	25.2	21.4	23.2			
29	23.0	21.6	22.3	24.6	21.5	23.0	24.0	21.5	22.7			
30	22.9	21.1	22.0	23.6	22.1	23.0	24.8	21.7	23.0			
31				23.3	21.7	22.7	24.5	21.2	22.8			
MONTH	23.9	13.6	19.2	24.9	19.5	22.6	25.9	19.3	22.8			

NATIONAL WATER-QUALITY ASSESSMENT PROGRAM TENNESSEE RIVER BASIN SURFACE-WATER QUALITY

03524550 GUEST RIVER NEAR MILLER YARD, VA

LOCATION.--Lat 36°52'43", long 82°24'22", Wise County, Hydrologic Unit 06010205, on left bank, 850 ft upstream from footbridge on Guest River Gorge Trail, 210 ft downstream from Lick Branch, and 1,200 ft upstream from mouth. DRAINAGE AREA. -- 100 mi².

PERIOD OF RECORD.--October 1996 to present.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DATE	GAGE HEIGHT (FEET) (00065)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML) (31501)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	E. COLI WATER WHOLE TOTAL UREASE (COL / 100 ML) (31633)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)
OCT 1997 21 NOV	1.96	12	810	8.3	9.0	10.2	724	10.5	K58	K24	К15	65
19	2.05	21	656	8.3	2.0	2.0	726	13.8	K11	<1	К3	54
17	2.21	42	432	7.9	1.0	.1	721	13.0	57	29	K12	35
JAN 1998 09	4.04	713	226	7.5	8.0	8.8	716	10.5	4500	800	600	18
21 FEB	2.64	107	488	7.9	.0	2.8	725	13.2	280	42	42	36
26	3.03	30	412	8.0	-1.0	5.4	720	12.0	530	180	140	34
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)
OCT 1997 21	33	51	5.5	240	21	. 25	1.2	155	0	127	524	<.010
NOV												
19 DEC	27	36	4.0	190	20	.16	.76	126	0	117	434	<.010
17 JAN 1998	17	23	2.5	110	17	<.10	2.4	96	0	79	265	<.010
09 21	7.8 19	11 30	1.8 2.5	50 120	14 37	<.10 .12	4.7 4.6	36 84	0	30 69	135 296	<.010 .023
FEB 26	19	17	2.1	120	11	<.10	4.9	56	0	46	256	<.010
DATE	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660)
OCT 1997 21	<.050	<.015	<.20	<.20	.038	<.010	.013	13	11	2.6	.20	<.003
NOV 19	.612	.210	.21	.14	.026	<.010	.016	20	4.0	20	<.20	<.003
DEC 17	.448	<.020	.12	.12	.019	.029	.027	31	9.5	1.9	<.20	<.003
JAN 1998 09	.601	<.020	.23	.17	.272	<.010	<.010	32	105	2.5	1.3	<.003
21 FEB	.674	.108	. 25	.19	.029	<.010	.014	23	72	1.6	<.20	<.003
26	.475	.040	<.10	<.10	<.010	<.010	.012	15	129	1.4	.20	<.003

< Actual value is known to be less than the value shown.

K Results based on colony count outside the acceptance range (non-ideal colony count).

NATIONAL WATER-QUALITY ASSESSMENT PROGRAM TENNESSEE RIVER BASIN SURFACE-WATER QUALITY

03524550 GUEST RIVER NEAR MILLER YARD, VA--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DATE	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)	ACETO- CHLOR, WATER FLTRD REC (UG/L) (49260)	ALPHA BHC DIS- SOLVED (UG/L) (34253)	BEN- FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	BUTYL- ATE, WATER, DISS, REC (UG/L) (04028)	CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)	CARBO- FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674)	CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)	DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)
OCT 1997 21	<.002	E.007	<.002	<.002	<.002	<.002	<.004	<.011	<.011	<.004	<.002	<.009
NOV 19	<.002	<.001	<.002	.0056	<.002	<.002	<.004	<.003	<.003	<.004	<.002	<.003
DEC 17	<.002	<.001	<.002	<.002	<.002	<.002	<.004	<.003	<.003	<.004	<.002	<.002
JAN 1998 09		E.003	<.002	<.002	<.002	<.002	<.004	<.003	<.003	<.004	<.002	E.0024
21 FEB	<.002	<.001	<.002	<.002	<.002	<.002	<.004	<.003	<.003	<.004	<.002	<.0024
26	<.002	<.001	<.002	<.002	<.002	<.002	<.004	<.003	<.003	<.004	<.002	<.002
DATE	DISUL- FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	DI- AZINON, DIS- SOLVED (UG/L) (39572)	DI- ELDRIN DIS- SOLVED (UG/L) (39381)	P,P' DDE DISSOLV (UG/L) (34653)	EPTC WATER FLTRD 0.7 U GF, REC (UG/L) (82668)	ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663)	ETHO- PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672)	FONOFOS WATER DISS REC (UG/L) (04095)	LINDANE DIS- SOLVED (UG/L) (39341)	LIN- URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666)	MOL- INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671)	MALA- THION, DIS- SOLVED (UG/L) (39532)
OCT 1997 21	<.017	<.002	<.001	<.006	<.002	<.004	<.003	<.003	<.004	<.002	<.004	<.005
NOV 19	<.017	E.001	<.001	<.006	<.002	<.004	<.003	<.003	E.003	<.002	<.004	<.005
DEC 17	<.017	<.002	<.001	<.006	<.002	<.004	<.003	<.003	<.004	<.002	<.004	<.005
JAN 1998 09 21	<.017 <.017	<.002 <.002	<.001 <.001	<.006 <.006	<.002 <.002	<.004 <.004	<.003 <.003	<.003 <.003	<.004 <.004	<.002 <.002	<.004 <.004	<.005 <.005
FEB 26	<.017	<.002	<.001	<.006	<.002	<.004	<.003	<.003	<.004	<.002	<.004	<.005
DATE	METO- LACHLOR WATER DISSOLV (UG/L) (39415)	METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)	METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667)	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	PRON- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	PRO- PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	PHORATE WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	PARA- THION, DIS- SOLVED (UG/L) (39542)
OCT 1997	LACHLOR WATER DISSOLV (UG/L) (39415)	AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)	PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667)	BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	THION, DIS- SOLVED (UG/L) (39542)
OCT 1997 21 NOV	LACHLOR WATER DISSOLV (UG/L) (39415)	AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)	PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667)	BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	THION, DIS- SOLVED (UG/L) (39542)
OCT 1997 21 NOV 19 DEC	LACHLOR WATER DISSOLV (UG/L) (39415) <.002 <.002	AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001	PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667) <.006	BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.004	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) <.003	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.007	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.005	WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <.002	THION, DIS- SOLVED (UG/L) (39542) <.004
OCT 1997 21 NOV 19 DEC 17 JAN 1998	LACHLOR WATER DISSOLV (UG/L) (39415) <.002 <.002 <.002	AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001 <.001 <.001	PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667) <.006 <.006	BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.004 <.004	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) <.003 <.003	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.007 <.004	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.005 <.005	WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <.002 <.002	THION, DIS- SOLVED (UG/L) (39542) <.004 <.004
OCT 1997 21 NOV 19 DEC 17 JAN 1998 09	LACHLOR WATER DISSOLV (UG/L) (39415) <.002 <.002 <.002	AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001	PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667) <.006 <.006 <.006 <.006	BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.004	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) <.003 <.003 <.003 <.003 <.003	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.007	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.005	WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <.002	THION, DIS- SOLVED (UG/L) (39542) <.004
OCT 1997 21 NOV 19 DEC 17 JAN 1998 09	LACHLOR WATER DISSOLV (UG/L) (39415) <.002 <.002 <.002 <.002	AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001 <.001	PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667) <.006 <.006	BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.004 <.004 <.004	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) <.003 <.003	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.007 <.004 <.004	ULATE WATER FILITRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.005 <.005	WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <.002 <.002 <.002	THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004
OCT 1997 21 NOV 19 DEC 17 JAN 1998 09 21 FEB	LACHLOR WATER DISSOLV (UG/L) (39415) <.002 <.002 <.002 <.002 <.002	AZIN-PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001 <.001 <.001 <.001 <.001	PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667) <.006 <.006 <.006 <.006	BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.004 <.004 <.004 <.004	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) <.003 <.003 <.003 <.003 <.003	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 <.003 <.003	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.007 <.004 <.004 <.004	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004 <.004	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.005 <.005 <.005 <.005	WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <.002 <.002 <.002 <.002	THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004 <.004 <.004
OCT 1997 21 NOV 19 DEC 17 JAN 1998 09 21 FEB 26 DATE	LACHLOR WATER DISSOLV (UG/L) (39415) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 (.002) (AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 (.001 (.001) (.001) (.001) (.001)	PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667) <.006 <.006 <.006 <.006 <.006 <.006 PRO- PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.004 <.004 <.004 <.004 <.004 SI- MAZINE, WATER, DISS, REC (UG/L) (04035)	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 <.003 <.003 <.003 TER-BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.007 <.004 <.004 <.004 <.004 <.004 TEBU-THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670)	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004 <.004 <.004 GF, REC (UG/L) (82675)	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004 <.004 <.004 <.004 <.004 GF, REC (UG/L) (82678)	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005	WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <.002 <.002 <.002 <.002 <.002 <.002 SEDI-MENT, SUS-PENDED (MG/L) (80154)	THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004 <.004 <.004 <.004 SED. SIEVE DIAM. % FINER THAN062 MM (70331)
OCT 1997 21 NOV 19 JAN 1998 09 21 FEB 26 DATE OCT 1997 21 NOV	LACHLOR WATER DISSOLV (UG/L) (39415) <.002 <.002 <.002 <.002 <.002 <.002 PROP-CHLOR, WATER, DISS, REC (UG/L) (04024) <.007	AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001	PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667) <.006 <.006 <.006 <.006 <.006 <.006 PRO- PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.004 <.004 <.004 <.004 <.004 <.004 SI- MAZINE, WATER, DISS, REC (UG/L) (04035)	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.007 TERBACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665) <.011	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.007 <.004 <.004 <.004 <.004 <.004 TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) E.0285	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.007 COUNTY OF THE TENDER OF THE TEN	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004 <.004 <.004 <.004 <.004 C.004 <.004 <.007 C.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.007 UG/L) (82681) <.002	WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <.002 <.002 <.002 <.002 <.002 <.002 <.002 EDI- MENT, SUS- PENDED (MG/L) (80154)	THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004 <.004 <.004 <.004 SED. SUSP. SIEVE DIAM. FINER THAN .062 MM (70331)
OCT 1997 21 NOV 19 DEC 17 JAN 1998 09 21 FEB 26 DATE OCT 1997 21 NOV 19 DEC	LACHLOR WATER DISSOLV (UG/L) (39415) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.004 PROP-CHLOR, WATER, DISS, REC (UG/L) (04024) <.007 <.007	AZIN-PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 E.001 E.001 E.0128	PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667) <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006	BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.004 <.004 <.004 <.004 <.004 <.004 SI- MAZINE, WATER, DISS, REC (UG/L) (04035) <.005	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.001 TER-BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665) <.011 <.007	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.007 <.004 <.004 <.004 <.004 <.004 <.004 COUNTIES COU	ULATE WATER FILITRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.001 COUNTY OF THE COUNT	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.006 TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678) <.001 <.001	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005	WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.004 MENT, SUS- PENDED (MG/L) (80154)	THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004 <.004 <.004 <.004 <.004 SED. SIEVE DIAM. FINER THAN (70331) 54
OCT 1997 21 NOV 19 JAN 1998 09 21 FEB 26 DATE OCT 1997 21 NOV 19 DEC 17 JAN 1998	LACHLOR WATER DISSOLV (UG/L) (39415) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.000 CHLOR, WATER, DISS, REC (UG/L) (04024) <.007 <.007	AZIN-PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 E.010 E.0169 E.0128 <.018	PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667) <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.010 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.007 UG/L) (82685) <.007 (82685) <.007 (82685) <.007 (82685) <.007 (82685) <.007 (82685) <.007 (82685) 	BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.005 <.005 <.005	AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82684) <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.001 TER-BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665) <.011 <.007 <.007	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.007 <.004 <.004 <.004 <.004 <.004 TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) E.0285 .0158	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.007 COUNTY OF THE COUNTY OF T	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.007 TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678) <.001 <.001 <.001	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.0002 <.0002	WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004 <.004 <.004 <.004 SED. SIEVE DIAM. % FINER THAN062 MM (70331) 54 31
OCT 1997 21 NOV 19 JAN 1998 09 21 FEB 26 DATE OCT 1997 21 NOV 19 DEC 17	LACHLOR WATER DISSOLV (UG/L) (39415) <.002 <.002 <.002 <.002 <.002 <.002 PROP-CHLOR, WATER, DISS, REC (UG/L) (04024) <.007 <.007	AZIN-PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 E.001 E.001 E.0128	PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667) <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006	BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.004 <.004 <.004 <.004 <.004 <.004 SI- MAZINE, WATER, DISS, REC (UG/L) (04035) <.005	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.001 TER-BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665) <.011 <.007	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.007 <.004 <.004 <.004 <.004 <.004 <.004 COUNTIES COU	ULATE WATER FILITRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.001 COUNTY OF THE COUNT	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.006 TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678) <.001 <.001	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005	WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.004 MENT, SUS- PENDED (MG/L) (80154)	THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004 <.004 <.004 <.004 <.004 SED. SIEVE DIAM. FINER THAN (70331) 54

< Actual value is known to be less than the value shown.

E Estimated.

03526000 COPPER CREEK NEAR GATE CITY, VA

LOCATION.--Lat $36^{\circ}40^{\circ}26^{\circ}$, long $82^{\circ}33^{\circ}57^{\circ}$, Scott County, on right bank at upstream side of highway bridge, 0.2 mi upstream from Plank Camp Creek, 1.1 mi downstream from Obeys Creek, and 2.6 mi northeast of Gate City.

DRAINAGE AREA. -- 106 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--September 1947 to September 1972, October 1973 to February 1996 (annual maximum only), March 1996 to September 1998 (discontinued as a continuous-record station; converted to a crest-stage partial-record station).

REVISED RECORDS.--WSP 1143: 1948. WSP 1306: 1948-50(M). WSP 1556: 1951(M).

GAGE.--Water-stage recorder. Datum of gage is 1,301.95 ft above sea level (Virginia Department of Transportation bench mark). Prior to Aug. 30, 1953, nonrecording gage on highway bridge at same site and datum.

REMARKS.--No estimated daily discharges. Records good. Maximum discharge, $7,660 \text{ ft}^3/\text{s}$, from rating curve extended above $3,500 \text{ ft}^3/\text{s}$. Minimum gage height, 1.90 ft, Dec. 5,1969. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 1,200 ft³/s and maximum for year (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Feb. 4	0630	1,650	7.82	Apr. 20	0345	1,900	8.22
Apr. 9	2130	1,240	7.10	May 11	0645	1,210	7.03
Apr. 17	1445	*4,880	*11.51				

Minimum discharge, 23 ft³/s, Dec. 17, 20-21, gage height 2.01 ft.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	41	27	37	38	259	125	148	152	86	336	70	31
2	33	29	47	38	225	118	158	160	83	174	54	30
3	31	31	45	36	384	110	146	171	84	138	47	31
4	30	34	38	36	1310	105	542	445	219	113	45	33
5	30	33	34	41	668	98	530	350	265	103	44	33
6	30	34	32	44	424	94	312	274	240	94	43	34
7	30	30	31	104	310	90	243	247	150	86	42	34
8	30	27	29	668	268	99	209	256	120	82	42	35
9	31	27	31	496	248	266	727	320	127	92	46	35
10	31	26	38	217	232	275	687	404	151	80	53	36
11	31	27	50	133	229	183	399	959	296	72	102	33
12	31	27	53	101	247	150	292	592	185	69	66	32
13	30	27	40	86	222	131	241	404	168	66	52	32
14	29	28	34	75	186	122	215	301	148	64	51	31
15	29	29	31	70	157	113	193	243	139	62	51	31
16	29	28	28	81	144	116	321	207	129	60	62	30
17	30	28	26	94	214	130	3560	182	111	59	130	30
18	30	27	26	81	417	241	1220	161	99	60	107	30
19	30	26	26	77	279	873	1210	146	99	59	69	29
20	29	26	25	83	234	643	1470	136	93	58	53	29
21	29	30	25	87	212	766	718	129	87	56	47	29
22	28	38	31	85	188	521	504	123	103	53	43	30
23	28	46	32	204	183	363	389	131	549	59	41	30
24	28	39	35	238	197	275	309	145	248	60	39	28
25	30	32	42	178	178	224	257	122	174	54	38	27
26	36	29	43	136	158	193	223	125	147	52	36	27
27	45	28	43	185	148	171	201	119	135	50	35	27
28	44	27	43	483	136	157	186	105	118	48	34	27
29	35	26	39	486		145	164	97	107	47	33	28
30	30	27	39	398		134	156	92	156	46	33	29
31	27		38	324		126		88		59	32	
TOTAL	975	893	1111	5403	8057	7157	15930	7386	4816	2511	1640	921
MEAN	31.5	29.8	35.8	174	288	231	531	238	161	81.0	52.9	30.7
MAX	45	46	53	668	1310	873	3560	959	549	336	130	36
MIN	27	26	25	36	136	90	146	88	83	46	32	27
CFSM	.30	.28	. 34	1.64	2.71	2.18	5.01	2.25	1.51	.76	.50	. 29
IN.	.34	.31	.39	1.90	2.83	2.51	5.59	2.59	1.69	.88	.58	.32

03526000 COPPER CREEK NEAR GATE CITY, VA--Continued

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1948 - 1972, 1996**, 1997 - 1998 BY WATER YEAR (WY)

											•	
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	47.5	74.9	151	217	297	288	223	169	88.6	73.5	58.8	46.0
MAX	184	182	327	559	646	784	531	539	228	200	151	124
(WY)	1972	1960	1997	1972	1957	1963	1998	1958	1950	1949	1996	1966
MIN	21.9	21.1	28.2	30.1	71.0	92.7	78.6	54.7	35.8	28.9	26.4	19.6
(WY)	1964	1954	1966	1966	1954	1970	1963	1964	1964	1955	1953	1955
SUMMARY	STATIST:	ICS	FOR :	1997 CALE	NDAR YEAR	F	OR 1998	WATER YEAR		WATER YE	CARS 1948	- 1972
											1996	k *
											1997	- 1998
ANNUAL	TOTAT			50712			56800					
ANNUAL				139			156			143		
	MEAN ANNUAL I	ME AN		139			130			208		1950
	ANNUAL M									80.7		1954
	DAILY ME			1800	Mar 3		3560	Apr 17		4580	Moss	1954
	DAILY MEA			25	aDec 20		25	aDec 20		10		9 1956
		Y MINIMUM		27	Dec 15		27	Dec 15		14		12 1956
	CANEOUS PI			21	Dec 15		4880	Apr 17		b6940		12 1950
	ANEOUS PI							.51 Apr 17		13.14		12 1963
	ANEOUS PI						23	-		d3.6		15 1956
	RUNOFF (1.3	1		1.			1.35		13 1930
	RUNOFF (17.8			19			18.32		
	CENT EXCE			314	U		322			300		
	CENT EXCE			83			81			75		
	CENT EXCE			30			29			28		
JU PERC	TEINI EVCEI	טעב		30			29			20		

^{**} Partial water year.

a Also Dec. 21, 1997.

b Higher maximum occurred during period of non-continuous record; 7,660 ft³/s, Apr. 5, 1977, gage height, 13.57 ft.

c Also Dec. 20-21, 1997.

d Result of freezeup.

03526000 COPPER CREEK NEAR GATE CITY, VA--Continued WATER-QUALITY RECORDS

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1996 to September 1998.

WATER TEMPERATURE: October 1996 to September 1998.

INSTRUMENTATION. -- Water-temperature and specific conductance recorder since October 1996.

REMARKS.--Interruption in record due to conductance probe being out of the water. Records represent specific conductance within 5 microsiemens and water temperature within $0.5^{\circ}C$ at sensors.

EXTREMES FOR PERIOD OF RECORD .--

SPECIFIC CONDUCTANCE: Maximum recorded, 401 microsiemens, Oct. 5, 1996; minimum recorded 188 microsiemens, Apr. 17, 1998.
WATER TEMPERATURE: Maximum recorded, 25.9°C, July 21, 1997; minimum recorded, 0.0°C, Dec. 17, 1997.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum recorded, 386 microsiemens, Jan. 7; minimum recorded 188 microsiemens, Apr. 17.
WATER TEMPERATURE: Maximum recorded, 25.3°C, July 21; minimum recorded, 0.0°C, Dec. 17.

SPECIFIC CONDUCTANCE, US/CM @ 25 DEGREES CELSIUS, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DAY	MAX	MIN	MEAN									
		OCTOBER		NO	OVEMBER		DI	ECEMBER			JANUARY	
1	341	335	339	336	333	335	323	315	320	338	334	336
2	342	336	340	336	329	333	326	318	322	341	337	339
3	347	340	344	332	328	330	323	319	321	347	339	343
4	350	347	349	331	328	329	323	318	321	344	337	341
5	352	349	350	330	327	328	329	322	327	342	337	340
6	351	347	349	330	326	328	331	329	330	352	342	346
7	351	347	349	330	327	329	333	329	331	386	348	361
8	348	345	347	332	330	331	334	329	331	374	298	336
9	347	344	345	336	332	335	337	324	329	320	297	309
10	346	341	344	338	334	336	329	325	326	334	318	327
11	346	341	344	335	333	334	331	327	329	334	330	332
12	345	340	343	335	332	334	332	328	330	340	333	336
13	345	342	344	333	328	331	336	332	334	342	332	338
14	346	344	345	328	323	326	342	336	340	337	331	334
15	345	342	344	327	325	326	345	342	344	337	332	335
16	345	342	343	327	324	326	345	341	343	344	333	338
17	345	342	344	326	323	325	343	335	340	351	338	346
18	344	340	342	327	324	325	338	333	336	351	344	346
19	342	339	341	326	322	324	334	329	332	346	340	343
20	341	337	339	326	323	325	332	325	329	345	340	342
21	339	337	338	326	314	320	328	321	325	345	341	343
22	338	336	337	322	317	319	322	312	316	347	338	343
23	337	335	336	324	320	322	319	315	317	349	338	343
24	337	333	336	326	323	324	318	312	316	354	347	351
25	336	331	334	328	325	327	321	315	319	357	351	355
26	334	320	329	332	327	330	324	319	320	357	348	354
27	326	319	324	335	332	333	326	321	323	350	335	344
28	326	324	325	336	332	334	329	325	327	335	326	332
29	329	324	327	334	330	332	334	329	331	346	326	339
30	331	329	330	333	321	328	348	332	338	350	340	347
31	333	330	332				348	334	337	356	340	349
MONTH	352	319	340	338	314	329	348	312	329	386	297	341

03526000 COPPER CREEK NEAR GATE CITY, VA--Continued

SPECIFIC CONDUCTANCE, US/CM @ 25 DEGREES CELSIUS, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5	358 357 357 299 291	349 351 299 264 274	354 355 341 274 281	310 311 310 312 312	298 298 300 304 300	305 305 305 308 307	297 309 315 320 318	283 297 296 290 303	290 303 306 306 310	298 297 312 312 315	288 283 281 281 299	292 291 299 302 307
6 7 8 9 10	291 298 303 308 308	287 291 298 301 302	289 295 301 304 305	312 315 311 321 326	305 305 299 295 316	309 310 305 305 321	311 320 331 330 297	296 300 317 269 268	301 309 324 301 284	312 310 311 320 315	298 295 298 291 298	307 303 305 307 309
11 12 13 14 15	308 306 306 303 302	299 301 297 294 296	304 304 302 299 299	321 320 321 320 318	314 314 312 308 306	317 317 317 314 313	303 304 294 301 299	297 284 285 290 292	299 294 290 296 295	313 302 300 300 302	291 288 284 286 286	300 296 294 294 293
16 17 18 19 20	303 304 305 305 308	297 291 294 301 304	300 299 298 304 306	320 314 316 293 286	302 307 251 273 273	308 310 301 279 281	318 257 264 266 262	257 188 242 251 259	304 225 255 259 261	303 304 301 	287 287 287 	293 297 296
21 22 23 24 25	311 311 309 311 316	302 302 304 306 309	307 307 307 309 312	285 286 289 291 294	279 282 284 286 290	283 284 287 289 292	268 274 277 280 285	261 268 274 277 280	264 271 275 279 283	304 306 311	 292 298 302	299 302 307
26 27 28 29 30 31	316 314 314 	307 304 302 	312 310 308 	297 298 302 302 304 304	289 288 286 287 285 284	294 295 295 295 295 295	288 291 293 293 295	282 285 285 284 286	286 288 290 289 290	311 313 318 321 321 322	299 306 310 308 306 309	304 309 313 316 314 316
MONTH	358	264	307	326	251	301	331	188	288			
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN		MIN AUGUST	MEAN		MIN SEPTEMBE	
DAY 1 2 3 4 5	MAX 322 317 318 304 311			325 334 342 343 340	JULY			AUGUST			SEPTEMBE	
1 2 3 4	322 317 318 304	JUNE 306 307 291 231	315 312 311 287	325 334 342 343	JULY 279 301 322 336	302 325 339 339 337	321 326 328 336 342	312 313 319 327	316 321 323 333 339	347 347 345 343 346	344 343 338 336 336	346 345 343 341
1 2 3 4 5 6 7 8	322 317 318 304 311 330 334 335 333	JUNE 306 307 291 231 281 311 328 326 310	315 312 311 287 299 325 331 331 325	325 334 342 343 340 335 333 337 339	JULY 279 301 322 336 333 328 328 328 330 323	302 325 339 339 337 333 331 334 334	321 326 328 336 342 339 343 345 339	312 313 319 327 336 332 331 319 304	316 321 323 333 339	347 347 345 343	344 343 338 336 336	346 345 343 341 342 336 331 328 329
1 2 3 4 5 6 7 8 9 10 11 12 13 14	322 317 318 304 311 330 334 335 333 335 347 341 341 339	JUNE 306 307 291 231 281 311 328 326 310 324 299 319 324 330	315 312 311 287 299 325 331 331 325 330 322 334 334 335	325 334 342 343 340 335 337 337 339 336 341 341 343	JULY 279 301 322 336 333 328 328 329 330 323 322 334 331 331 332	302 325 339 339 337 331 334 332 337 337 337 336 338	321 326 328 336 342 339 343 345 339 325 321 331 336 332	312 313 319 327 336 332 331 319 304 301 315 320 313 313	316 321 323 333 339 337 337 334 327 308 319 326 329 325	347 347 345 343 346 340 335 331 333 332 334 334 335 337	344 343 343 336 336 336 328 325 327 328 330 331 331 332	346 345 343 341 342 336 331 328 329 329 331 333 333 333 333
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	322 317 318 304 311 330 334 335 333 335 347 341 341 339 333 333 331 332 331	JUNE 306 307 291 231 281 311 328 326 310 324 299 319 324 330 324 320 322 317	315 312 311 287 299 325 331 331 325 330 322 334 334 335 328 329 327 328	325 334 342 343 340 335 337 339 336 341 341 343 343 338 338	JULY 279 301 322 336 333 328 328 329 334 331 331 332 330 329 326 326 310	302 325 339 337 331 334 334 332 337 337 336 338 335 331 331 331 330 323	321 326 328 336 342 339 343 345 339 325 321 331 336 332 344 338 332 348	312 313 319 327 336 332 331 304 301 315 320 313 311 328 319 308	316 321 323 333 339 337 337 334 327 308 319 326 329 325 338 329 319 343 357	347 347 345 343 346 340 335 331 332 334 334 335 337 336 338 337 340 338	344 343 338 336 336 332 328 325 325 327 328 330 331 332 332 332 333 331 332 333 333	346 345 343 341 342 336 331 328 329 329 329 331 333 333 333 335 335 337
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	322 317 318 304 311 330 334 335 337 347 341 341 339 333 331 329 329 331 329	JUNE 306 307 291 231 281 311 328 326 310 324 299 319 324 330 324 320 322 317 320 321 282 251 299	315 312 311 287 299 325 331 325 330 322 334 335 328 329 327 328 324 324 325 320 283 321	325 334 342 343 340 335 337 339 336 341 341 343 343 338 334 337 329 329 329	JULY 279 301 322 336 333 328 328 329 331 331 332 330 329 326 326 310 319 327 328 322 326	302 325 339 337 331 334 332 337 337 336 338 335 331 331 332 323 326 329 331	321 328 328 336 342 339 343 345 339 325 321 331 336 332 344 338 332 344 338 332 345 359 358	312 313 319 327 336 332 331 304 301 315 320 311 328 319 308 317 357	316 321 323 333 339 337 337 337 308 319 326 329 325 338 329 319 343 357 360	347 347 345 343 346 340 335 331 332 334 335 337 336 338 337 340 340 340 341 341 341 341	344 343 338 336 336 332 328 325 327 328 330 331 332 332 333 331 335 336 335 336 336 336 337	346 345 343 341 342 336 331 329 329 329 331 333 333 335 334 335 337 337 337 338 338 338 338 338

03526000 COPPER CREEK NEAR GATE CITY, VA--Continued

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DAY	MAX	MIN OCTOBER	MEAN	MAX	MIN IOVEMBER	MEAN	MAX	MIN ECEMBER	MEAN	MAX	MIN	MEAN
1 2 3 4 5	17.0 15.6 15.1 16.0 16.9	15.1 13.0 11.9 12.7 13.8	16.1 14.4 13.7 14.4 15.3	11.7 11.8 10.7 9.8 8.1	9.7 10.6 9.3 7.3 5.3	10.6 11.3 10.0 8.6 6.7	9.6 6.9 7.8 9.0 8.1		8.9 5.8 6.7 8.4 6.4	1.5 .7 2.1 3.4 5.8	.1 .1 .1 1.3 2.1	.3 .2 1.0 2.3 3.7
6 7 8 9 10	17.1 17.2 17.6 17.9 17.7	14.2 14.2 14.8 15.0 16.6	15.7 15.8 16.3 16.6 17.2	7.6 9.0 9.0 9.0	6.2 7.3 8.4 8.1 7.8	6.9 8.1 8.7 8.5 8.4	4.9 2.8 2.6 4.6 6.8	2.7 2.1 1.1 2.6 4.6	3.6 2.5 2.0 3.6 5.5	7.3 10.0 12.1 11.9 9.1	5.8 7.2 10.0 9.1 6.9	6.4 8.2 11.2 10.8 7.8
11 12 13 14 15	19.6 18.9 18.8 18.0 14.6	17.3 16.3 16.0 14.6 11.6	18.2 17.7 17.5 16.4 13.1	8.9 8.5 8.3 8.8 7.9	8.3 7.2 6.6 7.9 5.7	8.6 7.9 7.4 8.3 6.9	6.1 5.5 5.1 3.6 2.1	5.3 4.7 3.6 1.9	5.6 5.2 4.5 2.6 1.3	7.1 8.0 8.7 7.8 7.8	6.1 6.9 7.8 5.8 7.1	6.6 7.3 8.1 6.8 7.4
16 17 18 19 20	13.2 12.8 13.9 14.1 13.0	10.2 11.9 11.9 12.5 10.7	11.9 12.4 12.9 13.3 12.0	5.7 4.9 3.7 5.2 4.9	4.5 3.1 1.5 2.8 2.3	5.1 4.0 2.8 3.8 3.7	1.8 2.0 2.2 2.4 3.2	.1 .0 .2 .4	1.0 1.1 1.3 1.5 2.0	8.3 8.0 6.7 6.6 5.9	7.7 6.7 5.2 5.9 4.2	8.0 7.4 6.1 6.2 5.0
21 22 23 24 25	12.5 11.7 10.1 9.3 13.4	10.6 10.0 6.7 7.5 9.3	11.2 10.8 8.4 8.3 11.3	6.0 8.5 8.8 7.2 4.7	3.9 6.0 7.2 4.7 2.4	4.6 7.4 8.0 5.8 3.7	5.0 7.3 7.9 7.2 7.7	2.4 5.0 6.6 6.3 6.4	3.5 6.1 7.1 6.7 6.9	5.8 7.2 8.7 8.8 7.6	3.7 5.6 7.2 7.6 6.1	4.7 6.2 8.0 8.4 7.0
26 27 28 29 30 31	14.1 14.0 10.8 10.0 9.8 10.1	13.0 10.8 8.7 7.2 6.6 7.0	13.5 12.4 9.9 8.7 8.3 8.6	4.5 5.0 5.7 6.7 9.8	2.7 3.0 3.3 4.7 6.7	3.6 4.1 4.5 5.6 8.3	7.5 6.7 5.1 3.9 3.5 2.4	6.3 4.8 3.9 2.3 2.4	6.8 5.6 4.5 3.1 3.0	6.8 5.8 7.4 8.2 8.5 8.2	5.1 4.2 4.2 6.6 7.4 7.2	5.9 5.1 6.1 7.4 7.9 7.7
MONTH	19.6	6.6	13.3	11.8	1.5	6.7	9.6	.0	4.3	12.1	.1	6.3
DAY	MAX	MIN FEBRUARY	MEAN	MAX	MIN MARCH	MEAN	MAX	MIN APRIL	MEAN	MAX	MIN MAY	MEAN
1 2 3 4 5	7.2 7.7 8.5 8.5 8.3	5.4 6.1 7.7 8.0 8.0	6.4 6.9 8.0 8.1 8.1	11.9 10.9 9.0 7.9 9.6	10.2 9.0 7.2 6.5 6.3	11.0 9.9 7.9 7.0 7.7	18.2 17.5 15.0 13.3 13.2	15.8 13.4 12.4 11.1 10.1	17.0 15.4 13.5 12.1 11.4	15.8 15.1 15.6 13.9 14.8	14.4 13.6 13.6 13.1 12.3	15.0 14.4 14.4 13.5 13.5
6 7 8 9 10	8.6 9.0 8.7 9.4 9.1	7.8 7.8 7.8 8.0 7.5	8.2 8.4 8.3 8.6 8.4	9.2 10.5 12.8 12.4 9.9	7.3 8.1 10.1 9.9 6.5	8.2 9.3 11.4 11.5 8.0	14.1 14.8 16.4 15.4 12.8	9.9 10.9 12.9 12.8 10.8	11.9 12.8 14.5 14.1 11.7	16.4 15.8 15.3 16.1 15.6	12.6 14.7 14.6 14.3	14.5 15.3 15.0 15.1 14.5
11 12 13 14 15	9.4 9.4 8.3 9.0 8.2	8.1 8.3 7.8 7.2 5.5	8.7 8.8 8.1 7.9 6.9	6.7 6.9 6.3 8.6 9.6	5.0 3.6 2.9 3.9 5.1	5.9 5.1 4.6 6.0 7.2	13.7 14.7 14.8 15.4 15.5	10.0 10.3 11.1 13.3 12.9	11.5 12.4 13.0 14.1 14.1	15.1 15.7 17.4 18.9 19.9	13.7 13.3 13.5 15.3 16.4	14.2 14.4 15.3 17.0 18.1
16 17 18 19 20	8.7 10.5 10.3 9.5 9.1	7.1 8.5 9.4 9.1 8.7	7.9 9.3 9.9 9.3 8.9	9.1 9.9 10.8 12.6 12.5	7.1 7.7 8.8 10.8 11.1	8.1 8.8 9.7 11.6 11.7	14.9 13.7 13.6 12.9 13.7	13.5 12.9 12.6 12.5 12.0	14.1 13.3 13.0 12.7 12.8	19.4 21.1 20.8 21.0 21.8	17.4 17.7 16.7 16.5 17.9	18.5 19.2 18.7 18.7 19.7
21 22 23 24 25	9.5 9.3 9.1 8.7	8.3 7.2 8.5 7.4	8.9 8.3 8.9 8.1	11.5 9.4 10.1 10.9	9.3 8.6 7.3 8.7	10.5 9.0 8.7 9.7	13.7 13.1 13.6 14.4	11.8 12.3 11.7 11.5	12.8 12.6 12.6 12.9	22.0 20.7 19.4 20.5	18.7 18.4 17.9 17.7	20.2 19.7 18.5 18.9
	9.8	6.5	8.1	10.2	8.6	9.4	15.4	11.4	13.4	21.0	18.6	19.8
26 27 28 29 30 31					8.4 11.3 13.1 14.0 14.1 15.2	10.8 13.6 15.2 16.0 16.4 16.9	15.4 16.7 15.5 15.3 15.6	11.4 13.4 13.4 11.9 13.1 14.2	14.9 14.4 13.6 14.3 14.9	20.9 20.4 22.3 22.8 23.8 23.4	18.6 19.0 18.3 18.7 19.7 20.5	19.8 19.6 20.0 20.7 21.6 22.0

03526000 COPPER CREEK NEAR GATE CITY, VA--Continued

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMBE	R
1 2	23.8 21.9	20.5 19.3	22.0 20.7	20.3	19.2 17.9	19.7 19.0	23.1 23.2	19.8 19.5	21.4 21.4	23.1 22.4	20.0 19.1	21.6 20.9
3	22.4	19.1	20.7	21.6	18.0	19.6	22.9	18.8	20.9	21.8	19.5	20.5
4	20.6	17.6	19.1	21.1	19.2	20.1	22.9	18.7	20.8	22.5	19.2	20.8
5	18.8	17.1	17.8	22.5	19.6	20.9	22.8	18.8	20.9	23.3	20.2	21.8
6	18.2	16.2	17.4	23.0	19.7	21.3	23.7	19.7	21.7	22.6	20.0	21.6
7	16.9	14.5	15.7	22.8	20.0	21.5	23.5	20.3	22.1	23.3	20.3	21.9
8	16.8	14.2	15.6	22.2	21.1	21.7	24.3	21.4	22.8	22.7	19.8	21.4
9	16.3	15.5	15.8	23.0	21.0	21.9	23.8	21.6	22.8	19.8	16.3	17.8
10	16.4	15.6	16.0	24.1	21.2	22.5	24.8	21.9	23.2	18.3	14.6	16.6
11	18.4	16.0	17.1	23.7	20.6	22.2	24.5	22.0	23.3	18.8	15.1	17.1
12	19.2	17.4	18.2	24.3	20.1	22.1	24.5	21.5	23.0	19.9	16.2	18.1
13	20.8	17.9	19.1	24.7	21.2	22.9	24.8	21.4	23.1	20.9	17.2	19.1
14	19.2	17.6	18.4	23.9	21.9	22.5	23.7	21.8	22.4	21.8	18.3	20.1
15	20.5	17.5	18.8	23.2	20.5	21.8	22.9	21.2	22.0	21.9	18.9	20.6
16	21.2	18.1	19.6	23.6	20.7	22.2	22.4	21.3	21.8	22.2	19.8	21.2
17	21.9	17.9	19.8	23.9	21.2	22.5	22.2	20.0	21.3	22.7	20.0	21.4
18	22.2	18.2	20.3	24.1	20.2	22.1	23.7	20.8	22.1	22.8	20.5	21.8
19	21.6	19.7	20.6	23.1	21.0	22.0	24.4	21.6	22.8	23.0	20.4	21.8
20	23.4	19.4	21.2	23.4	20.5	21.8	23.6	20.1	21.9	23.1	20.3	21.8
21	22.2	20.0	20.8	25.3	20.8	22.9	23.7	20.1	21.9	22.6	21.0	21.7
22	23.6	19.6	21.2	25.0	21.8	23.4	24.1	20.5	22.3	22.8	20.9	21.8
23	19.8	18.2	18.9	24.3	22.3	23.1	24.7	21.1	22.9	22.0	19.7	20.7
24	20.7	18.1	19.2	23.9	22.0	22.8	25.0	21.8	23.4	19.7	16.7	18.4
25	21.6	18.2	19.8	23.8	21.8	22.8	24.9	21.6	23.4	20.2	17.4	18.8
26	22.4	19.8	21.0	23.8	21.4	22.6	24.6	21.7	23.3	21.5	18.2	19.8
27	23.5	20.3	21.6	23.1	21.2	22.2	24.5	21.5	23.1	21.8	18.5	20.3
28	23.3	20.6	21.8	24.5	21.2	22.7	23.9	20.5	22.4	22.0	19.7	21.0
29	22.4	20.9	21.5	24.9	21.3	23.1	23.2	20.5	21.9	21.6	19.4	20.7
30	22.5	19.5	20.9	24.0	21.5	22.4	24.1	21.0	22.5	22.7	20.1	21.4
31				22.6	21.6	22.0	23.4	20.6	22.2			
MONTH	23.8	14.2	19.4	25.3	17.9	21.9	25.0	18.7	22.3	23.3	14.6	20.4
YEAR	25.3	.0	13.7									

NATIONAL WATER-QUALITY ASSESSMENT PROGRAM TENNESSEE RIVER BASIN SURFACE-WATER QUALITY

03526000 COPPER CREEK NEAR GATE CITY, VA

 $\label{location.--Lat 36°40'26", long 82°33'57", Scott County, on right bank at upstream side of highway bridge, 0.2 minupstream from Plank Camp Creek, 1.1 minupstream from Obeys Creek, and 2.6 min ortheast of Gate City.$ DRAINAGE AREA. -- 106 mi².

PERIOD OF RECORD: --October 1996 to present.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DATE	GAGE HEIGHT (FEET) (00065)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML) (31501)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	E. COLI WATER WHOLE TOTAL UREASE (COL / 100 ML) (31633)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)
OCT 1997 20	2.01	29	341	8.2	6.0	10.6	727	9.8	450	120	110	38
NOV 18	2.08	28	327	8.1	-3.5	1.3	731	13.6	150	78	53	42
DEC 16	2.11	32	345	8.3	-3.0	2	728	12.6	86	К35	33	45
JAN 1998 09 20 FEB	4.68	484 81	305 344	8.1 8.3	7.0 -1.0	10.8 4.1	717 726	9.1 11.8	5400 170	2300 K52	2400 K33	44 47
04 25	7.72 3.26	1590 182	264 315	8.0 8.3	4.0	7.8 6.3	712 726	10.4 11.7	3600 K90	2900 70	2100 K10	40 42
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)
OCT 1997 20 NOV	19	2.1	2.2	4.7	3.8	<.10	6.7	222	0	182	196	<.010
18 DEC	18	2.3	1.6	5.8	4.4	<.10	4.9	157	4	135	191	<.010
16 JAN 1998	17	3.2	1.4	8.1	6.5	<.10	2.7	210	0	172	196	.020
09 20 FEB	9.2 14	3.7 3.5	1.9 1.4	10 9.4	9.1 7.7	<.10 .10	5.7 4.2	150 242	0 1	123 201	185 208	<.010 <.010
04 25	9.1 13	2.2	1.6 1.2	7.9 6.9	5.2 5.7	<.10 <.10	5.2 4.8	170 181	1 6	139 158	153 177	<.010 <.010
DATE	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS-PHORUS ORTHO, DIS-SOLVED (MG/L AS P) (00671)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660)
OCT 1997 20	.439	.044	<.20	<.20	<.010	<.010	.010	5.0	3.5	1.8	.40	<.003
NOV 18	.649	<.020	<.10	<.10	<.010	<.010	.020	5.9	1.3	1.1	.20	<.003
DEC 16	.785	<.020	<.10	<.10	.012	<.010	.015	<10	<4.0	1.9	.30	<.003
JAN 1998 09 20	1.79 1.31	<.020 <.020	.79 <.10	.15 <.10	.095	<.010 <.010	.012 <.010	20 <10	<4.0 <4.0	2.9 1.2	3.0 <.20	<.003 <.003
04 25	1.32 1.31	<.020 <.020	.68 <.10	.11 <.10	.118 <.010	.017 <.010	.023	<10 <10	<4.0 <4.0	3.0	2.7	<.003 <.003

< Actual value is known to be less than the value shown.

K Results based on colony count outside the acceptance range (non-ideal colony count).

NATIONAL WATER-QUALITY ASSESSMENT PROGRAM TENNESSEE RIVER BASIN SURFACE-WATER QUALITY

03526000 COPPER CREEK NEAR GATE CITY, VA--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DATE	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)	ACETO- CHLOR, WATER FLTRD REC (UG/L) (49260)	ALPHA BHC DIS- SOLVED (UG/L) (34253)	BEN- FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	BUTYL- ATE, WATER, DISS, REC (UG/L) (04028)	CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)	CARBO- FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674)	CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)	DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)
OCT 1997 20	<.002	E.008	<.002	<.002	<.002	<.002	<.004	<.009	<.011	<.004	<.002	E.0131
NOV 18	<.002	.005	<.002	<.002	<.002	<.002	<.004	<.003	<.003	<.004	<.002	E.0033
DEC 16 JAN 1998	<.002	.005	<.002	<.002	<.002	<.002	<.004	<.003	<.003	<.004	<.002	E.0055
09 20 FEB	<.002 <.002	E.004	<.002 <.002	<.002 <.002	<.002 <.002	<.002 <.002	<.004 <.004	<.003 <.003	<.003 <.003	<.004 <.004	<.002 <.002	E.0032 E.0052
04 25	<.002 <.002	E.003 .005	<.002 <.002	<.002 <.002	<.002 <.002	<.002 <.002	<.004 <.004	<.003 <.003	<.003 <.003	<.004 <.004	<.002 <.002	E.0025 E.0042
DATE	DISUL- FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	DI- AZINON, DIS- SOLVED (UG/L) (39572)	DI- ELDRIN DIS- SOLVED (UG/L) (39381)	P,P' DDE DISSOLV (UG/L) (34653)	EPTC WATER FLTRD 0.7 U GF, REC (UG/L) (82668)	ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663)	ETHO- PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672)	FONOFOS WATER DISS REC (UG/L) (04095)	LINDANE DIS- SOLVED (UG/L) (39341)	LIN- URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666)	MOL- INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671)	MALA- THION, DIS- SOLVED (UG/L) (39532)
OCT 1997 20	<.017	<.002	<.001	<.006	<.002	<.004	<.003	<.003	<.004	<.002	<.004	<.005
NOV 18	<.017	<.002	<.001	<.006	<.002	<.004	<.003	<.003	<.004	<.002	<.004	<.005
DEC 16 JAN 1998	<.017	<.002	<.001	<.006	<.002	<.004	<.003	<.003	<.004	<.002	<.004	<.005
09 20 FEB	<.017 <.017	<.002 <.002	<.001 <.001	<.006 <.006	<.002 <.002	<.004 <.004	<.003 <.003	<.003 <.003	<.004 <.004	<.002 <.002	<.004 <.004	<.005 <.005
04	<.017 <.017	<.002 <.002	<.001 <.001	<.006 <.006	<.002 <.002	<.004 <.004	<.003 <.003	<.003 <.003	<.004 <.004	<.002 <.002	<.004 <.004	<.005 <.005
		METHYL	METHYL		NAPROP-	PRON-	PRO-	PEB-	PENDI-	PER-		
DATE	METO- LACHLOR WATER DISSOLV (UG/L) (39415)	AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)	PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667)	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	PHORATE WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	PARA- THION, DIS- SOLVED (UG/L) (39542)
OCT 1997 20	LACHLOR WATER DISSOLV (UG/L) (39415)	AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L)	PARA- THION WAT FLT 0.7 U GF, REC (UG/L)	BUZIN SENCOR WATER DISSOLV (UG/L)	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L)	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L)	PANIL WATER FLTRD 0.7 U GF, REC (UG/L)	ULATE WATER FILTRD 0.7 U GF, REC (UG/L)	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L)	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L)	WATER FLTRD 0.7 U GF, REC (UG/L)	THION, DIS- SOLVED (UG/L)
OCT 1997 20 NOV 18	LACHLOR WATER DISSOLV (UG/L) (39415)	AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)	PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667)	BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	THION, DIS- SOLVED (UG/L) (39542)
OCT 1997 20 NOV 18 DEC 16	LACHLOR WATER DISSOLV (UG/L) (39415) <.002 <.002 <.002	AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)	PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667)	BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	THION, DIS- SOLVED (UG/L) (39542)
OCT 1997 20 NOV 18 DEC 16 JAN 1998 09	LACHLOR WATER DISSOLV (UG/L) (39415) <.002 <.002 <.002	AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001	PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667) <.006	BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.004	AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82684)	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.008	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.005	WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <.002	THION, DIS- SOLVED (UG/L) (39542) <.004
OCT 1997 20 NOV 18 DEC 16 JAN 1998 09	LACHLOR WATER DISSOLV (UG/L) (39415) <.002 <.002 <.002 <.002 <.002 <.002	AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001 <.001 <.001 <.001	PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667) <.006 <.006 <.006 <.006	BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.004 <.004 <.004 <.004	AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82684) < .003 < .003 < .003 < .003	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 <.003	PANIL WATER FLIRD 0.7 U GF, REC (UG/L) (82679) <.008 <.004 <.004	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.005 <.005	WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <.002 <.002 <.002	THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004
OCT 1997 20 NOV 18 DEC 16 JAN 1998 09 20 FEB 04	LACHLOR WATER DISSOLV (UG/L) (39415) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001	PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667) <.006 <.006 <.006 <.006 <.006	BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.004 <.004 <.004 <.004 <.004	AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82684) < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 <.003 <.003 TER-BACIL WATER FLTRD 0.7 U	PANIL WATER FLIRD 0.7 U GF, REC (UG/L) (82679) <.008 <.004 <.004 <.004 <.004 <.004	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004 <.004 TER-BUFOS WATER FLTRD 0.7 U	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004 <.004 <.004	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.005 <.005 <.005 <.005 <.005	WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <.002 <.002 <.002 <.002 <.002 <.002	THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004 <.004 <.004 <.004 <.004
OCT 1997 20 NOV 18 DEC 16 JAN 1998 09 20 FEB 04 25	LACHLOR WATER DISSOLV (UG/L) (39415) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 (.002 (.002 (.002) (.002 (.002) (.00	AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001	PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667) <.006 <.006 <.006 <.006 <.006 <.006 PRO- PARGITE WATER FLTRD 0.7 U GF, REC (UG/L)	BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.004 <.004 <.004 <.004 <.004 <.004 SI- MAZINE, WATER, DISS, REC (UG/L)	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) <.003 <.003 <.003 <.003 <.003 <.1003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 <.003 <.003 <.003 TER-BACIL WATER FLTRD 0.7 U GF, REC (UG/L)	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.008 <.004 <.004 <.004 <.004 <.004 TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L)	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004 <.004 TER- BUFOS WATER FLTRD 0.7 U GF, REC (UG/L)	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004 <.004 <.004 <.004 TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L)	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.005 <.005 <.005 <.005 <.005 <.005 THIO-BENCARB WATER FLTRD 0.7 U GF, REC (UG/L)	WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <.002 <.002 <.002 <.002 <.002 <.002 SEDI- MENT, SUS- PENDED (MG/L)	THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004 <.004 <.004 <.004 SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 1997 20 NOV 18 DEC 16 JAN 1998 09 20 FEB 04 25 DATE OCT 1997 20 NOV 18	LACHLOR WATER DISSOLV (UG/L) (39415) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 (.002 (.002) (.002 (.002) (.0	AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 (.001) (.0	PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667) <.006 <.006 <.006 <.006 <.006 <.006 PRO- PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.004 <.004 <.004 <.004 <.004 <.004 SI- MAZINE, WATER, DISS, REC (UG/L) (04035)	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .0	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 <.003 <.003 <.003 TER-BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	PANIL WATER FLITED 0.7 U GF, REC (UG/L) (82679) <.008 <.004 <.004 <.004 <.004 <.004 TEBU- THIURON WATER FLITED 0.7 U GF, REC (UG/L) (82670)	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004 <.004 TER-BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675)	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004 <.004 <.004 <.004 TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678)	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.005 <.005 <.005 <.005 <.005 <.005 THIO-BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681)	WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <.002 <.002 <.002 <.002 <.002 <.002 SEDI- MENT, SUS- PENDED (MG/L) (80154)	THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004 <.004 <.004 <.004 SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
OCT 1997 20 NOV 18 DEC 16 JAN 1998 09 20 FEB 04 25 DATE OCT 1997 20 NOV 18 DEC	LACHLOR WATER DISSOLV (UG/L) (39415) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.004 <.000 PROP-CHLOR, WATER, DISS, REC (UG/L) (04024) <.007 <.007	AZIN-PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001	PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667) <.006 <.006 <.006 <.006 <.006 <.006 PRO- PARGITE WATER FLIRD 0.7 U GF, REC (UG/L) (82685)	BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .0	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 <.003 <.003 TER-BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665) <.014	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.008 <.004 <.004 <.004 <.004 <.004 TEBU-THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) E.0151	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004 TER-BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675) <.013	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004 <.004 <.004 <.004 TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678) <.001	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.005 <.005 <.005 <.005 <.005 <.005 THIO-BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681)	WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <.002 <.002 <.002 <.002 <.002 <.002 SEDI- MENT, SUS- PENDED (MG/L) (80154)	THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
OCT 1997 20 NOV 18 DEC 16 JAN 1998 09 20 FEB 04 25 DATE OCT 1997 20 NOV 18 DEC	LACHLOR WATER DISSOLV (UG/L) (39415) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.004 <.000 PROP-CHLOR, WATER, DISS, REC (UG/L) (04024) <.007 <.007	AZIN-PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001	PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667) <.006 <.006 <.006 <.006 <.006 <.006 PRO- PARGITE WATER FLITED 0.7 U GF, REC (UG/L) (82685) <.013 <.013	BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.004 <.004 <.004 <.004 <.004 <.004 SI- MAZINE, WATER, DISS, REC (UG/L) (04035) <.005	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.004 C.005 C.006 C.007	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 <.003 <.003 <.003 COMMINICATION OF THE TEACH OF THE TEA	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.008 <.004 <.004 <.004 <.004 <.004 TEBU-THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) E.0151 <.010	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004 <.004 TER-BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675) <.013 <.013	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004 <.004 <.004 <.004 TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678) <.001 <.001	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.005 <.005 <.005 <.005 <.005 <.005 THIO-BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681) <.002	WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <.002 <.002 <.002 <.002 <.002 <.002 <.002 (.002 (.002 (.002) (.002 (.002) 2.002	THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004 <.004 <.004 <.004 SED. SUSP. SIEVE DIAM. FINER THAN .062 MM (70331) 50 71

< Actual value is known to be less than the value shown. $\ensuremath{\mathtt{E}}$ Estimated.

03528000 CLINCH RIVER ABOVE TAZEWELL, TN

LOCATION.--Lat 36°25'30", long 83°23'54", Claiborne County, Hydrologic Unit 06010205, on right bank 0.4 mi upstream from Grissom

Island, 4.6 mi downstream from Big War Creek, 10 mi east of Tazewell, and at mile 159.8.

DRAINAGE AREA.--1,474 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1918 to current year. Published as "near Lone Mountain" October 1918 to September 1927; as "near Tazewell" August 1927 to December 1936; and as "above Tazewell" July 1935 to current year. Prior to April 1919, monthly discharge only, published in WSP 1306. Gage-height record "near Tazewell" January 1937 to July 1941.

REVISED RECORDS.--WSP 803: Drainage area at site "near Tazewell". WSP 1306: Drainage area at site "near Lone Mountain". WSP 1336: 1928.

GAGE.--Data collection platform. Datum of gage is 1,060.7 ft above sea level. April 1, 1919, to Sept. 30, 1927, nonrecording gage on railroad bridge 23.3 mi downstream at datum 102.7 ft lower. Aug. 8, 1927, to July 16, 1941, water-stage recorder at site 8.0 mi downstream at datum 47.2 ft lower. Water-stage recorder at present site and datum since July 29, 1935.

REMARKS.--No estimated daily discharges. Records good. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in February 1862 reached a stage of about 24 ft, present site and datum, from information by local resident, discharge, about $66,000 \, \mathrm{ft}^3/\mathrm{s}$.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $14,000~{\rm ft}^3/{\rm s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Mar 19 Mar 22	2100 2130	14,700 16,800	9.80 10.61	Apr 18	0400	*35,900	*16.72

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Minimum discharge, 171 ft³/s, Oct 18.

		DIBCIII	MOD, CODI	C 1 DD1 11	DAII	LY MEAN V		un(1997 10	, on thin	II. 1990		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	364	262	318	e550	3570	2480	2000	2710	1880	1370	467	302
2	322	251	395	e500	2990	2280	2460	2680	1690	1630	602	288
3 4	273	247	433	e460	3120	2070	2650	2590	1390	1330	662	279
	244	246	471	448	8520	1860	6220	3890	1270	1120	574	270
5	225	256	488	468	12800	1700	8820	5000	2140	959	484	266
6	213	280	436	586	8740	1550	6620	4160	3290	863	422	258
7	206	310	407	988	5470	1440	4540	3710	2950	810	380	249
8	199	325	386	5800	4110	1450	3550	4050	2350	758	352	247
9	192	301	383	8750	3660	1940	5060	4160	1930	869	337	250
10	189	275	493	5880	3540	3380	8460	6480	2190	819	335	257
11	185	271	631	3340	3910	3780	8790	10700	6770	868	372	252
12	185	264	789	2280	4650	e3100	6720	11300	10500	802	553	256
13	184	263	741	1750	7160	e2600	5100	7120	5570	686	926	242
14	183	269	620	1450	6540	2220	4050	4870	4670	623	815	234
15	185	282	536	1270	4460	1970	3390	3720	3920	614	842	228
16	184	289	469	1290	3390	1840	3660	3000	3380	666	773	222
17	178	282	416	1400	2980	1940	28000	2520	2860	594	1510	217
18	173	276	375	1380	4320	2670	33800	2150	2300	556	2010	209
19	178	267	346	1360	6670	11400	27600	1870	1910	561	1570	202
20	178	258	324	1350	5550	12600	25600	1650	1730	561	1120	197
21	178	269	312	1360	4330	11700	18100	1490	1730	564	857	198
22	185	418	386	1370	3660	14900	10500	1440	1690	505	686	203
23	185	522	504	1650	3260	12500	7370	1520	1730	498	590	203
24	185	546	494	3060	3150	6220	5660	1780	3120	855	513	203
25	187	484	588	3140	4070	4410	4550	2300	2370	793	461	219
26	214	428	622	2620	3870	3490	3670	3760	1980	775	423	240
27	298	374	e642	2460	3220	2930	3190	3160	1630	644	391	249
28	333	335	e700	5550	2780	2530	3220	2580	1390	564	364	235
29	318	304	e650	6630		2260	2790	2510	1210	496	340	223
30	306	293 	e600	4820		2040	2540	2180	1220	453	326	214
31	286		e575	4100		1850		1830		470	314	
TOTAL	6915	9447	15530	78060	134490	129100	258680	112880	82760	23676	20371	7112
MEAN	223	315	501	2518	4803	4165	8623	3641	2759	764	657	237
MAX	364	546	789	8750	12800	14900	33800	11300	10500	1630	2010	302
MIN	173	246	312	448	2780	1440	2000	1440	1210	453	314	197
CFSM IN.	.15 .17	.21 .24	.34 .39	1.71 1.97	3.26 3.39	2.83 3.26	5.85 6.53	2.47 2.85	1.87 2.09	.52 .60	.45 .51	.16 .18
IN.	.1/	. 24	. 39	1.9/	3.39	3.∠6	0.53	∠.85	⊿.09	.00	.51	.18

e Estimated

03528000 CLINCH RIVER ABOVE TAZEWELL, TN--Continued

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1919 - 1998, BY WATER YEAR (WY)

OCT NOV	DEC JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN 664 1117 MAX 2871 4794 (WY) 1990 1978 MIN 145 159 (WY) 1964 1940	2364 3485 9107 9500 1927 1937 217 285 1940 1940	4173 9426 1957 572 1941	4318 11950 1963 990 1988	3113 8860 1977 711 1986	2325 6382 1929 547 1941	1303 3865 1989 301 1988	958 3251 1938 239 1988	866 4411 1942 169 1925	534 2939 1989 136 1955
SUMMARY STATISTICS	FOR 1997 CALEN	NDAR YEAR	FC	DR 1998 WA	TER YEAR		WATER	YEARS 1919	- 1998
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW	710407 1946 26600 173 179	Mar 4 Oct 18 Oct 15		879021 2408 33800 173 179 35900 16.72 171	Apr 18 Oct 18 Oct 15 Apr 18 Apr 18 Oct 18		2093 3269 850 83300 108 116 98100 a29. 108	Sep Apr 32 Apr	1927 1941 5 1977 11 1925 17 1955 5 1977 5 1977 11 1925
ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES)	1.32 17.93			1.63 22.18			1.	42	
ANNUAL KUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	4640 1050 225	>		5610 988 235			4690 1120 271	4 3	

a From floodmarks.

03528000 CLINCH RIVER ABOVE TAZEWELL, TN--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1963-65, 1971-80, April to September 1996.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM	FIELI (STANI ARD () UNITS	E TEMPER ATURI WATER () DEG ()	E (MM R OF C) HG)	IC - E OXYGEN DIS- SOLVE (MG/I	CEN SATU	FORM FORM FECA - 0.7 T UM-M R- (COLS N) 100 M	, WATELL, WHOLE TOTALE TOTALE UREAS: ./ (COL) 100 M	R FORM E TOTA L IMME E (COLS / PER L) 100 M	L, HARD L, NESS D. TOTA (MG/ AS L) CACO	NONCARB L DISSOLV L FLD. AS CACO3 3) (MG/L)
OCT 07	1345	406	8.4	20.0	737	13.0	148	K510	K12	10	0 180	32
NOV 24	1230	399	8.3	6.0	744	12.0	99	92	42	510	0 170	14
DEC 15	1215	406	7.9	2.5	738	13.3	101	K2	<2	7	0 170	28
JAN 20	1300	322	8.5	6.0	739	14.0	116	K73	K54	K880	0 140	20
FEB 10	1315	307	7.3	8.5	740	13.4	118	95	36	>200	0 130	28
MAR 12	1230	283	7.4	6.0	750	12.6	103	140	130	K1600	0 120	15
MAY 21	1300	305	8.6	23.0	735	10.1	123	540	40	95	0 140	23
DAT	ΓE	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	(MG/L	SODIUM PERCENT (00932)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	WATER DIS IT FIELD	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	TOT IT FIELD	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2) (00405)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)
OCT 07		41	19	21	20	.7	2.8	10	161	151	1.2	46
NOV 24		43	15	15	16	.5	2.8	5	182	157	1.4	49
DEC 15		45	13	18	19	.6	2.2		168	138	3.6	53
JAN 20		38	9.6	8.7	12	.3	1.6	10	121	115	.7	31
FEB 10		36	9.1	8.3	12	.3	1.4	0	123	101	10	25
MAR 12		34	8.1	6.1	10	.2	1.3	0	126	103	7.6	23
MAY 21		36	12	6.2	9	.2	1.4	5	131	117	.7	29
DAT	ΓE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)
OCT 07 NOV		8.2	<.10	2.0	230	229	.31		<.010	<.050	<.015	<.20
24		8.2	<.10	1.3	235	230	.32		<.010	.202	<.020	<.10
DEC 15 JAN		8.5	<.10	1.2	231	225	.31	.384	.014	.398	<.020	<.10
20		8.6	<.10	4.3	189	175	.26	.982	.013	.995	<.020	<.10
FEB 10 MAR		12	<.10	5.4	165	163	.22		<.010	1.21	.020	<.10
12 MAY		6.1	<.10	3.9	157	148	.21		<.010	.625	<.020	<.10
21		3.9	<.10	1.0	174	160	.24	.300	.010	.310	.043	<.10

 $\ensuremath{\mbox{\scriptsize K--Results}}$ based on non-ideal colony count.

03528000 CLINCH RIVER ABOVE TAZEWELL, TN--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

	NITRO-				PHOS-				CARBON,		SED.	
	GEN, AM-			PHOS-	PHORUS		MANGA-	CARBON,	ORGANIC		SUSP.	
	MONIA +	NITRO-	PHOS-	PHORUS	ORTHO,	IRON,	NESE,	ORGANIC	SUS-	SEDI-	SIEVE	
	ORGANIC	GEN,	PHORUS	DIS-	DIS-	DIS-	DIS-	DIS-	PENDED	MENT,	DIAM.	
	TOTAL	TOTAL	TOTAL	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	TOTAL	SUS-	% FINER	
DATE	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(UG/L	(UG/L	(MG/L	(MG/L	PENDED	THAN	
	AS N)	AS N)	AS P)	AS P)	AS P)	AS FE)	AS MN)	AS C)	AS C)	(MG/L)	.062 MM	
	(00625)	(00600)	(00665)	(00666)	(00671)	(01046)	(01056)	(00681)	(00689)	(80154)	(70331)	
OCT												
07	.48		.091	<.010	<.010	8.5	5.0	2.2	.20			
NOV												
24	.15	.35	.022	.012	.027	19	2.2	1.9	.30	8	93	
DEC												
15	.11	.51	<.010	<.010	.015	21	<4.0	1.6	.20	2	92	
JAN												
20	.12	1.1	.015	<.010	<.010	13	<4.0	1.1	.20	18	84	
FEB												
10	.14	1.3	.024	<.010	.017	<10	<4.0	1.1	.40			
MAR												
12	.13	.76	<.010	<.010	<.010	13	<4.0	1.0	.50	14	75	
MAY												
21	.14	.45	<.010	<.010	<.010	<10	<4.0	1.2	.30	4	30	

As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in low-flow or floodflow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage to these events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Records collected at crest-stage partial-record stations are presented in the following table. Discharge measurements made at miscellaneous sites and for special studies are given in separate tables.

Crest-stage partial-record stations

The following table contains annual maximum discharges for crest-stage stations. A crest-stage gage is a device that will register the peak stage occurring between inspections of the gage. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. The date of the maximum discharge is not always certain but is usually determined by comparison with nearby continuous-record stations, weather records, or local inquiry. Only the maximum discharge for each water year is given. Information on some lower floods may have been obtained but is not published herein. The years given in the period of record represent water years for which the annual maximum has been determined.

Maximum discharge at crest-stage partial-record stations during water year 1998

	Plaximum discharge at crest se							
		Period of	Water y	ear 1998	maximum	Period of	record	
Station name and	Location and	record (water	Date	Gage height	Dis- charge	Date	Gage height	Dis- charge
number	drainage area	years)		(ft)	(ft^3/s)		(ft)	(ft^3/s)
	I	POTOMAC RI	VER BASI	N				
Buffalo Branch tributary near Christian, VA (01622400)	Lat 38°11'55", long 79°13'10", Augusta County, Hydrologic Unit 02070005, on left upstream wingwall of culvert on State Highway 42, 0.8 miupstream from mouth, and 1.3 minorth of Christian. Datum of gage is 1,622.53 ft above sea level. Drainage area is 0.49 mi ² .	1967-98	1- 8-98	4.76	101	9- 6-96	7.68	244
Chub Run near Stanley, VA (01629945)	Lat 38°34'31", long 78°27'32", Page County, Hydrologic Unit 02070005, at culvert on State Highway 689, 2.2 mi east of Stanley, and 3.1 mi upstream from mouth. Datum of gage is 1,023.05 ft above sea level. Drainage area is 3.16 mi ² .	1959-69a, 1970-98	2- 5-98	4.57	486	9- 6-96	>10.08	*
Crooked Run near Mt. Jackson, VA (01632970)	Lat 38°45′44″, long 78°41′06″, Shenandoah County, Hydrologic Unit 02070006, on right upstream wingwall of culvert on State Highway 263, 0.4 mi upstream from mouth, and 2.3 mi west of Mt. Jackson. Datum of gage is 962.84 ft above sea level. Drainage area is 6.49 mi².	1972-98	1- 8-98	3.68	395	1-19-96	11.34	5,700
Pughs Run near Woodstock, VA (01633650)	Lat 38°55'48", long 78°32'43", Shenandoah County, Hydrologic Unit 02070006, on left up- stream wingwall of culvert on State Highway 623, 4.0 mi northwest of Woodstock, and 5.4 mi upstream from mouth. Datum of gage is 1,027.27 ft above sea level. Drainage area is 3.66 mi ² .	1971-98	2- 5-98	5.19	139	9- 6-96	13.39	1,100

^{*} Discharge not determined.

> Greater than.

a Records provided by U.S. Department of Agriculture, Soil Conservation Service.

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

Maximum discharge at crest-stage partial-record stations during water year 1998--Continued

	Maximum discharge at crest-stage pa	artial-record	d stations	during wa	ter year 19	98Continu	ed	
Station name and number	Location and drainage area	Period of record (water years)	<u>Water</u> Date	year 1998 Gage height (ft)	maximum Dis- charge (ft ³ /s)	<u>Period o</u> Date	f record Gage height (ft)	maximum Dis- charge (ft ³ /s)
	POTOMA	C RIVER BA	ASINCoi	ntinued				
Fourmile Run at Alexandria, VA (01652500)	Lat 38°50'35", long 77°05'09", Arlington County, Hydrologic Unit 02070010, on left up- stream wingwall of bridge on Shirlington Road, at Arlington County-Alexandria City line, 0.1 mi upstream from Interstate Highway 395, and 2.5 mi upstream from mouth. Datum of gage is 28.57 ft above sea level. Drainage area is 13.8 mi².	1947, 1952-69‡b, 1970-73b, 1974-75‡, 1976-77, 1979-82‡, 1983-98	9-22-98	7.94	2,310	7-22-69	b11.60	14,600
	GREA	T WICOMICO	O RIVER I	BASIN				
Bush Mill Stream near Heaths- ville, VA (01661800)	Lat 37°52'36", long 76°29'42", Northumberland County, Hydrologic Unit 02080102, on right bank 12 ft upstream from bridge on State High- way 601, 2.2 mi northwest of Howland, and 3.0 mi southwest of Heathsville. Datum of gage is 22.22 ft above sea level. Drainage area is 6.82 mi ² .	1964-69‡, 1970-86‡, 1987-98	2- 5-98	7.36	485	7-30-79	8.52	714
	RAP	PAHANNOCK	RIVER BA	ASIN				
Pony Mountain Branch near Culpeper, VA (01665050)	Lat 38°27'04", long 77°57'24", Culpeper County, Hydrologic Unit 02080103, at culvert on State Highway 3, 0.3 mi upstream from mouth, and 2.7 mi southeast of Culpeper. Elevation of gage is 335 ft above sea level, from topo- graphic map. Drainage area is 0.30 mi ² .	1958-69a, 1970-98	1- 8-98	1.92	71	8-16-70	4.02	196
Farmers Hall Creek near Champlain, VA (01668300)	Lat 38°00'05", long 76°58'40", Essex County, Hydrologic Unit 02080104, on left up- stream wingwall of culvert on U.S. Highway 17, 1.0 mi upstream from Rouzie Swamp, and 1.2 mi southeast of Champlain. Datum of gage is 42.10 ft above sea level. Drainage area is 2.18 mi ² .	1966-98	2- 5-98	5.49	100	8-20-69	19.2	510
	PI	ANKATANK I	RIVER BAS	SIN				
My Ladys Swamp near Saluda, VA (01669800)	Lat 37°34′34″, long 76°31′30″, Middlessex County, Hydrologic Unit 02080102, on left upstream wingwall of culvert on State Highway 629, 1.45 mi upstream from mouth, and 4.4 mi southeast of Saluda. Datum of gage is 4.16 ft above sea level. Drainage area is 4.81 mi².	1970-98	2- 5-98	8.13	524	1- 2-85	8.38	592

[‡] Operated as a continuous-record gaging station.
a Records provided by U.S. Department of Agriculture, Soil Conservation Service.
b At different site and datum 6.02 feet lower.

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

Maximum discharge at crest-stage partial-record stations during water year 1998--Continued

	Maximum discharge at crest stage pe	Period			7 7	750 CONCING		
		of	Water	year 1998		Period of	f record m	
Station name and number	Location and drainage area	record (water	Date	Gage height (ft)	Dis- charge (ft ³ /s)	Date	Gage height (ft)	Dis- charge (ft ³ /s)
	dramage area	years)		(10)	(IC/S)		(10)	(IC/S)
		YORK RIV	ER BASIN					
Pamunkey Creek at Lahore, VA (01670180)	Lat 36°11'53", long 77°58'09", Orange County, Hydrologic Unit 02080106, on right bank on upstream side of bridge on State Highway 669, 0.45 mi south of Lahore, and 3.8 mi upstream from Lake Anna. Elevation of gage is 200 ft above sea level, from topographic map. Drainage area is 40.5 mi ² .	1989-91‡, 1992-98	3-21-98	9.23	1,670	6-27-95	17.20	6,900
Contrary Creek near Mineral, VA (01670300)	Lat 38°03'53", long 77°52'45", Louisa County, Hydrologic Unit 02080106, on left bank 200 ft downstream from bridge on U.S. Highway 522, 4.0 mi northeast of Mineral. Elevation of gage is 275 ft above sea level, from topo- graphic map. Drainage area is 5.53 mi².	1976-86‡, 1987-98	3-21-98	3.63	1,000	11-28-93	6.94	7,050
Waldrop Creek near Louisa, VA (01671650)	Lat 38°00'08", long 78°04'22", Louisa County, Hydrologic Unit 02080106 on left up- stream wingwall of culvert on State Highway 632, 2.3 mi upstream from mouth, and 4.2 mi southwest of Louisa. Datum of gage is 361.41 ft above sea level. Drainage area is 2.85 mi ² .	1969-98	5- 8-98	6.97	357	8-20-69	21.00	2,500
Reedy Creek near Dawn, VA (01674200)	Lat 37°52'55", long 77°21'35", Caroline County Hydrologic Unit 02080105, at bridge on U.S. Highway 301, 3.3 mi north of Dawn, and 11 mi south of Bowling Green. Drainage area is 16.8 mi ² .	1951-69, 1972-98	2- 5-98	5.10	191	8-20-69	7.28	2,500
		JAMES RIV	ER BASIN					
Jackson River at Falling Spring, VA (02012500)	Lat 37°52'36", long 79°58'39", Alleghany County, Hydrologic Unit 02080201, on right bank 20 ft upstream from Smith Bridge, 0.8 mi south of Falling Spring, and 5.5 mi north of Covington. Datum of gage is 1,333.49 ft above sea level. Drainage area is 411 mi ² .	1925-84‡, 1987-98	3-23-98	9.52	6,180	3-17-36 c1913	14.74 2 20 ds	24,700 50,000
Cowpasture River near Head Waters, VA (02015600)	Lat 38°19'30", long 79°26'14", Highland County, Hydrologic Unit 02080201, on left down- stream wingwall of bridge on U. S. Highway 250, 1.2 mi west of Head Waters, and 3 mi upstream from Shaw Fork. Datum of gage is 1,985.65 ft above sea level. Drainage area is 11.3 mi ² .	1949-94, 1996-98	1- 8-98	6.13	190	6-17-49	6.5	5,650

[‡] Operated as a continuous-record gaging station.
c Maximum known historical peak outside period of record.
d Approximate.

		Period						
Station name and number	Location and drainage area	of record (water years)	<u>Water</u> Date	<u>year 1998</u> Gage height (ft)	maximum Dis- charge (ft ³ /s)	<u>Period o</u> Date	f record Gage height (ft)	maximum Dis- charge (ft ³ /s)
	JAMES	RIVER BA	SINCon	tinued				
Craig Creek tributary near New Castle, VA (02017700)	Lat 37°33'21", long 79°59'52", Craig County, Hydrologic Unit 02080201, on right up- stream wingwall of culvert on State Highway 606, 0.4 mi upstream from mouth, and 7.1 mi northeast of New Castle. Drainage area is 2.05 mi ² .	1968-98	3-21-98	Unknown	Unknown	11- 4-85	13.45	1,100
Renick Run near Buchanan, VA (02020100)	Lat 37°35'27", long 79°38'04", Botetourt County, Hydrologic Unit 02080201, on left up- stream wingwall of culvert on Frontage Road F054 of Interstate Highway 81 between Exits 48 and 49, 2.2 mi upstream from mouth, and 4.8 mi northeast of Buchanan. Datum of gage is 1,261.85 ft above sea level. Drainage area is 2.06 mi ² .	1967-98	2- 5-98	6.86	628	8-20-69	9.90	1,210
South River near Steeles Tavern, VA (02023300)	Lat 37°55′50″, long 79°09′55″, Augusta County, Hydrologic Unit 02080202, at bridge on State Hightway 608, 2.5 mi northeast of Vesuvius, 3 mi east of Steels Tavern, and 5 mi south of Greenville. Elevation of gage is 1,600 ft above sea level, from topographic map. Drainage area is 15.7 mi².	1951-98	-	<2.04	<135	8-20-69	8.70	4,700
James River at Bedford Dam near Major, VA (02024750)	Lat 37°34'40", long 79°22'36", Amherst County, Hydrologic Unit 02080203, on left bank 10 ft upstream from head- gates on headrace to city of Bedford hydroelectric plant, 1.2 mi north of Major, and 1.4 mi upstream from Blue Ridge Parkway. Drainage area is 3,070 mi ² .	1989-98	1- 8-98	10.59	70,800	1-20-96	14.63	104,000
Buffalo River tributary near Amherst, VA (02027700)	Lat 37°33'45", long 78°57'35", Amherst County, Hydrologic Unit 02080203, on left bank just upstream from culvert on U.S. Highway 60, 0.8 mi upstream from mouth, and 5.2 mi southeast of Amherst. Datum of gage is 583.66 ft above sea level. Drainage area is 0.46 mi ² .	1966-98	1-28-98	3.47	34	9- 6-96	7.33	196
Stockton Creek near Afton, VA (02030800)	Lat 38°01'48", long 78°48'30", Albemarle County, Hydrologic Unit 02080204, on left up- stream wingwall of culvert on State Highway 6, 1.7 mi east of Afton, and 4.3 mi upstream from Stony Run. Datum of gage is 835.27 ft above sea level Drainage area is 2.80 mi².	1967-98	1- 8-98	6.49	284	6-21-72 11-23-92		678 425

< Less than.
e Affected by debris jam at upstream end of culvert.

	daximum discharge at crest-stage pa		. 504010115	war ring wa	cor year 15	20 00110111146		
Station name and number	Location and drainage area	Period of record (water years)	<u>Water</u> Date	year 1998 Gage height (ft)	maximum Dis- charge (ft ³ /s)	Period o	f record Gage height (ft)	maximum Dis- charge (ft ³ /s)
	JAMES	RIVER BAS	SINCont	inued				
Muddy Run near Stanardsville, VA (02032300)	Lat 38°14'05", long 78°37'02", Albemarle County, Hydrologic Unit 02080204, on right downstream abutment of bridge on State Highway 810, 0.7 mi upstream from mouth, and 11 mi southwest of Stanardsville. Datum of gage is 756.79 ft above sea level. Drainage area is 3.36 mi ² .	1967-98	5- 8-98	6.24	1,760	5-13-73 8-28-79	8.33 8.33	*
Moores Creek near Char- lottesville, VA (02033300)	Lat 38°00'25", long 78°34'25", Albemarle County, Hydrologic unit 02080204, on right downstream wingwall of culvert on access road, 30 ft north of U.S. Highway 29, 2.8 mi upstream from Morey Creek, and 4 mi southwest of Charlottesville. Datum of gage is 505.40 ft above sea level. Drainage area is 3.52 mi ² .	1967-98	5- 8-98	14.68	206	6- 2-79	18.74	*
Willis River at Lakeside Village, VA (02034500)	Lat 37°40'00", long 78°10'00", Cumberland County, Hydrologic Unit 02080205, on left bank 15 ft upstream from bridge on State Highway 690, 0.4 mi east of Lakeside Village, 6.9 mi upstream from mouth, and 7.7 mi downstream from Reynolds Creek. Datum of gage is 178.98 ft above sea level. Drainage area is 262 mi ² .	1927-86‡, 1987-98	1-28-98	17.04	4,430	6-22-72	29.80	24,000
Falling Creek near Chesterfield, VA (02038000)	Lat 37°31'21"long 77°31'21", Chesterfield County, Hydrologic Unit 02080206, on left bank 50 ft upstream from bridge on State Highway 651,0.8 mi downstream from Licking Creek, 2.8 mi upstream from Pocoshock Creek, and 4.7 mi northwest of Chesterfield. Elevation of gage is 126.39 ft above sea level. Drainage area is 32.8 mi ² .	1955-94‡, 1996-98	3-19-98	11.30	1,620	10- 1-79	15.32	5,930
Holiday Creek near Toga, VA (02038840)	Lat 37°25′58″, long 78°41′12″, Buckingham County Hydrollogic Unit 02080207, on left bank 40 ft downstream from State Forest Road 2307 (old Richmond Road), 1.8 mi upstream from confluence of North Holiday Creek, and 5.2 mi south-southwest of Toga. Datum of gage is 614.40 ft above sea level. Drainage area is 1.68 mi².	1971-98	1-28-98	2.42	144	6-21-72	6.72	2,820

^{*} Discharge not determined. ‡ Operated as a continuous-record gaging station.

<u></u>	Maximum discharge at crest-stage p	artial-recor	d stations	during wa	ter year 19	98Continu	ea	
Station name and number	Location and drainage area	Period of record (water years)	<u>Water</u> y	year 1998 Gage height (ft)	maximum Dis- charge (ft ³ /s)	<u>Period o</u> Date	f record Gage height (ft)	maximum Dis- charge (ft ³ /s)
	JAMES	S RIVER BA	SINCont	inued				
North Holiday Creek near Toga, VA (02038845)	Lat 37°26'09", long 78°40'04", Buckingham County, Hydro-logic Unit 02080207, on left bank 18 ft upstream from State Forest Road 2307 (old Richmond Road), 1.0 mi upstream from confluence of Holiday Creek, and 4.5 mi south-southwest of Toga. Datum of gage is 588.84 ft above sea level. Drainage area is 1.31 mi².	1971-98	1-28-98	2.78	59	6-21-72	6.79	1,570
Flat Creek near Amelia, VA (02040500)	Lat 37°23'27", long 78°03'45", Amelia County, Hydrologic Unit 02080207, at bridge on State Highway 681, 0.5 mi downstream from Horsepen Creek and 6.0 mi northwest of Amelia. Elevation of gage is 240 ft above sea level, from topographic map. Drainage area is 73.0 mi ² .	1947, 1954-70, 1972-98	12- 2-96 1-28-98	7.25 9.70	f978 2,290	4-16-87	12.38	5,260
Bailey Branch tributary at Spring Grove, VA (02042250)	Lat 37°10'29", long 76°59'13", Surry County, Hydrologic Unit 02080206, on right up- stream wingwall of culvert on State Highway 10, 1.0 mi northwest of Spring Grove. Datum of gage is 61.39 ft above sea level. Drainage area is 0.71 mi ² .	1967-98	2- 5-98	3.44	44	7-14-75	6.52	282
Jordans Branch at Richmond, VA (02042400)	Lat 37°35'10", long 77°29'55", Henrico County, Hydrologic Unit 02080206, on left down- stream wall of bridge on U.S. Highway 250 (Broad Street), at Richmond, and 2.0 mi up- stream from mouth. Drainage area is 2.53 mi ² .	1965-98	3-19-98	10.48	1,340	6-22-91	13.10	2,760
West Branch Long Hill Swamp near Lightfoot, VA (02042780)	Lat 37°18'50", long 77°46'01", James City County, Hydrologic Unit 02080206, on left up- stream wingwall of culvert on State Highway 612, 2.2 mi upstream from mouth, and 2.0 mi south of Lightfoot. Drainage area is 2.47 mi ² .	1970-76, 1978-98	-	g	ā	9- 1-75	5.20	320
		CHOWAN RI	VER BASIN	1				
Falls Creek tributary near Victoria, VA (02044200)	Lat 37°02'04", long 78°10'26", Lunenburg County, Hydrologic Unit 03010201, at upstream end of culvert on State High- way 49, 3.6 mi northeast of Victoria. Datum of gage is 409.21 ft above sea level. Drainage area is 0.34 mi ² .	1962-98	3-19-98	4.36	70	6-21-72	9.15	343

f Published incorrectly in the 1997 report. g Affected by backwater from beaver dam.

	aximum dibendige de crebe bedge po	arciar record			7 2			
Station name and number	Location and drainage area	Period of record (water years)	Water y	year 1998 Gage height (ft)	maximum Dis- charge (ft ³ /s)	<u>Period c</u> Date	f record Gage height (ft)	maximum Dis- charge (ft ³ /s)
	CHOWAI	N RIVER BA	SINCon	tinued				
Blackwater River tributary near Holland, VA (02050050)	Lat 36°38'44", long 76°51'29", Suffolk City, Hydrologic Unit 03010202, on left up- stream wingwall of culvert on State Highway 272, 3.0 mi upstream from mouth, and 4.9 mi southwest of Holland. Datum of gage is 29.25 ft above sea level. Drainage area is 2.76 mi ² .	1967-98	2- 5-98	6.34	231	8- 3-73	7.65	408
	1	ROANOKE RI	VER BASI	N				
Powells Creek near Turbeville, VA (02075350)	Lat 36°34'50", long 79°11'20", Halifax County, Hydrologic Unit 03010104, at culvert on U.S. Highway 58, 0.8 mi up- stream from mouth, 1.1 mi east of Halifax-Pittsylvania County line, and 8.8 mi southwest of Turbeville. Datum of gage is 386.76 ft above sea level. Drainage area is 0.28 mi ² .	1958-69a, 1970-98	-	<4.21	<42	7-11-65	7.86	384
Dan River at South Boston, VA (02076000)	Lat 36°41'37", long 78°54'09", South Boston City, Hydro- logic Unit 03010104, on left bank 100 ft upstream from Norfolk and Western Railroad bridge at South Boston. Datum of gage is 299.23 ft above sea level. Drainage area is 2,730 mi ² .	1900-07‡, 1923-52‡, 1953-62h, 1980-98h	1-30-98	27.34	*	8-16-40	31.8	81,000
Bearskin Creek near Chatham, VA (02076200)	Lat 36°50'30", long 79°29'05", Pittsylvania County, Hydrologic Unit 03010105, on left upstream wingwall of culvert on State Highway 57, 4.5 mi west of Chatham, and 6 mi upstream from mouth. Elevation of gage is 630 ft above sea level, from topographic map. Drainage area is 4.06 mi ² .	1967-98	2- 4-98	5.52	393	6-29-95	19.90	2,850
Blacks Creek near Mt. Airy, VA (02076700)	Lat 36°56'40", long 79°09'56", Pittsylvania County, Hydrologic Unit 03010105, on left upstream wingwall of culvert on State Highway 40, 1.5 mi east of Mt. Airy, and 3.5 mi upstream from mouth. Elevation of gage is 420 ft above sea level, from topographic map. Drainage area is 3.44 mi ² .	1966-98	1-28-98	7.40	526	9- 8-87	j19.5	2,200

^{*} Discharge not determined.

‡ Operated as a continuous-record gaging station.

< Less than.

a Records provided by U.S. Department of Agriculture, Soil Conservation Service.

h Operated as a stage-only station.

j From high-water marks.

	Maximum discharge at crest-stage pa	rtial-record	d stations d	uring wa	ter year 19	98Continu	ed	
Station name and number	Location and drainage area	Period of record (water years)	<u>Water y</u>	ear 1998 Gage height (ft)	maximum Dis- charge (ft ³ /s)	<u>Period o</u>	f record Gage height (ft)	maximum Dis- charge (ft ³ /s)
	ROANOKI	E RIVER B	ASINCon	tinued				
Roanoke River at Buggs Island, VA (02079500)	Lat 36°36'06", long 78°17'56", Mecklenburg County, Hydrologic Unit 03010106, on left bank 1,200 ft downstream from John H. Kerr dam, 5.3 mi upstream from bridge on U.S. Highway 1, and 6.7 mi southeast of Boydton. Datum of gage is 196.72 ft above sea level. Drainage area is 7,789 mi ² .	1947-62‡, 1963-98	2-23-98	10.13	*	12- 7-48	a14.97	76,000
	К	ANAWHA RI	VER BASIN	1				
Mira Fork tributary near Dugspur, VA (03167300)	Lat 36°50'16", long 80°35'47", Carroll County, Hydrologic Unit 05050001, on left up- stream wingwall of culvert on U.S. Highway 221, 1.3 mi upstream from mouth, and 2.2 mi northeast of Dugspur. Datum of gage is 2,602.96 ft above sea level. Drainage area is 0.62 mi ² .	1967-98	1- 8-98	5.67	165	4-21-92	7.20	257
Thorne Springs Branch near Dublin, VA (03168750)	Lat 37°05'30", long 80°44'34", Pulaski County, Hydrologic Unit 05050001, at pond dam just upstream from U.S. Highway 11, 3.3 mi southwest of Dublin, and 4.3 mi upstream from mouth. Elevation of gage is 1,975 ft above sea level, from topographic map. Drainage area is 4.77 mi ² .	1957-69a, 1970-98	3-21-98	2.23	127	5-28-73	8.01	2,200
	ВІ	G SANDY R	RIVER BASI	IN				
Russell Fork at Council, VA (03208040)	Lat 37°04'41", long 82°03'56", Buchanan County, Hydrologic Unit 05070202, on left bank 50 ft upstream from bridge on State Highway 80, 750 ft downstream from Ball Creek, 0.6 mi southeast of Council, and 4.7 mi upstream from Hurricane Creek. Elevation of gage is 1,680 ft above sea level, from topographic map. Drainage area is 10.2 mi ² .	1981-83‡, 1984-98	4-17-98	6.65	1,320	4-17-98	6.65	1,320
North Fork Pound River at Pound, VA (03208700)	Lat 37°07'32", long 82°37'36", Wise County, Hydrologic Unit 05070202, on right bank at Pound, 700 ft downstream from Stacy Branch, and 1,600 ft downstream from North Fork Pound River dam. Datum of gage is 1,500.00 ft above sea level. Drainage area is 18.5 mi ² . Prior to Oct. 1, 1965, at datum 44.88 ft higher.	1963-87‡, 1988-98	4-17-98	51.54	349	3-12-63	61.58	4,480

^{*} Discharge not determined. ‡ Operated as a continuous-record gaging station. a Records provided by U.S. Department of Agriculture, Soil Conservation Service.

		Period						
Station name	Location	of record	<u>Water</u>	year 1998 Gage	maximum Dis-	Period of record max: Gage D		maximum Dis-
and number	and drainage area	(water years)	Date	height (ft)	charge (ft ³ /s)	Date	height (ft)	charge (ft ³ /s)
	BIG SAN	IDY RIVER	BASINCo	ontinued	ì			
Pound River above Indian Creek, at Pound, VA (03208800)	Lat 37°07'26", long 82°36'29", Wise County, Hydrologic Unit 05070202, on left bank at Pound, 1,600 ft downstream from confluence of North and South Forks, 0.5 mi upstream from bridge on U.S. Highway 23, and 0.7 mi upstream from Indian Creek. Datum of gage is 1,535.64 ft above sea level. Drainage area is 36.7 mi².	1966-78‡, 1979-98	4-17-98	12.60	1,780	5-18-75	19.44	3,460
Pound River below Bold Camp Creek at Pound, VA (03208850)	Lat 37°07'19", long 82°35'55", Wise County, Hydrologic Unit 05070202, at Pound, on left bank 1,000 ft upstream from bridge on State Highway 83, 0.3 mi downstream from Bold Camp Creek, and 0.5 mi downstream from Indian Creek. Datum of gage is 1,527.36 ft above sea level Drainage area is 61.2 mi ² .	1966-78‡, 1979-98	4-17-98	17.40	3,020	5-18-75	25.64	6,290
Pound River near Georges Fork, VA (03208900)	Lat 37°09'51", long 82°31'30", Dickenson County, Hydrologic Unit 05070202, on right bank 50 ft upstream from bridge on State Highway 624, 150 ft upstream from Camp Creek, and 2.6 mi northwest of Georges Fork. Datum of gage is 1,470.39 ft above sea level. Drainage area is 82.5 mi ² .	1964-82‡, 1983-98	4-17-98	9.54	3,540	5-18-75	14.91	10,900
Russell Fork at Bartlick, VA (03209200)	Lat 37°14'45", long 82°19'25", Dickenson County, Hydrologic Unit 05070202, on left bank at Bartlick just upstream from bridge on State Highway 611, 0.2 mi downstream from Pound River, and 1.1 mi upstream from Fall Branch. Datum of gage is 1,165.00 ft above sea level. Drainage area is 526 mi ² .	1963-82‡, 1983-98	4-17-98	18.59	17,300	4- 4-77	27.55	50,000
Knox Creek at Kelsa, VA (03213590)	Lat 37°27'02", long 82°03'34", Buchanan County, Hydrologic Unit 05070201, on downstream end of right bridge pier on State Highway 697, 0.3 mi downstream from Pawpaw Creek, 0.8 mi northeast of Kelsa, and 10.0 mi upstream from mouth. Elevation of gage is 945 ft above sea level, from topographic map. Drainage area is 84.3 mi ² .	1980-81‡, 1982-98	6-10-98	14.10	7,330	5- 7-84	20.2	13,000

[‡] Operated as a continuous-record gaging station.

		Period of	Water y	year 1998	maximum	Period o	f record	maximum
Station name and number	Location and drainage area	record (water years)	Date	Gage height (ft)	Dis- charge (ft ³ /s)	Date	Gage height (ft)	Dis- charge (ft ³ /s)
	r	ENNESSE R	IVER BASI	IN				
Cedar Creek near Meadowview, VA (03475600)	Lat 36°44′50″, long 81°51′20″, Washington County, Hydro-logic Unit 06010102, on left downstream wingwall of culvert on U.S. Highway 11, 1.2 mi south of Meadowview, and 2.5 mi upstream from mouth. Datum of gage is 2,034.66 ft above sea level. Drainage area is 3.38 mi².	1967-98	4-17-98 t	Unknown	Unknown	7-10-71	7.54	92
Lick Creek near Chatham Hill, VA (03487800)	Lat 36°57'44", long 81°28'21", Smyth County, Hydrologic Unit 06010101, on left bank 270 ft upstream from bridge on State Highway 42, 2.9 mi northeast of Chatham Hill, and 1.6 mi upstream from mouth. Datum of gage is 2,076.97 ft above sea level. Drainage area is 25.5 mi ² .	1966-68‡, 1969-98	4-17-98	5.08	903	11- 7-77	8.09	2,660
Brumley Creek at Brumley Gap, VA (03488450)	Lat 36°47'30", long 82°01'10", Washington County, Hydro-logic Unit 06010101, on left downstream wingwall of bridge of State Highway 611, 0.2 mi upstream from mouth, 0.8 mi southeast of Brumley Gap, and 2.7 mi downstream from Lee Creek. Datum of gage is 1,489.16 ft above sea level. Drainage area is 21.1 mi ² .	1979-81‡, 1982-98	4-17-98	5.48	919	5- 7-84	6.60	1,500
Cove Creek near Shelleys, VA (03489800)	Lat 36°39'13", long 82°21'16", Scott County, Hydrologic Unit 06010101, on right down- stream wingwall of bridge on U.S. Highway 58 and 421, 1.5 mi northwest of Shelleys, and at mile 3.3. Datum of gage is 1,381.53 ft above sea level. Drainage area is 17.3 mi ² .	1951-98	4-17-98	6.81	1,350	3-12-63	8.40	2,500
North Fork Holston River near Gate City, VA (03490000)	Lat 36°36'31", long 82°34'05", Scott County, Hydrologic Unit 06010101, on left bank 75 ft upstream from bridge on U.S. Highway 23, 1.6 mi downstream from Big Mountain Creek, 2.1 mi southeast of Gate City, and at mile 8.8. Datum of gage is 1,197.56 ft above sea level. Drainage area is 672 mi ² .	1932-81‡, 1982-98k	4-17-98	14.11	22,700		19.79 k22.5	

[‡] Operated as a continuous-record gaging station.
c Maximum known historical peak outside period of record.
k Records provided by Tennessee Valley Authority.

-	Maximum discharge at crest stage pa	Period			2		
		of	Water y	ear 1998	maximum	Period o	f record maximum
Station name	Location	record		Gage	Dis-		Gage Dis-
and number	and drainage area	(water	Date	height (ft)	charge (ft ³ /s)	Date	height charge (ft) (ft ³ /s)
	urainage area	years)		(10)	(IL/S)		(10) (10/8)
	TENNESSI	EE RIVER I	BASINCo	ontinued	l		
Clinch River at Richlands, VA (03521500)	Lat 37°05'10", long 81°46'52", Tazewell County, Hydrologic Unit 06010205, on right bank 1.0 mi southeast of Richlands, 1.6 mi downstream from Middle Creek, 2.2 mi upstream from Big Creek, and at mile 321.0. Datum of gage is 1,924.08 ft above sea level. Drainage area is 137 mi ² .	1946-89‡, 1990-98	3-21-98	12.63	5,150	6-22-01	k21.3 k11,500
Guest River at Coeburn, VA (03524500)	Lat 36°55'45", long 82°27'23", Wise County, Hydrologic Unit 06010205, on right bank 30 ft downstream from bridge on State Highway 72, 1.0 mi southwest of Coeburn, 1.4 mi upstream from Jaybird Branch, 1.8 mi downstream from Pine Camp Creek, and at mile 6.3. Datum of gage is 1,935.80 ft above sea level. Drainage area is 87.3 mi ² .	1950-59‡, 1960-78, 1979-81‡, 1982-98	4-17-98	10.52	3,530	4- 5-77	20.95 18,000
Stony Creek at Ka, VA (03524900)	Lat 36°48'57", long 82°37'02", Scott County, Hydrologic Unit 06010205, at Ka, on left bank 300 ft upstream from bridge on State High- way 619, 600 ft downstream from Straight Fork, and 4.2 mi upstream from mouth. Elevation of gage is 1,510 ft above sea level, from topo- graphic map. Drainage area is 30.9 mi ² .	1981‡, 1982-98	3-19-98	6.00	3,200	5- 7-84	7.31 8,010

[‡] Operated as a continuous-record gaging station.
k Records provided by Tennessee Valley Authority.

Maximum discharge at crest-stage partial-record stations during water year 1998--Continued

Station name and number	Location and drainage area	Period of record (water years)	<u>Water</u>	vear 1998 Gage height (ft)	maximum Dis- charge (ft ³ /s)	<u>Period o</u>	of record Gage height (ft)	maximum Dis- charge (ft ³ /s)	
-------------------------------	----------------------------------	--	--------------	-------------------------------------	---	-----------------	-------------------------------------	---	--

FOOTNOTES FOR CREST-STAGE PARTIAL-RECORD STATIONS: 1998 water year

- * Discharge not determined.
- ‡ Operated as a continuous-record gaging station.

- C Less than.
 > Greater than.
 a Records provided by U.S. Department of Agriculture, Soil Conservation Service.
 b At different site and datum 6.02 feet lower.
 c Maximum known historical peak outside period of record.

- c Maximum known historical peak outside period of red Approximate. e Affected by debris jam at upstream end of culvert. f Published incorrectly in the 1997 report. g Affected by backwater from beaver dam. h Operated as stage-only station. j From high-water marks. k Records provided by Tennessee Valley Authority.

Page	Page
A	Charlottesville, Moores Creek near
Access to USGS water data	Chatham, Bearskin Creek near
Acre-foot, annual runoff, explanation of	Chestnut Creek at Galax
Afton, Stockton Creek near	Chlorophyll, definition of
Algae, definition of	Chowan River Basin, crest-state partial-record stations in 579
Amelia, Flat Creek near	Christian, Buffalo Branch tributary near 574 Chub Run near Stanley 574 Classification of surface-water-quality records 11
Materials (ASTM), reference to	Claytor Reservoir near Radford
Annual 7-day minimum, definition of	Clinch River, above Tazewell, TN at Cleveland
highest, explanation of	Clintwood, Cranes Nest River near 91-92 Coeburn, Guest River at 584 Coliform bacteria, fecal 15
Annual runoff (cfsm), explanation of	total
Annual total, explanation of]	Color unit, definition of
Ash mass, definition of	Contrary Creek near Mineral
	Control, definition of 16 Cooperation, definition of 8 Cooperation, explanation of 1
Back Creek (Roanoke River Basin) near Dundee	Cooperators, list of
total coliform, definition of	Cowpasture River near Head Waters
Bartlick, Russell Fork at	Crooked Run near Mt. Jackson
Bed load discharge, definition of 20 Bed load, definition of 20 Bed material, definition of 16	Cubic foot per second, definition of
Big Rock, Levisa Fork at	D
crest-state partial-record stations in 581-582 Biochemical oxygen demand (BOD),	Daily discharges, estimated, explanation of 10 Daily mean values, explanation of 9 Daily mean, highest, explanation of
definition of 16 Biomass, definition of 16 Blacks Creek near Mt. Airy 580	lowest, explanation of
Blackwater River tributary near Holland	Damascus, South Fork, Holston River near 107-108 Dan River at South Boston 580 Data table of daily mean values,
Bristol, Beaver Creek at	explanation of
Buchanan, Renick Run near	and water discharge
Buggs Island, Roanoke River at	presentation, stage and water-discharge 7-10 surface-water quality
C Coder Creek peer Meederrier	Definition of terms
Cedar Creek near Meadowview 583 Cells/volume, definition of 16 CFSM, annual runoff, explanation of 10 Champlain. Farmers Hall Creek near 575	median discharge for period 1961-90 for four representative gaging stations 3
CFSM, annual runoff, explanation of	

Page	Page
Discharge, 10 percent exceeds, explanation of 10	Glen Lyn, New River at
Discharge, 50 percent exceeds, explanation of 10 Discharge, 90 percent exceeds, explanation of 10	Graysontown, Little River at
Discharge, definition of	stations in
annual 7-day minimum, definition of	Green algae, definition of
estimated daily, definition of	Guest River at Coeburn 584
instantaneous, definition of	
Dissolved trace-element Concentrations	Н
Dissolved, definition of	
Dissolved-solids concentration, definition of 17	Hardness of water, definition of
Downstream order system, explanation of 5-6 Drainage area, definition of 17	Pound River below Flannagan Dam, near 95-96
Diamage area, derimition of	Russell Fork at 83-84
explanation of, stage and water discharge 8	Head Waters, Cowpasture River near 576
explanation of, surface-water quality 12	Heathsville, Bush Mill Stream near
Drainage basin, definition of	Holland, Blackwater River tributary near 580
Dublin, Thorne Springs Branch near 581	Holston River:
Dugspur, Mira Fork tributary near 581	Middle Fork, at Seven Mile Ford 111-112
Dundee, Back Creek near 21-22	near Meadowview
	near Saltville
E	South Fork, at Riverside, near Chilhowie 103-104
	near Damascus 107-108
Estimated daily discharges, identification of 10	Hot Springs, Jackson River below Gathright Dam, near
Explanation of stage and	Lake Moomaw near 5-6 Hydrologic bench-mark network, definition of 5
surface-water-discharge records 5-10	explanation of
Explanation of surface-water-quality records11-13, ??-13	Hydrologic conditions, summary of
Extremes, explanation of: stage and surface-water discharge 8	surface-water discharge
surface-water quality	hydrologic unit, delinition of
2-2-2-2	I
F	-
	Identifying estimated daily discharge 10
Falling Creek near Chesterfield 578	INCHES (IN.), explanation of
Falling Spring, Jackson River at	Inches, annual runoff
Falls Mills, Bluestone River at 75-76	Instantaneous low flow, explanation of
Farmers Hall Creek near Champlain 575	Instantaneous peak flow, explanation of 9
Fecal coliform bacteria, definition of	Instantaneous peak stage, explanation of
streptococcal bacteria, definition of 16 Figure 1. Annual mean discharge at	Instrumentation, explanation of
	Standards (ISO), reference to
selected stream-gaging stations 3	Introduction 1
Monthly and annual mean discharge during 1997 water year compared	Ivanhoe, New River at
with median of monthly and	J
annual mean discharge for period	U
1961-90 for four representative	Jackson River, at Falling Spring
stream-gaging stations 4 3. System for numbering selected	near Bacova
J. Dybeem for numbering befeeted	Jackson Riverat Falling Spring 576
miscellaneous sites 5-6	James River at Bedford Dam near Major 577
4. Map of Virginia showing location	James River Basin crest-state partial-record stations in 576-579
of surface-water-discharge and surface-water-quality	James River Basin, Analyses of samples
data-collection stations 30-31	gaging-station records in 1-??
5. Map of Virginia showing location	Jonesville, Powell River near
of surface-water partial-record	Jordans Branch at Richmond 579
stations	K
Flat Creek near Amelia 579	K
Footnotes, surface-water-discharge and	Ka, Stony Creek at
	Kanawha River Basin, crest-state partial-record stations in
surface-water-quality records	581
	Kelsa, Knox Creek at
G	knox creek at keisa
	L
Gage height (G.H.), definition of	
Gage, explanation of	Laboratory measurements
daging scatton, definition of	
Galax, Chestnut Creek at	Lahore, Pamunkey Creek at 576
Galax, Chestnut Creek at 29-30 New River near 25-26	Lahore, Pamunkey Creek at
New River near 25-26 Gate City, Cooper Creek near 135-136	Lahore, Pamunkey Creek at 576
New River near 25-26	Lahore, Pamunkey Creek at

Page	Page
Moomaw, Lake, near Hot Springs 5-6	National Water-Quality Assessment (NAWQA)
Pound Lake, North Fork of, at Pound 87-88	3.61.11.1.6
Lakeside Village, Willis River at 578	program, definition of 5, 18
Latitude-longitude system, explanation of 6	Natural substrate, definition of
Levisa Fork, at Big Rock 79-80	New Castle, Craig Creek tributary near 577
Lick Creek near Chatham Hill 583	New River, at Allisonia 37-38
Lightfood, West Branch Long Hill Swamp near 579	at Glen Lyn 69-70
Little River (Kanawha River Basin),	at Ivanhoe 33-34
at Graysontown 45-46	at Radford 57-58
Little River Reservoir Radford 53, 54	near Galax
Location, explanation of:	Niagara, Roanoke River at
	North Fork Holston River near Gate City 583
stage and water-discharge 8	
surface-water quality	North Holiday Creek near Toga 579
Louisa, Waldrop Creek near 576	Numbering system for selected
Low flow, instantaneous, explanation of 10	miscellaneous sites 5-6
Lowest daily mean, explanation of9	Numbers, station identification 5
М	0
Major Tamog Piyor at Podford Dam noar 577	On-gite managerements and sample collection
Major, James River at Bedford Dam near 577	On-site measurements and sample collection,
Map of Virginia showing location of:	surface-water quality
surface-water, partial-record stations 32-33	Organic mass, definition of
surface-water-discharge and	Organism count/area, definition of 18
	Organism count/volume, definition of 18
surface-water-quality	Organism total count, definition of 18
data collection stations 30-31	Organism, definition of
MAX, explanation of9	Other records available, explanation of 10
Meadowview, Cedar Creek near	
Middle Fork Holston River near 115-116	_
Mean concentration, definition of	P
Mean discharge, definition of	Pamunkey Creek at Lahore 576
MEAN, explanation of	Parameter code, definition of
highest daily, explanation of 9	Partial-record station, definition of
lowest daily, explanation of 9	
Measurements, on-site	explanation of
laboratory 12	Particle size, definition of
Metamorphic stage, definition of	Particle-size classification, definition of 19
Methylene blue active substances (MBAS),	Peak flow, instantaneous, explanation of 9
	Peak stage, instantaneous, explanation of 10
definition of	Percent composition, definition of
Micrograms per gram, definition of	Percent exceeds 10%, 50%, 90%,
Micrograms per liter, definition of	
	explanation of 10
Milligrams of carbon per area or volume per	Period of record, explanation of:
unit time for periphyton, macrophytes,	stage and water discharge
and phytoplankton, definition of	surface-water quality
Milligrams of oxygen per area or volume per	
unit time for periphyton, macrophytes,	Periphyton, definition of
and phytoplankton, definition of 20	Pesticides, definition of
Milligrams per liter, definition of 18	Phytoplankton, definition of
MIN, explanation of 9	Piankatank River Basin, crest-state partial-record sta-
Mineral, Contrary Creek near 576	tions in 575
Mira Fork tributary near Dugspur 581	Picocurie, definition of
Miscellaneous sites, discharge measurements	Plankton, definition of
explanation of	Pony Mountain Branch near Culpeper 575
numbering system for 5-6	Potomac River Basin
Monthly and annual mean discharge during	crest-state partial-record stations in 574-575
	Pound
1997 water year compared with median of	Pound River above Indian Creek, at 582
monthly and annual mean discharge for	Pound River below Bold Camp Creek, at 582
1961-90 at four representative	
stream-gaging stations 3	Pound River, North Fork, at
Monthly mean data, statistics of 9	Pound Lake, North Fork of, at Pound 87-88
Moores Creek near Charlottesville 578	Pound River
Mt. Airy, Blacks Creek near 580	below Bold Camp Creek, at Pound 582
Mt. Jackson, Crooked Run near 574	near Georges Fork 582
Muddy Run near Stanardsville	North Fork, at Pound 581
My Ladys Swamp near Saluda	Pound River, above Indian Creek, at Pound 582
	below Flannagan Dam, near Haysi 95-96
	Pound, North Fork of Pound Lake at 87-88
N	Powell River, near Jonesville
	Powells Creek near Turbeville
Narrows, Wolf Creek near 65-66	
	Primary productivity, definition of
National Geodetic Vertical Datum	Publications on techniques of water-resources
of 1929 (NGVD of 1929), definition of 18	investigations 23-26
National Stream-Quality Accounting Network	Pughs Run near Woodstock 574
(NASQAN), definition of 5, 18	R
National Technical Information Service	Л
National Trends Network, changes in procedures 35	
definition of	Radford, Claytor Reservoir near 41-42
2222 22 22222	

rage	Page
Little River Reservoir near 53, 54	monthly mean data
New River at	Steeles Tavern, South River near
Rappahannock River Basin, crest-state partial-record sta-	Stony Creek at Ka
tions in	Streamflow, definition of
Records, accuracy of	Streptococcal bacteria, fecal, definition of 10
arrangement of surface-water quality 11	Substrate, definition of
classification of surface-water quality 11 collected by the State of Virginia 2	artificial, definition of
explanation of, stage and water discharge 6-10	Summary of hydrologic conditions 2-4
surface-water quality	Summary statistics
other available	Surface area, defintion of
Recoverable from bottom material,	Surface-water-quality records, explanation of 11-13
definition of	Surficial bed material, definition of
Reedy Creek near Dawn	Suspended, definition of
Remark Codes	Suspended, recoverable, definition of
Remarks, explanation of:	Suspended, total, definition of
stage and water discharge 8	Suspended-sediment concentration,
surface-water quality	definition of
Reports, selected U.S. Geological Survey,	Suspended-sediment discharge, definition of 20
Reported, Bellevela C.D. Geological Barvel,	Suspended-sediment load, definition of
on water resources in Virginia 26-29	System for numbering selected
Reservoir stations, explanation of	
Return period, definition of	miscellaneous sites
Revised records, stage and discharge,	
explanation of 8	Т
Revisions, stage and water-discharge records 8	
surface-water-quality records	Tables Publications on techniques of water
Richlands, Clinch River at 584	Publications on techniques of water- resources investigations
Richmond, Jordans Branch at	Selected U.S. Geological Survey reports on
Roanoke River Basin	water-resources in Virginia 26-?
crest-state partial-record stations in 580-581	Taxonomy, definition of
Roanoke River, at Altavista	Techniques of water-resources investigations,
at Niagara	publications on
at Roanoke	Temperature, water, explanation of
Runoff (acre-feet), annual, explanation of 10	Tennessee River Basin
Runoff (cfsm), annual, explanation of	crest-state partial-record stations in 583-584
Runoff in inches, definition of 10, 20	Thermograph, definition of
Runoff, (inches), annual, explanation of 10	Thorne Springs Branch near Dublin
Russell Fork at Council	Tinker Creek near Daleville
Russell Fork, at Bartlick	Toga
at Haysi 83-84	Holiday Creek near 57
	North Holiday Creek near
S	Tons per day, definition of
	Total discharge, definition of
Saltville, North Fork Holston River near 123-124	Total organism count, definition of 18
Saluda, My Ladys Swamp near 575	Total sediment discharge, definition of 20
Sea level, definition of	Total, definition of
Sediment, definition of 20 explanation of 12	Total, recoverable, definition of
total, discharge, definition of	Tritium Network, definition of
Selected USGS reports on water resources	Tubeville, Powells Creek near 580
in Virginia 26-29	
Seven Mile Ford, Middle Fork Holston River at 111-112	V
Seven-day 10-year low flow, definition of 20 Shelleys, Cove Creek near 583	
Sodium-adsorption-ratio, definition of	Victoria, Falls Creek tributary near 579
Solute, definition of	
South Atlantic Slope basins, gaging-station	\mathtt{W}
records in	
South Boston, Dan River at	Waldrop Creek near Louisa 576
Special networks and programs	Walker Creek at Bane 61-62
Specific conductance, definition of	Water-resources investigations, publications
Spring Grove, Bailey Branch tributary at 579	on techniques of 23-20
Stage and water-discharge records,	Water resources data for Virginia, 1997
evolunation of	
explanation of	explanation of 1-39
Stanardsville, Muddy Run near 578	Water resources reports, selected,
Stanley, Chub Run near 574	in Virginia 26-??
Station identification number, explanation of 5	Water Temperature, explanation of
Station manuscript, explanation of	Water year, definition of
Statistics, explanation of summary of 9	

Page	Page
Water-discharge records and stage,	
explanation of	
Y	
York River Basin, crest-state partial-record stations is 576	n
Z	
Zooplankton, definition of	

Page Page